
i

MediaPlug-inlibrary

Objective systems
Version Version 0.1
8/9/2004 2:12 PM

ii

Table of Contents
Module Index iv
Data Structure Index v
File Index vi
Module Documentation 2

Media API Internal Common Helper Functions 2
Media API Internal Linux Helper Functions 3
Media API 5
Media API Internal Socket Layer 9
Media API Internal Windows Helper Functions 17

Data Structure Documentation 25
BufferNode 25
ooWaveFile 26
WaveBuffer 27

File Documentation 28
ooCommon.h 28
oortp.h 29
ooSock.h 31
ooWave.h 34

Index 37

iii

MediaPlug-inlibrary Module Index

MediaPlug-inlibrary Modules
Here is a list of all modules:

Media API Internal Common Helper Functions 2
Media API Internal Linux Helper Functions 3
Media API 5
Media API Internal Socket Layer 9
Media API Internal Windows Helper Functions 17

iv

MediaPlug-inlibrary Data Structure Index

MediaPlug-inlibrary Data Structures
Here are the data structures with brief descriptions:

BufferNode (This holds the list of free buffers which can be used for sending data to waveout device)
25
ooWaveFile (Helper structure for reading wavefile) 26
WaveBuffer (This holds a list of buffers holding recorded data from MIC) 27

v

MediaPlug-inlibrary File Index

MediaPlug-inlibrary File List
Here is a list of all documented files with brief descriptions:

g711.h Error! Bookmark not defined.
ooCommon.h (This file contains common helper functions) 28
oomedialx.h Error! Bookmark not defined.
oortp.h (This file contains functions to create and use media channels) 29
ooSock.h (Common runtime constants, data structure definitions, and run-time functions to support
the sockets' operations) 31
ooWave.h (This file contains low level wave functions) 34

vi

vii

MediaPlug-inlibrary Module Documentation

Media API Internal Common Helper Functions
Media API Internal Common Helper Functions

Defines
#define OORTPPACKETDATASIZE 240 /* Send Receive Packet Data Size*/
#define MAXLOGMSGLEN 1024
#define OOLOG2(a, b) ooLog(a,b)
#define OOLOG3(a, b, c) ooLog(a,b,c)
#define OOLOG4(a, b, c, d) ooLog(a,b,c,d)
#define OOLOG5(a, b, c, d, e) ooLog(a,b,c,d,e)
#define OOLOG9(a, b, c, d, e, f, g, h, i) ooLog(a,b,c,d,e,f,g,h,i)

Functions
EXTERN void ooLog (int level, const char *fmtspec,...)
This function logs a trace message into a log file.

EXTERN void ooSleep (int milliseconds)
Platform independent sleep function.

Variables
FILE * fpLog

Function Documentation

EXTERN void ooLog (int level, const char * fmtspec, ...)
This function logs a trace message into a log file.

Parameters:
level Log level(Currently not used)
fmtspec Format specification for the log message.
... Variable number of arguments representing the message.

EXTERN void ooSleep (int milliseconds)
Platform independent sleep function.

Parameters:
milliseconds Sleep time in milliseconds.

viii

Media API Internal Linux Helper Functions
Media API Internal Linux Helper Functions

Functions
EXTERN int ooOpenWaveFileForRead (char *filename)
Opens a RAW audio data file for read.

EXTERN int ooReadWaveFileData (char *databuf, int size)
Reads data from the opened raw audio file.

EXTERN int ooCloseWaveFile ()
Close the open raw audio data file.

EXTERN int ooOpenAudioDevice ()
Opens the audio device for read/write operation.

EXTERN int ooPlayAudioBuffer (unsigned char *buff, long size)
Plays a buffer full of audio data onto the audio device.

EXTERN int ooGetMicAudioBuffer (unsigned char *buff, long size)
Reads audio data from the microphone device.

Variables
int ghSoundDevice
Global handle to open sound device.

int ghSndFile
Global handle to open raw audio data file.

Function Documentation

EXTERN int ooCloseWaveFile ()
Close the open raw audio data file.

ix

Returns:
Completion status - 0 on success, -1 on failure

EXTERN int ooGetMicAudioBuffer (unsigned char * buff, long size)
Reads audio data from the microphone device.

Parameters:
buff Buffer in which data has to be captured.
size Size of the capture buffer

Returns:
Completion status - 0 on success, -1 on failure

EXTERN int ooOpenAudioDevice ()
Opens the audio device for read/write operation.

Returns:
Completion status - 0 on success, -1 on failure

EXTERN int ooOpenWaveFileForRead (char * filename)
Opens a RAW audio data file for read.

Parameters:
filename Name of the file to be opened.

Returns:
Completion status - 0 on success, -1 on failure

EXTERN int ooPlayAudioBuffer (unsigned char * buff, long size)
Plays a buffer full of audio data onto the audio device.

