Point Cloud Library (PCL)  1.14.1
sampling_surface_normal.h
1 /*
2  * Software License Agreement (BSD License)
3  *
4  * Point Cloud Library (PCL) - www.pointclouds.org
5  * Copyright (c) 2009-2011, Willow Garage, Inc.
6  *
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  *
13  * * Redistributions of source code must retain the above copyright
14  * notice, this list of conditions and the following disclaimer.
15  * * Redistributions in binary form must reproduce the above
16  * copyright notice, this list of conditions and the following
17  * disclaimer in the documentation and/or other materials provided
18  * with the distribution.
19  * * Neither the name of the copyright holder(s) nor the names of its
20  * contributors may be used to endorse or promote products derived
21  * from this software without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
27  * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
29  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
31  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
33  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34  * POSSIBILITY OF SUCH DAMAGE.
35  *
36  */
37 
38 #pragma once
39 
40 #include <pcl/filters/filter.h>
41 #include <ctime>
42 
43 namespace pcl
44 {
45  /** \brief @b SamplingSurfaceNormal divides the input space into grids until each grid contains a maximum of N points,
46  * and samples points randomly within each grid. Normal is computed using the N points of each grid. All points
47  * sampled within a grid are assigned the same normal.
48  *
49  * \author Aravindhan K Krishnan. This code is ported from libpointmatcher (https://github.com/ethz-asl/libpointmatcher)
50  * \ingroup filters
51  */
52  template<typename PointT>
53  class SamplingSurfaceNormal: public Filter<PointT>
54  {
59 
60  using PointCloud = typename Filter<PointT>::PointCloud;
61  using PointCloudPtr = typename PointCloud::Ptr;
63 
64  using Vector = Eigen::Matrix<float, Eigen::Dynamic, 1>;
65 
66  public:
67 
68  using Ptr = shared_ptr<SamplingSurfaceNormal<PointT> >;
69  using ConstPtr = shared_ptr<const SamplingSurfaceNormal<PointT> >;
70 
71  /** \brief Empty constructor. */
73  {
74  filter_name_ = "SamplingSurfaceNormal";
75  srand (seed_);
76  }
77 
78  /** \brief Set maximum number of samples in each grid
79  * \param[in] sample maximum number of samples in each grid
80  */
81  inline void
82  setSample (unsigned int sample)
83  {
84  sample_ = sample;
85  }
86 
87  /** \brief Get the value of the internal \a sample parameter. */
88  inline unsigned int
89  getSample () const
90  {
91  return (sample_);
92  }
93 
94  /** \brief Set seed of random function.
95  * \param[in] seed the input seed
96  */
97  inline void
98  setSeed (unsigned int seed)
99  {
100  seed_ = seed;
101  srand (seed_);
102  }
103 
104  /** \brief Get the value of the internal \a seed parameter. */
105  inline unsigned int
106  getSeed () const
107  {
108  return (seed_);
109  }
110 
111  /** \brief Set ratio of points to be sampled in each grid
112  * \param[in] ratio sample the ratio of points to be sampled in each grid
113  */
114  inline void
115  setRatio (float ratio)
116  {
117  ratio_ = ratio;
118  }
119 
120  /** \brief Get the value of the internal \a ratio parameter. */
121  inline float
122  getRatio () const
123  {
124  return ratio_;
125  }
126 
127  protected:
128 
129  /** \brief Maximum number of samples in each grid. */
130  unsigned int sample_{10};
131  /** \brief Random number seed. */
132  unsigned int seed_{static_cast<unsigned int> (time (nullptr))};
133  /** \brief Ratio of points to be sampled in each grid */
134  float ratio_{0.0f};
135 
136  /** \brief Sample of point indices into a separate PointCloud
137  * \param[out] output the resultant point cloud
138  */
139  void
140  applyFilter (PointCloud &output) override;
141 
142  private:
143 
144  /** \brief @b CompareDim is a comparator object for sorting across a specific dimension (i,.e X, Y or Z)
145  */
146  struct CompareDim
147  {
148  /** \brief The dimension to sort */
149  const int dim;
150  /** \brief The input point cloud to sort */
151  const pcl::PointCloud <PointT>& cloud;
152 
153  /** \brief Constructor. */
154  CompareDim (const int dim, const pcl::PointCloud <PointT>& cloud) : dim (dim), cloud (cloud)
155  {
156  }
157 
158  /** \brief The operator function for sorting. */
159  bool
160  operator () (const int& p0, const int& p1)
161  {
162  if (dim == 0)
163  return (cloud[p0].x < cloud[p1].x);
164  if (dim == 1)
165  return (cloud[p0].y < cloud[p1].y);
166  if (dim == 2)
167  return (cloud[p0].z < cloud[p1].z);
168  return (false);
169  }
170  };
171 
172  /** \brief Finds the max and min values in each dimension
173  * \param[in] cloud the input cloud
174  * \param[out] max_vec the max value vector
175  * \param[out] min_vec the min value vector
176  */
177  void
178  findXYZMaxMin (const PointCloud& cloud, Vector& max_vec, Vector& min_vec);
179 
180  /** \brief Recursively partition the point cloud, stopping when each grid contains less than sample_ points
181  * Points are randomly sampled when a grid is found
182  * \param cloud
183  * \param first
184  * \param last
185  * \param min_values
186  * \param max_values
187  * \param indices
188  * \param[out] outcloud output the resultant point cloud
189  */
190  void
191  partition (const PointCloud& cloud, const int first, const int last,
192  const Vector min_values, const Vector max_values,
193  Indices& indices, PointCloud& outcloud);
194 
195  /** \brief Randomly sample the points in each grid.
