
Objective Open
H.323 for C

User’s Guide

Objective Systems, Inc. March 2005

Introduction

H.323 is an ITU-T Recommendation describing the protocols involved in establishing channels for
multimedia communications over a packet-based network.

The Objective Open H.323 for C (ooH323c) protocol stack is an open source applications program
interface (API) for building H.323 based applications. The stack implements Q.931/H.225 call signaling
procedures, H.245 logical channel operations, and Registration, Admission, and Status (RAS) messaging
for Gatekeeper communications. The supported parts of a standard H.323 stack are shown in the diagram
below:

Key:

In this diagram, parts of the H.323 stack supported by ooH323c are shown in the light blue color. In
addition, sample programs are included that contain third-party open-source media code to demonstrate a
complete audio application that can play and receive a recorded audio file. The additional parts of the stack
supported by this code are shown in yellow.

Audio
Apps

Video
Apps Terminal Call Manager

RTCP H.225
RAS

H.225/
Q.931
Call
Signal-
ing

H.245
Control
Signal-
ing

T.120
Data

H.261
H.263 or
other
video
codec

G.711 or
other
audio
codec

RTP

TCP

IP

UDP

Supported by ooH323c Supported by 3rd-party software

Architecture

The Objective Open H.323c for C stack is implemented as a simple, single-threaded application that allows
a single H.323 endpoint to be set up that can create and teardown H.323 signaling and media channels. I/O
multiplexing is done by means of a UNIX select or poll command to monitor all active I/O channels.
TCP/IP and UDP communications are supported.

The main structure off which everything in the stack operates is the H.323 Endpoint – OOH323EndPoint.
There is one global endpoint that is shared by all of the modules within the stack. This holds all of the
standard configuration data (port numbers, terminal types, timeout values, etc). It also holds the active call
list.

The active call list is a linked list of OOH323CallData records. Each time a call is initiated either from the
stack or from a remote endpoint, a record is added to this list. This record is maintained throughout the life
of the call. It contains details on negotiated capabilities and the different channels that have been set up to
handle the call.

User application program interaction with the stack is accomplished by means of stack commands and
callback functions.

Stack Commands

Stack command API functions are called to initiate a processing sequence within the stack. The typical
initiation function that is called is ooMakeCall to initiate a call. Once this is done, callback functions are
triggered as different H.323 messages are exchanged to set up the channels.

The following are the top-level stack commands:

Stack Command Description
ooMakeCall Initiate a call.

ooAnswerCall Manually answer a call (this is only required when
auto-answer is disabled).

ooHangCall Terminate a call.

ooForwardCall Forward call.

Callback Functions

The stack is event-driven and will react to I/O or timer events by calling registered callback functions.
There are three types of callbacks, viz., H.323 callbacks (call level callbacks), H.225 callbacks (H.225
message level callbacks), and channel callbacks (callbacks to start/stop transmit/receive channels).

H.323 or Call Level Callbacks

Callback Description
onNewCallCreated This is triggered when a new call structure is

created inside the stack for an incoming or
outgoing call.

onIncomingCall This is triggered when there is an incoming call. In
case where a gatekeeper is being used, the new call
must first be admitted by the gatekeeper.

onOutgoingCall This callback is invoked after a Q.931 setup
message is sent for an outgoing call.

onAlerting This is triggered when a Q.931 alerting message is
received for an outgoing call or when a Q.931
alerting message is sent for an incoming call.

onCallEstablished This is triggered when a Q.931 connect message is
sent in case of incoming call. In case of outgoing
call, this is invoked when a Q.931 connect message
is received. It is not invoked until after fast start
and H.245 tunneling messages within the connect
message are processed.

onCallForwarded This is triggered when remote destination has
forwarded our call to a new destination.

onCallCleared This is triggered when a call is cleared.

openLogicalChannels This is called when Master-Slave determination
and Capabilities Negotiation procedures are
successfully completed for a call.