Parameters:
buff Buffer containing the audio data to be played.
size Size of the audio data in the buffer

x

Returns:
Completion status - 0 on success, -1 on failure

EXTERN int ooReadWaveFileData (char * databuf, int size)
Reads data from the opened raw audio file.
The number of bytes to be read is specified by the size parameter.

Parameters:
databuf Pointer to a buffer in which data is returned.
size Number of bytes to be read.

Returns:
Number of bytes read on success, -1 on failure.

Media API
Media API

Data Structures
struct OORTPChannel

Defines
#define OO_CHAN_CLOSE 0
#define OO_CHAN_OPEN 1

Functions
EXTERN int ooInitializePlugin ()
This function initializes the plugin library.

EXTERN int ooCreateTransmitRTPChannel (int *channelId, char *destip, int port)
This function is invoked to create Transmit RTP channel.

EXTERN int ooCloseTransmitRTPChannel (int channelId)
This function is invoked to close the Transmit RTP channel.

EXTERN int ooCreateReceiveRTPChannel (int *channelId, char *localip, int localport)
This function is invoked to create Receive RTP channel.

EXTERN int ooCloseReceiveRTPChannel (int channelId)

xi

This function is invoked to close the Receive RTP channel.

EXTERN int ooStartTransmitWaveFile (int channelId, char *filename)
This function is used to transmit a wave file on already created transmit RTP channel.

EXTERN int ooStopTransmitWaveFile (int channelId)
This function is used to stop transmitting the wave file.

EXTERN int ooStartTransmitMic (int channelId)
This function is used to start capturing and transmitting the data from microphone.

EXTERN int ooStopTransmitMic (int channelId)
This function is used to stop transmitting the data from microphone.

EXTERN int ooStartReceiveAudioAndPlayback (int channelId)
This function is used to start receiving rtp stream and playing the received audio onto the speaker
device.

EXTERN int ooStopReceiveAudioAndPlayback (int channelId)
This function is used to stop receiving rtp stream.

EXTERN int ooStartReceiveAudioAndRecord (int channelId)
EXTERN int ooStopReceiveAudioAndRecord (int channelId)

Variables
OORTPChannel gXmitChannel
OORTPChannel gRecvChannel
pthread_t gXmitThrdHdl
pthread_t gRecvThrdHdl

Function Documentation

EXTERN int ooCloseReceiveRTPChannel (int channelId)
This function is invoked to close the Receive RTP channel.

Parameters:
channelId An integer value indicating the RTP channel to be closed. Not used currently as only
two channels are supported, 1 xmit channel and 1 recv channel.

Returns:
Completion status - 0 on success, -1 on failure

xii

EXTERN int ooCloseTransmitRTPChannel (int channelId)
This function is invoked to close the Transmit RTP channel.

Parameters:
channelId An integer value indicating the RTP channel to be closed. Not used currently as only
two channels are supported, 1 xmit channel and 1 recv channel.

Returns:
Completion status - 0 on success, -1 on failure

EXTERN int ooCreateReceiveRTPChannel (int * channelId, char * localip, int localport)
This function is invoked to create Receive RTP channel.

Parameters:
channelId Pointer to int for returning the newly created channel id. Not used currently as only two
channels are supported, 1 xmit channel and 1 recv channel.
localip IP address of the local endpoint.
localport RTP receive port number at the local endpoint.

Returns:
Completion status - 0 on success, -1 on failure

EXTERN int ooCreateTransmitRTPChannel (int * channelId, char * destip, int port)
This function is invoked to create Transmit RTP channel.

Parameters:
channelId Pointer to int for returning the newly created channel id. Not used currently as only two
channels are supported, 1 xmit channel and 1 recv channel.
destip IP address of the destination endpoint.
port RTP receive port number at the destination endpoint.

Returns:
Completion status - 0 on success, -1 on failure

EXTERN int ooInitializePlugin ()
This function initializes the plugin library.

xiii

Returns:
0, on success. -ve on failure.

EXTERN int ooStartReceiveAudioAndPlayback (int channelId)
This function is used to start receiving rtp stream and playing the received audio onto the speaker
device.

Parameters:
channelId Indicates the receive channel on which data reception needs to be started. Not used
currently as only one transmit channel is supported.

Returns:
Completion status - 0 on success, -1 on failure.

EXTERN int ooStartTransmitMic (int channelId)
This function is used to start capturing and transmitting the data from microphone.

Parameters:
channelId Indicates the transmit channel on data transmission should begin. Not used currently as
only one transmit channel is supported.

Returns:
Completion status - 0 on success, -1 on failure.

EXTERN int ooStartTransmitWaveFile (int channelId, char * filename)
This function is used to transmit a wave file on already created transmit RTP channel.
This basically, creates a thread which will start reading from the wave file and transmit data as rtp
packets on the transmit channel.
Parameters:

channelId Indicates the transmit channel to be used. Not used currently as only one transmit
channel is supported.
filename Name of the wave file to be transmitted.