196  * \param[in] data
197  * \param[in] first
198  * \param[in] last
199  * \param[out] indices
200  * \param[out] output the resultant point cloud
201  */
202  void
203  samplePartition (const PointCloud& data, const int first, const int last,
204  Indices& indices, PointCloud& outcloud);
205 
206  /** \brief Returns the threshold for splitting in a given dimension.
207  * \param[in] cloud the input cloud
208  * \param[in] cut_dim the input dimension (0=x, 1=y, 2=z)
209  * \param[in] cut_index the input index in the cloud
210  */
211  float
212  findCutVal (const PointCloud& cloud, const int cut_dim, const int cut_index);
213 
214  /** \brief Computes the normal for points in a grid. This is a port from features to avoid features dependency for
215  * filters
216  * \param[in] cloud The input cloud
217  * \param[out] normal the computed normal
218  * \param[out] curvature the computed curvature
219  */
220  void
221  computeNormal (const PointCloud& cloud, Eigen::Vector4f &normal, float& curvature);
222 
223  /** \brief Computes the covariance matrix for points in the cloud. This is a port from features to avoid features dependency for
224  * filters
225  * \param[in] cloud The input cloud
226  * \param[out] covariance_matrix the covariance matrix
227  * \param[out] centroid the centroid
228  */
229  unsigned int
230  computeMeanAndCovarianceMatrix (const pcl::PointCloud<PointT> &cloud,
231  Eigen::Matrix3f &covariance_matrix,
232  Eigen::Vector4f &centroid);
233 
234  /** \brief Solve the eigenvalues and eigenvectors of a given 3x3 covariance matrix, and estimate the least-squares
235  * plane normal and surface curvature.
236  * \param[in] covariance_matrix the 3x3 covariance matrix
237  * \param[out] (nx ny nz) plane_parameters the resultant plane parameters as: a, b, c, d (ax + by + cz + d = 0)
238  * \param[out] curvature the estimated surface curvature as a measure of
239  */
240  void
241  solvePlaneParameters (const Eigen::Matrix3f &covariance_matrix,
242  float &nx, float &ny, float &nz, float &curvature);
243  };
244 }
245 
246 #ifdef PCL_NO_PRECOMPILE
247 #include <pcl/filters/impl/sampling_surface_normal.hpp>
248 #endif
SamplingSurfaceNormal divides the input space into grids until each grid contains a maximum of N poin...
shared_ptr< PointCloud< PointT > > Ptr
Definition: point_cloud.h:413
unsigned int getSample() const
Get the value of the internal sample parameter.
void applyFilter(PointCloud &output) override
Sample of point indices into a separate PointCloud.
void setSample(unsigned int sample)
Set maximum number of samples in each grid.
Filter represents the base filter class.
Definition: filter.h:80
shared_ptr< Filter< PointT > > Ptr
Definition: filter.h:83
unsigned int sample_
Maximum number of samples in each grid.
float getRatio() const
Get the value of the internal ratio parameter.
float ratio_
Ratio of points to be sampled in each grid.
typename PointCloud::Ptr PointCloudPtr
Definition: pcl_base.h:73
IndicesAllocator<> Indices
Type used for indices in PCL.
Definition: types.h:133
unsigned int getSeed() const
Get the value of the internal seed parameter.
PointCloud represents the base class in PCL for storing collections of 3D points. ...
Definition: distances.h:55
void setRatio(float ratio)
Set ratio of points to be sampled in each grid.
void setSeed(unsigned int seed)
Set seed of random function.
shared_ptr< const PointCloud< PointT > > ConstPtr
Definition: point_cloud.h:414
std::string filter_name_
The filter name.
Definition: filter.h:158
shared_ptr< const Filter< PointT > > ConstPtr
Definition: filter.h:84
SamplingSurfaceNormal()
Empty constructor.
unsigned int seed_
Random number seed.
typename PointCloud::ConstPtr PointCloudConstPtr
Definition: pcl_base.h:74