H.225 or Message Level Callbacks

Callback Description
onReceivedSetup This is triggered when a H.225 SETUP message is

received.

onReceivedConnect This is triggered when a H.225 CONNECT
message is received.

onBuiltSetup This is invoked after a H.225 SETUP message is
built and before it is sent out.

onBuiltConnect This is invoked after H.225 CONNECT message is
built and before it is sent out.

Channel Callbacks

These callbacks are used to start and stop transmit and receive media channels. User applications can
register the same callbacks for various capabilities or can register different callbacks for different
capabilities.

Callback Description
startReceiveChannel This is triggered either during a FastStart operation

or in response to a received OpenLogicalChannel
message from the remote endpoint.

startTransmitChannel This is triggered either during a FastStart operation
or in response to a received
OpenLogicalChannelAck message from the remote
endpoint.

stopReceiveChannel This is triggered when a call is being cleared or in
response to a CloseLogicalChannel request
received from the remote endpoint.

stopTransmitChannel This is triggered when a call is being cleared or in
response to a CloseLogicalChannel request
received from the remote endpoint.

Contents of the Package

The following diagram shows the directory tree structure that comprises the H.323 stack package:

ooh323c
 |
 +- doc
 |

 |
 +- src
 | |

 | +- h323
 |

 +- specs
 |
 +- tests
 | |

 | +- chansetup
 | |
 | +- simple
 | |
 | +- player
 | |
 | +- receiver
 |
 +

The purpose and contents of the various subdirectories are as follows:

 doc – this directory contains this document as well as the H.323 Introduction

 src – this directory contains all of the C source files

o The top level src directory contains the C source files for the stack
o The h323 subdirectory contains compiled ASN.1 code

 specs – this directory contains the H.323 ASN.1 specifications

 tests – this directory contains sample H.323 application programs.
o The H.323 player application transmits audio data from a audio file (16 bit, 8000

samples/sec WAV file on windows, 16 bit raw data audio file on Linux)
o The receiver application receives the RTP audio data stream and plays it on the speaker
o The simple H.323 phone application demonstrates the ability to set up voice calls,

negotiate capabilities and start voice channels.
o The chansetup program contains basic skeleton code for setting up and tearing down an

H.323 channel.

Installation and Build Procedures

The package is delivered as a .tar.gz or .zip archive file that may be unpacked into any root directory.
After unpacking the package, change directory to the package root directory.

Building the Package on Linux

Generate Makefiles for the package

 ./configure --prefix=<install-path>

The default <install-path> is /usr/local. This is where the final compiled oohh323c stack library is installed
upon completion of the build and install procedure. Users must specify <install-path> to have the stack in
their local user directory. For example, the following will cause the library to be installed in the user’s
ooh323c/lib subdirectory after ‘make install’ is executed:

./configure –prefix=$HOME/ooh323c

Build and Install the Package

To build the complete package including test applications:
 ./make

To build an optimized version (this is the default):
 ./make opt

To build the debug version:
 ./make debug

To install package,
 ./make install

This will install the libraries in the <install-path> specified while running ‘configure’ script.

Building the Package on Windows

The package includes Visual Studio 6 based workspace and project files.

1. Open the package root directory ooh323c-x.y, where x.y indicate the release number.

2. Open the ooh323c.dsw workspace, which includes all the projects within the package.

3. You can now do a batch build to build the complete package.

4. To build individual projects, dependencies are as follows:
oostk.dsp – none
oomedia.dsp – none
h323ep.dsp - oostk.dsp, oomedia.dsp
ooPlayer.dsp - oostk.dsp, oomedia.dsp
ooReceiver.dsp - oostk.dsp, oomedia.dsp

After a successful build the libraries will be installed in the ooh323c-x.y\lib\release and ooh323c-
x.y\lib\debug directories.