Returns:
Completion status - 0 on success, -1 on failure.

xiv

EXTERN int ooStopReceiveAudioAndPlayback (int channelId)
This function is used to stop receiving rtp stream.

Parameters:
channelId Indicates the receive channel on which data reception needs to be halted. Not used
currently as only one transmit channel is supported.

Returns:
Completion status - 0 on success, -1 on failure.

EXTERN int ooStopTransmitMic (int channelId)
This function is used to stop transmitting the data from microphone.

Parameters:
channelId Indicates the transmit channel on which data transmission needs to be halted. Not used
currently as only one transmit channel is supported.

Returns:
Completion status - 0 on success, -1 on failure.

EXTERN int ooStopTransmitWaveFile (int channelId)
This function is used to stop transmitting the wave file.

Parameters:
channelId Indicates the transmit channel on which wave file transmission needs to be halted. Not
used currently as only one transmit channel is supported.

Returns:
Completion status - 0 on success, -1 on failure.

Media API Internal Socket Layer
Media API Internal Socket Layer

Defines
#define OOSOCKET_INVALID ((OOSOCKET)-1)
#define ASN_OK 0

xv

#define ASN_E_NOTINIT -1
#define ASN_E_INVSOCKET -2
#define ASN_E_INVPARAM -3
#define ASN_E_BUFOVFLW -4
#define OOIPADDR_ANY ((OOIPADDR)0)
#define OOIPADDR_LOCAL ((OOIPADDR)0x7f000001UL) /* 127.0.0.1 */

Typedefs
typedef int OOSOCKET
Socket's handle.

typedef unsigned long OOIPADDR
The IP address represented as unsigned long value.

typedef char ASN1OCTET
typedef unsigned int ASN1UINT

Functions
EXTERN int ooSocketAccept (OOSOCKET socket, OOSOCKET *pNewSocket, OOIPADDR
*destAddr, int *destPort)
This function permits an incoming connection attempt on a socket.

EXTERN int ooSocketAddrToStr (OOIPADDR ipAddr, char *pbuf, int bufsize)
This function converts an IP address to its string representation.

EXTERN int ooSocketBind (OOSOCKET socket, OOIPADDR addr, int port)
This function associates a local address with a socket.

EXTERN int ooSocketClose (OOSOCKET socket)
This function closes an existing socket.

EXTERN int ooSocketConnect (OOSOCKET socket, const char *host, int port)
This function establishes a connection to a specified socket.

EXTERN int ooSocketCreate (OOSOCKET *psocket)
This function creates a socket.

EXTERN int ooSocketCreateUDP (OOSOCKET *psocket)
This function creates a UDP datagram socket.

EXTERN int ooSocketsInit (void)
This function initiates use of sockets by an application.

EXTERN int ooSocketsCleanup (void)

xvi

This function terminates use of sockets by an application.

EXTERN int ooSocketListen (OOSOCKET socket, int maxConnection)
This function places a socket a state where it is listening for an incoming connection.

EXTERN int ooSocketRecv (OOSOCKET socket, ASN1OCTET *pbuf, ASN1UINT bufsize)
This function receives data from a connected socket.

EXTERN int ooSocketRecvFrom (OOSOCKET socket, ASN1OCTET *pbuf, ASN1UINT bufsize, char
*remotehost, int *remoteport)
This function receives data from a connected/unconnected socket.

EXTERN int ooSocketSend (OOSOCKET socket, const ASN1OCTET *pdata, ASN1UINT size)
This function sends data on a connected socket.

EXTERN int ooSocketSendTo (OOSOCKET socket, const ASN1OCTET *pdata, ASN1UINT size,
const char *remotehost, int remoteport)
This function sends data on a connected or unconnected socket.

EXTERN int ooSocketSelect (int nfds, fd_set *readfds, fd_set *writefds, fd_set *exceptfds, struct
timeval *timeout)
This function is used for synchronous monitoring of multiple sockets.

EXTERN int ooSocketStrToAddr (const char *pIPAddrStr, OOIPADDR *pIPAddr)
This function converts the string with IP address to a double word representation.

EXTERN int ooGetLocalIPAddress (char *pIPAddrs)
This function retrives the IP address of the local host.

EXTERN long ooHTONL (long val)
This function converts a long value from host to network byte order.

EXTERN short ooHTONS (short val)
This function converts a short value from host to network byte order.

Typedef Documentation

typedef unsigned long OOIPADDR
The IP address represented as unsigned long value.

The most significant 8 bits in this unsigned long value represent the first number of the IP address. The
least significant 8 bits represent the last number of the IP address.

Definition at line 80 of file ooSock.h.

xvii

Function Documentation

EXTERN int ooGetLocalIPAddress (char * pIPAddrs)
This function retrives the IP address of the local host.

Parameters:
pIPAddrs Pointer to a char buffer in which local IP address will be returned.

Returns:
Completion status of operation: 0 (ASN_OK) = success, negative return value is error.

EXTERN long ooHTONL (long val)
This function converts a long value from host to network byte order.

Parameters:
val Value to be converted.

Returns:
Value converted to network byte order.

EXTERN short ooHTONS (short val)
This function converts a short value from host to network byte order.

Parameters:
val Value to be converted.

Returns:
Value converted to network byte order.

EXTERN int ooSocketAccept (OOSOCKET socket, OOSOCKET * pNewSocket, OOIPADDR *
destAddr, int * destPort)

This function permits an incoming connection attempt on a socket.
It extracts the first connection on the queue of pending connections on socket. It then creates a new

xviii

socket and returns a handle to the new socket. The newly created socket is the socket that will handle
the actual connection and has the same properties as original socket. See description of 'accept' socket
function for further details.

Parameters:
socket The socket's handle created by call to ::rtSocketCreate function.
pNewSocket The pointer to variable to receive the new socket's handle.
destAddr Optional pointer to a buffer that receives the IP address of the connecting entity. It may
be NULL.
destPort Optional pointer to a buffer that receives the port of the connecting entity. It may be
NULL.

Returns:
Completion status of operation: 0 (ASN_OK) = success, negative return value is error.

EXTERN int ooSocketAddrToStr (OOIPADDR ipAddr, char * pbuf, int bufsize)
This function converts an IP address to its string representation.

Parameters:
ipAddr The IP address to be converted.
pbuf Pointer to the buffer to receive a string with the IP address.
bufsize Size of the buffer.

Returns:
Completion status of operation: 0 (ASN_OK) = success, negative return value is error.

EXTERN int ooSocketBind (OOSOCKET socket, OOIPADDR addr, int port)
This function associates a local address with a socket.

It is used on an unconnected socket before subsequent calls to the ::rtSocketConnect or
::rtSocketListen functions. See description of 'bind' socket function for further details.

Parameters:
socket The socket's handle created by call to ::rtSocketCreate function.
addr The local IP address to assign to the socket.
port The local port number to assign to the socket.

Returns:
Completion status of operation: 0 (ASN_OK) = success, negative return value is error.

EXTERN int ooSocketClose (OOSOCKET socket)

xix

This function closes an existing socket.

Parameters:
socket The socket's handle created by call to ::rtSocketCreate or ::rtSocketAccept function.

Returns:
Completion status of operation: 0 (ASN_OK) = success, negative return value is error.

EXTERN int ooSocketConnect (OOSOCKET socket, const char * host, int port)
This function establishes a connection to a specified socket.

It is used to create a connection to the specified destination. When the socket call completes
successfully, the socket is ready to send and receive data. See description of 'connect' socket function
for further details.

Parameters:
socket The socket's handle created by call to ::rtSocketCreate function.
host The null-terminated string with the IP address in the following format:
"NNN.NNN.NNN.NNN", where NNN is a number in the range (0..255).
port The destination port to connect.

Returns:
Completion status of operation: 0 (ASN_OK) = success, negative return value is error.

EXTERN int ooSocketCreate (OOSOCKET * psocket)
This function creates a socket.
The only streaming TCP/IP sockets are supported at the moment.

Parameters:
psocket The pointer to the socket's handle variable to receive the handle of new socket.

Returns:
Completion status of operation: 0 (ASN_OK) = success, negative return value is error.

EXTERN int ooSocketCreateUDP (OOSOCKET * psocket)
This function creates a UDP datagram socket.

Parameters:
psocket The pointer to the socket's handle variable to receive the handle of new socket.

xx

Returns:
Completion status of operation: 0 (ASN_OK) = success, negative return value is error.

EXTERN int ooSocketListen (OOSOCKET socket, int maxConnection)
This function places a socket a state where it is listening for an incoming connection.

To accept connections, a socket is first created with the ::rtSocketCreate function and bound to a local
address with the ::rtSocketBind function, a maxConnection for incoming connections is specified with
::rtSocketListen, and then the connections are accepted with the ::rtSocketAccept function. See
description of 'listen' socket function for further details.

Parameters:
socket The socket's handle created by call to ::rtSocketCreate function.
maxConnection Maximum length of the queue of pending connections.

Returns:
Completion status of operation: 0 (ASN_OK) = success, negative return value is error.

EXTERN int ooSocketRecv (OOSOCKET socket, ASN1OCTET * pbuf, ASN1UINT bufsize)
This function receives data from a connected socket.

It is used to read incoming data on sockets. The socket must be connected before calling this function.
See description of 'recv' socket function for further details.

Parameters:
socket The socket's handle created by call to ::rtSocketCreate or ::rtSocketAccept function.
pbuf Pointer to the buffer for the incoming data.
bufsize Length of the buffer.

Returns:
If no error occurs, returns the number of bytes received. Otherwise, the negative value is error
code.

EXTERN int ooSocketRecvFrom (OOSOCKET socket, ASN1OCTET * pbuf, ASN1UINT bufsize,
char * remotehost, int * remoteport)

This function receives data from a connected/unconnected socket.