Running the Sample Programs

Running the Programs on Linux

Running the Receiver and Player Applications (player and receiver)

Make sure that the path to the liboomedia.so shared object file is in your LD_LIBRARY_PATH path. This
library is located in the installed lib subdirectory. If the library is in your local ooh323c directory tree, the
following commands can be used to set the library path:

 LD_LIBRARY_PATH=$HOME/ooh323c/lib
 export LD_LIBRARY_PATH

note that in the command above, ooh323c may have additional version information appended.

Next, the ‘receiver’ application can be run as follows:

 cd tests/receiver
 ./ooReceiver [--use-ip <ip>] [--use-port <port>]

where, [--use-ip <ip>] and [--use-port <port>] options are used to specify local ip
address and port. By default, the receiver application tries to determine the ip address and uses H323
default port 1720.
A log file will be created in the current directory (ooReceiver.log). Also, a log file for the media plug-in
will be created in the same directory (media.log).

Now, run the player application from a new console window as follows:

 cd tests/player
 ./ooPlayer –-audio-file space.raw [--use-ip <ip>]

where, --audio-file is used to specify the audio file to play and [--
use-ip <ip>] is used to specify local ip address. By default, the player application tries to determine
the ip address on it’s own.
A log file will be created in the current directory (ooPlayer.log). Also, a log file for the media plug-in will
be created in the same directory (media.log).

The result should be the recorded sounds in the space.raw file being played on your computer’s speakers.

Running the Simple Phone Application (simple)

Make sure all the path to the liboomedia.so shared object file is in LD_LIBRARY_PATH as specified in
the previous section.

Next, change directory to the simple test directory:

 cd tests/simple

To see the usage information including various options:
 ./simple OR ./simple --help

To make a call:

 ./simple [options] <remote>

 where,
 <remote> - is the dotted representation of the destinations IP address. In
 case of gatekeeper, aliases can also be used.

To receive a call:

 ./simple [options] --listen

 You will find simple.log and media.log in the current directory.

Running the Programs on Windows

To run the sample programs on Windows, make sure that the media plug-in library oomedia.dll is in your
PATH. The libraries are located in the ooh323c-x.y\lib\release and ooh323c-x.y\lib\debug directories.

First, run the receiver from the command prompt as follows (note: you must be in the package root
directory):

cd tests\receiver\Release
 ooReceiver.exe [--use-ip <ip>] [--use-port <port>]

where, [--use-ip <ip>] and [--use-port <port>] options are used to specify local ip
address and port. By default, the receiver application tries to determine the ip address and uses H323
default port 1720.

A log file will be created in the current directory (ooReceiver.log). Also, a log file for the media plug-in
will be created in the same directory (media.log).

Now run the player from the command prompt:

cd tests\player\Release
ooPlayer.exe –-audio-file states.wav [--use-ip <ip>]

where, --audio-file is used to specify the audio file to play and [--
use-ip <ip>] is used to specify local ip address. By default, the player application tries to determine
the ip address on it’s own.

A log file will be created in the current directory (ooPlayer.log). Also, a log file for the media plug-in will
be created in the same directory (media.log).

To run the sample telephony endpoint application, again ensure that the media plug-in library (oomedia.dll)
is in your PATH. The library is located in ooh323c-x.y\lib\release and ooh323c-x.y\lib\debug directories.

To run the telephony application:

cd tests\simple\Release

To see the usage information including various options:
 simple OR simple --help

To make a call:

 simple [options] <remote>

 where,
 <remote> - is the dotted representation of the destinations IP address. In
 case of gatekeeper, aliases can also be used.

To receive a call:

 simple [options] --listen

 You will find simple.log and media.log in the current directory.

Basic H.323 Application Design Pattern

Initializing the Endpoint

Before the ooh323c stack can do anything, the global endpoint structure must be initialized. This is
accomplished by making the following function call:

ooH323EpInitialize (args..);

Arguments include information on the ID of the caller, type of call to be made (audio, video, or fax), and
the name of a trace file where logging information should be written. For a complete argument list, please
refer to the ooH323c Run-time Reference Manual.