It is used to read incoming data on sockets. It populates the remotehost and remoteport parameters with
information of remote host. See description of 'recvfrom' socket function for further details.

Parameters:

xxi

socket The socket's handle created by call to ooSocketCreate
pbuf Pointer to the buffer for the incoming data.
bufsize Length of the buffer.
remotehost Pointer to a buffer in which remote ip address will be returned.
remoteport Pointer to an int in which remote port number will be returned.

Returns:
If no error occurs, returns the number of bytes received. Otherwise, the negative value is error
code.

EXTERN int ooSocketsCleanup (void)
This function terminates use of sockets by an application.

This function must be called after done with sockets.

Returns:
Completion status of operation: 0 (ASN_OK) = success, negative return value is error.

EXTERN int ooSocketSelect (int nfds, fd_set * readfds, fd_set * writefds, fd_set * exceptfds,
struct timeval * timeout)

This function is used for synchronous monitoring of multiple sockets.
For more information refer to documnetation of "select" system call.

Parameters:
nfds The highest numbered descriptor to be monitored plus one.
readfds The descriptors listed in readfds will be watched for whether read would block on them.
writefds The descriptors listed in writefds will be watched for whether write would block on them.
exceptfds The descriptors listed in exceptfds will be watched for exceptions.
timeout Upper bound on amout of time elapsed before select returns.

Returns:
Completion status of operation: 0 (ASN_OK) = success, negative return value is error.

EXTERN int ooSocketSend (OOSOCKET socket, const ASN1OCTET * pdata, ASN1UINT size)
This function sends data on a connected socket.
It is used to write outgoing data on a connected socket. See description of 'send' socket function for
further details.

Parameters:
socket The socket's handle created by call to ::rtSocketCreate or ::rtSocketAccept function.
pdata Buffer containing the data to be transmitted.

xxii

size Length of the data in pdata.

Returns:
Completion status of operation: 0 (ASN_OK) = success, negative return value is error.

EXTERN int ooSocketSendTo (OOSOCKET socket, const ASN1OCTET * pdata, ASN1UINT
size, const char * remotehost, int remoteport)

This function sends data on a connected or unconnected socket.

See description of 'sendto' socket function for further details.

Parameters:
socket The socket's handle created by call to ::rtSocketCreate or ::rtSocketAccept function.
pdata Buffer containing the data to be transmitted.
size Length of the data in pdata.
remotehost Remote host ip address to which data has to be sent.
remoteport Remote port ip address to which data has to be sent.

Returns:
Completion status of operation: 0 (ASN_OK) = success, negative return value is error.

EXTERN int ooSocketsInit (void)
This function initiates use of sockets by an application.
This function must be called first before use sockets.

Returns:
Completion status of operation: 0 (ASN_OK) = success, negative return value is error.

EXTERN int ooSocketStrToAddr (const char * pIPAddrStr, OOIPADDR * pIPAddr)
This function converts the string with IP address to a double word representation.

The converted address may be used with the ::rtSocketBind function.

Parameters:
pIPAddrStr The null-terminated string with the IP address in the following format:
"NNN.NNN.NNN.NNN", where NNN is a number in the range (0..255).
pIPAddr Pointer to the converted IP address.

Returns:
Completion status of operation: 0 (ASN_OK) = success, negative return value is error.

xxiii

Media API Internal Windows Helper Functions
Media API Internal Windows Helper Functions

Data Structures
struct ooWaveFile
Helper structure for reading wavefile.

struct WaveBuffer
This holds a list of buffers holding recorded data from MIC.

struct BufferNode
This holds the list of free buffers which can be used for sending data to waveout device.

Functions
EXTERN int ooOpenWaveFileForRead (char *filename)
Opens a WaveFile for read and traverses upto the data chunk, so that next mmioRead will return
wavedata.

EXTERN int ooCloseWaveFile ()
Closes the open WaveFile.

EXTERN int ooReadWaveFileData (char *buffer, int size)
Reads data from already opened wave file.

EXTERN int ooOpenSpeaker (HWAVEOUT *phWaveOut, WAVEFORMATEX waveFormat)
Opens a waveOut device, i.e., speaker for playback.

EXTERN int ooPlayWaveBuffer (HWAVEOUT hWaveOut, unsigned char *buff, long size)
Plays the number of bytes specified by the size parameter from the buff onto the speaker device.

EXTERN int ooCloseSpeaker (HWAVEOUT hWaveOut)
Release all the buffers queued into the waveOut device(speaker) for playback and close speaker.

EXTERN int ooOpenMic ()
Opens the WaveIn device, MIC, for recording and queues the buffers into the device which can be
used for storing recorded data.

EXTERN int ooStartMicDataCapture (HWAVEIN hWaveIn)

xxiv

Start recording audio into the buffers.

EXTERN int ooStopMicDataCapture (HWAVEIN hWaveIn)
Stop recording audio.

EXTERN int ooCloseMic (HWAVEIN hWaveIn)
This releases all the buffers queued inside wave-in device, mic, and then closes the mic.

EXTERN void CALLBACK ooMICCallback (HWAVEIN hwi, UINT uMsg, DWORD dwInstance,
DWORD dwParam1, DWORD dwParam2)
This is a callback function registered with the mic.

EXTERN void CALLBACK ooSpeakerCallback (HWAVEOUT hwo, UINT uMsg, DWORD
dwInstance, DWORD dwParam1, DWORD dwParam2)
This is a callback function registered with the speaker.

EXTERN int ooAddToWaveBufferList (WAVEHDR *waveHdr)
Helper function to maintain the list of buffers returned by mic, after recording.

EXTERN int ooRemoveHeadOfWaveBufferList ()
Helper function which removes the WAVEHDR at the front of the list.

EXTERN int ooAddToFreeBufferList (char *buffer)
Helper function to put a buffer back into the free buffer list.

EXTERN char * ooGetFreeBuffer ()
Get a free buffer from free buffer list.

Variables
ooWaveFile gWaveFile
Global handle to open wave file.

WaveBuffer * gpWaveHead
Global pointers to list of wave buffers.

WaveBuffer * gpWaveTail
Global pointers to list of wave buffers.

int gRecording
int gQueuedBufCount
Count of number of buffers queued inside the wave-in device.

BufferNode * gpFreeBufHead

xxv

Global pointers to the list holding free buffers.

BufferNode * gpFreeBufTail
Global pointers to the list holding free buffers.

int gPlayQueueCount
HWAVEIN ghWaveIn
Global handle to open wave-in device.

HWAVEOUT ghWaveOut
Global handle to open wave-out device.

CRITICAL_SECTION gPlayMutex
As callback functions run in their own threads, we need mutex protection for data which is used by
multiple threads.

CRITICAL_SECTION gReadMutex
As callback functions run in their own threads, we need mutex protection for data which is used by
multiple threads.

Function Documentation

EXTERN int ooAddToFreeBufferList (char * buffer)
Helper function to put a buffer back into the free buffer list.

Once the buffer playback is done, it can be added to the free list
Parameters:

buffer Pointer to the buffer to be added to the free list.

Returns:
Completion status - 0 on success, -1 on failure

EXTERN int ooAddToWaveBufferList (WAVEHDR * waveHdr)
Helper function to maintain the list of buffers returned by mic, after recording.

These buffers are kept in this list till there processing is done and then again queued back into the mic
for further recording.
Parameters:

waveHdr Pointer to wave header structure which in turn contains the data buffer.

Returns:
Completion status - 0 on success, -1 on failure.

xxvi

EXTERN int ooCloseMic (HWAVEIN hWaveIn)
This releases all the buffers queued inside wave-in device, mic, and then closes the mic.

Parameters:
hWaveIn Handle to the wave-in device.

Returns:
Completion status - 0 on success, -1 on failure

EXTERN int ooCloseSpeaker (HWAVEOUT hWaveOut)
Release all the buffers queued into the waveOut device(speaker) for playback and close speaker.

Parameters:
hWaveOut Handle to the wave out device to be closed.

Returns:
Completion status - 0 on success, -1 on failure.

EXTERN int ooCloseWaveFile ()
Closes the open WaveFile.

Returns:
Completion status - 0 on success, -1 on failure.

EXTERN char* ooGetFreeBuffer ()
Get a free buffer from free buffer list.
A free buffer is retrieved using this function for storing data which will then passed onto
ooPlayWaveBuffer function for playback.

Returns:
Pointer to a character buffer

xxvii

EXTERN void CALLBACK ooMICCallback (HWAVEIN hwi, UINT uMsg, DWORD dwInstance,
DWORD dwParam1, DWORD dwParam2)

This is a callback function registered with the mic.
It will be called by mic device when a buffer full of data is recorded.

Parameters:
hwi Handle to the wave-in device.
uMsg Event message sent by the device.
dwInstance User data.
dwParam1 Message parameter.
dwParam2 Message parameter.

Returns:
None

EXTERN int ooOpenMic ()
Opens the WaveIn device, MIC, for recording and queues the buffers into the device which can be
used for storing recorded data.

Returns:
Completion status - 0 on success, -1 on failure.

EXTERN int ooOpenSpeaker (HWAVEOUT * phWaveOut, WAVEFORMATEX waveFormat)
Opens a waveOut device, i.e., speaker for playback.

waveFormat specifies the format to be used for playback.
Parameters:

phWaveOut Pointer to an empty HWAVEOUT handle which will contain the handle to the opened
device on return.
waveFormat Wave format to be used for playback.

Returns:
Completion status - 0 on success, -1 on failure.

EXTERN int ooOpenWaveFileForRead (char * filename)
Opens a WaveFile for read and traverses upto the data chunk, so that next mmioRead will return
wavedata.

Parameters:
filename Name of the wave file to be opened.

xxviii

Returns:
Completion status - 0 on success, -1 on failure.