Other properties can then be set through a series of “ooH323EpSet” calls. These set properties within the
global endpoint object. For example:

ooH323EpSetAliasH323ID

can be used to set the H.323 ID within the alias address. See the ooH323c Run-time Reference Manual for
the complete set of these functions.

Also, the use of “Registration, Admission, and Status” (RAS) gatekeeper client services should be
initialized via a call to the following function:

ooGkClientInit (eGkMode, szGkAddr, iGkPort);

For simple point-to-point calls, the gatekeeper mode argument (eGkMode) should be set to
RasNoGatekeeper and all other arguments may be set to zero. Other gatekeeper modes are
RasDiscoverGatekeeper (discover a gatekeeper) or RasUseSpecificGatekeeper (use specific gatekeeper).
The other arguments are used to set IP address and port numbers.

Add Capabilities

An H.323 application must specify to its peers what it is capable of doing. A capability negotiation will
then take place within the H.245 message processing to arrive at a mutually agreed upon set of capabilities.

The application should add capabilities to the endpoint based on what it can support. For example,
if an application can transmit and receive G711 ulaw encoded data, then it should add it to the
endpoint as follows:

ooH323EpAddG711Capability (OO_G711ULAW64K, 30, 240, OORXANDTX,
 &startReceiveChannel, &startTransmitChannel,
 &stopReceiveChannel, &stopTransmitChannel);

The different types of capabilities are defined in ooCapability.h. These are constants that define known
capability types. Users can extend this list if they plan to support additional capabilities not currently in
this list.

Defining Callback Functions

Once the endpoint is initialized, the user should register callback functions they have defined. The
Call Level callbacks can be registered as shown below:

 ooH323EpSetH323Callbacks(h323Callbacks);

Here h323Callbacks is a structure of type OOH323CALLBACKS. All members of this structure should
be initialized to either a valid callback value or NULL.

The H.225 message level callbacks can be registered as follows:

 ooH323EpSetH225MsgCallbacks(h225Callbacks);

Here h225Callbacks is a structure of type OOH225MsgCallbacks. All members of this structure should
be initialized by the user application either to a valid callback or to NULL.

The channel callbacks for starting/stopping receive/transmit media channels can be registered at the time
of adding capabilities to the endpoint.

Create H.323 Listener

An H.323 listener is created to accept incoming connection requests. All that is required to start the listener
is a call to the following function:

ooCreateH323Listener ();

This function takes no arguments; it just starts the listener service.

Initiating a Call

“Initiating a call” refers to the procedure to open channels for any type of media communications – not just
audio. A call can be initiated to send video or data as well. The ooMakeCall function is used for this
purpose. Its calling sequence is as follows:

ooMakeCall (dest, callToken, bufsiz, opts);

The following arguments are passed to this function:

dest – An identifier of the destination endpoint to be called. For example, an IP address and port.
callToken – A unique token identifier returned to identify the call
bufsiz – The size of the callToken buffer
opts – A reference to ooCalloptions structure which is defined in ootypes.h. This structure is used to
 override endpoint settings for a particular call. If non-NULL value is passed, the options specified
 in the structure will be applicable for the new call.

Closing a Call

Either side of an H.323 connection can terminate a call. The function used to do this is ooHandCall. Its
calling sequence is as follows:

ooHangCall (callToken);

The following arguments are passed to this function:

callToken – The unique token identifier returned to identify the call. This was set in the call to
ooMakeCall.

Shutting Down the Stack

A user can call the “ooStopMonitor” function from within a callback to shut the stack down. This will
cause the “ooMonitorChannels” function to exit. Once this happens, the user should call to the
“ooH323EpDestroy” function at the end of their program to do an necessary cleanup associated with the
endpoint.