EXTERN int ooPlayWaveBuffer (HWAVEOUT hWaveOut, unsigned char * buff, long size)
Plays the number of bytes specified by the size parameter from the buff onto the speaker device.

Parameters:
hWaveOut Handle to the speaker device.
buff Pointer to the buffer containing the data to be played.
size Size of the buffer to be played out.

Returns:
Completion status - 0 on success, -1 on failure.

EXTERN int ooReadWaveFileData (char * buffer, int size)
Reads data from already opened wave file.

Number of bytes to be read is specified by the "size" parameter. The data is returned in "buffer"
parameter and the number of bytes read is returned as a return value.

Parameters:
buffer Buffer which will contain the data read.
size Size of the buffer passed.

Returns:
Number of bytes read on success, -1 on failure

EXTERN int ooRemoveHeadOfWaveBufferList ()
Helper function which removes the WAVEHDR at the front of the list.
Note this does not free up the mem used by WAVEHDR as it will be queued into the mic for further
recording.

Returns:
Completion status - 0 on success, -1 on failure.

EXTERN void CALLBACK ooSpeakerCallback (HWAVEOUT hwo, UINT uMsg, DWORD
dwInstance, DWORD dwParam1, DWORD dwParam2)

xxix

This is a callback function registered with the speaker.

It is called by the speaker, when a buffer full of data is played back.
Parameters:

hwo Handle to the wave out device.
uMsg Waveform audio output message.
dwInstance User instance data passed during waveOutOpen.
dwParam1 Message parameter.
dwParam2 Message parameter

Returns:
None

EXTERN int ooStartMicDataCapture (HWAVEIN hWaveIn)
Start recording audio into the buffers.

Parameters:
hWaveIn Handle to wave-in device.

Returns:
Completion status - 0 on success, -1 on failure.

EXTERN int ooStopMicDataCapture (HWAVEIN hWaveIn)
Stop recording audio.
Note that this marks current buffer as done and frees it by calling callback function. However, other
queued buffers will stay there in wave-in device.
Parameters:

hWaveIn Handle to the wave-in device.

Returns:
Completion status - 0 on success, -1 on failure

xxx

MediaPlug-inlibrary Data Structure
Documentation

BufferNode Struct Reference
BufferNodeThis holds the list of free buffers which can be used for sending data to waveout
device.
#include <ooWave.h>

Data Fields
char * buf
BufferNode * next

Detailed Description
This holds the list of free buffers which can be used for sending data to waveout device.
Definition at line 83 of file ooWave.h.

The documentation for this struct was generated from the following file:
ooWave.h

xxxi

ooWaveFile Struct Reference
ooWaveFileHelper structure for reading wavefile.
#include <ooWave.h>

Data Fields
char filename [1024]
HMMIO hWaveFile
Wave file name.

WAVEFORMATEX waveFormat
Wave file handle.

int dataSize
Wave file format.

Detailed Description
Helper structure for reading wavefile.
Definition at line 54 of file ooWave.h.

The documentation for this struct was generated from the following file:
ooWave.h

xxxii

WaveBuffer Struct Reference
WaveBufferThis holds a list of buffers holding recorded data from MIC.
#include <ooWave.h>

Data Fields
WAVEHDR * pWaveHdr
WaveBuffer * next

Detailed Description
This holds a list of buffers holding recorded data from MIC.

This data can then be sent on rtp channel or played back on speakers.
Definition at line 70 of file ooWave.h.

The documentation for this struct was generated from the following file:
ooWave.h

xxxiii

MediaPlug-inlibrary File Documentation

ooCommon.h File Reference
ooCommon.hThis file contains common helper functions.
#include <stdarg.h>
#include <stdlib.h>
#include <stdio.h>
#include "ooSock.h"

Defines
#define OORTPPACKETDATASIZE 240 /* Send Receive Packet Data Size*/
#define MAXLOGMSGLEN 1024
#define OOLOG2(a, b) ooLog(a,b)
#define OOLOG3(a, b, c) ooLog(a,b,c)
#define OOLOG4(a, b, c, d) ooLog(a,b,c,d)
#define OOLOG5(a, b, c, d, e) ooLog(a,b,c,d,e)
#define OOLOG9(a, b, c, d, e, f, g, h, i) ooLog(a,b,c,d,e,f,g,h,i)

Functions
EXTERN void ooLog (int level, const char *fmtspec,...)
This function logs a trace message into a log file.

EXTERN void ooSleep (int milliseconds)
Platform independent sleep function.

Variables
FILE * fpLog

Detailed Description
This file contains common helper functions.

Definition in file ooCommon.h.

xxxiv

oortp.h File Reference
oortp.hThis file contains functions to create and use media channels.
#include <stdio.h>
#include "ooSock.h"
#include "ooCommon.h"

Data Structures
struct OORTPChannel

Defines
#define OO_CHAN_CLOSE 0
#define OO_CHAN_OPEN 1

Functions
EXTERN int ooInitializePlugin ()
This function initializes the plugin library.

EXTERN int ooCreateTransmitRTPChannel (int *channelId, char *destip, int port)
This function is invoked to create Transmit RTP channel.

EXTERN int ooCloseTransmitRTPChannel (int channelId)
This function is invoked to close the Transmit RTP channel.

EXTERN int ooCreateReceiveRTPChannel (int *channelId, char *localip, int localport)
This function is invoked to create Receive RTP channel.

EXTERN int ooCloseReceiveRTPChannel (int channelId)
This function is invoked to close the Receive RTP channel.

EXTERN int ooStartTransmitWaveFile (int channelId, char *filename)
This function is used to transmit a wave file on already created transmit RTP channel.

EXTERN int ooStopTransmitWaveFile (int channelId)
This function is used to stop transmitting the wave file.

EXTERN int ooStartTransmitMic (int channelId)
This function is used to start capturing and transmitting the data from microphone.

EXTERN int ooStopTransmitMic (int channelId)
This function is used to stop transmitting the data from microphone.

xxxv

EXTERN int ooStartReceiveAudioAndPlayback (int channelId)
This function is used to start receiving rtp stream and playing the received audio onto the speaker
device.

EXTERN int ooStopReceiveAudioAndPlayback (int channelId)
This function is used to stop receiving rtp stream.

EXTERN int ooStartReceiveAudioAndRecord (int channelId)
EXTERN int ooStopReceiveAudioAndRecord (int channelId)

Variables
OORTPChannel gXmitChannel
OORTPChannel gRecvChannel
pthread_t gXmitThrdHdl
pthread_t gRecvThrdHdl

Detailed Description
This file contains functions to create and use media channels.

Definition in file oortp.h.

xxxvi

ooSock.h File Reference
ooSock.hCommon runtime constants, data structure definitions, and run-time functions to support
the sockets' operations.
#include <sys/types.h>
#include "sys/time.h"
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#include <unistd.h>
#include <arpa/inet.h>

Defines
#define EXTERN
#define OOSOCKET_INVALID ((OOSOCKET)-1)
#define ASN_OK 0
#define ASN_E_NOTINIT -1
#define ASN_E_INVSOCKET -2
#define ASN_E_INVPARAM -3
#define ASN_E_BUFOVFLW -4
#define OOIPADDR_ANY ((OOIPADDR)0)
#define OOIPADDR_LOCAL ((OOIPADDR)0x7f000001UL) /* 127.0.0.1 */

Typedefs
typedef int OOSOCKET
Socket's handle.

typedef unsigned long OOIPADDR
The IP address represented as unsigned long value.

typedef char ASN1OCTET
typedef unsigned int ASN1UINT

Functions
EXTERN int ooSocketAccept (OOSOCKET socket, OOSOCKET *pNewSocket, OOIPADDR
*destAddr, int *destPort)
This function permits an incoming connection attempt on a socket.

EXTERN int ooSocketAddrToStr (OOIPADDR ipAddr, char *pbuf, int bufsize)
This function converts an IP address to its string representation.

EXTERN int ooSocketBind (OOSOCKET socket, OOIPADDR addr, int port)
This function associates a local address with a socket.

xxxvii

EXTERN int ooSocketClose (OOSOCKET socket)
This function closes an existing socket.

EXTERN int ooSocketConnect (OOSOCKET socket, const char *host, int port)
This function establishes a connection to a specified socket.

EXTERN int ooSocketCreate (OOSOCKET *psocket)
This function creates a socket.

EXTERN int ooSocketCreateUDP (OOSOCKET *psocket)
This function creates a UDP datagram socket.

EXTERN int ooSocketsInit (void)
This function initiates use of sockets by an application.

EXTERN int ooSocketsCleanup (void)
This function terminates use of sockets by an application.

EXTERN int ooSocketListen (OOSOCKET socket, int maxConnection)
This function places a socket a state where it is listening for an incoming connection.

EXTERN int ooSocketRecv (OOSOCKET socket, ASN1OCTET *pbuf, ASN1UINT bufsize)
This function receives data from a connected socket.

EXTERN int ooSocketRecvFrom (OOSOCKET socket, ASN1OCTET *pbuf, ASN1UINT bufsize, char
*remotehost, int *remoteport)
This function receives data from a connected/unconnected socket.

EXTERN int ooSocketSend (OOSOCKET socket, const ASN1OCTET *pdata, ASN1UINT size)
This function sends data on a connected socket.

EXTERN int ooSocketSendTo (OOSOCKET socket, const ASN1OCTET *pdata, ASN1UINT size,
const char *remotehost, int remoteport)
This function sends data on a connected or unconnected socket.

EXTERN int ooSocketSelect (int nfds, fd_set *readfds, fd_set *writefds, fd_set *exceptfds, struct
timeval *timeout)
This function is used for synchronous monitoring of multiple sockets.

EXTERN int ooSocketStrToAddr (const char *pIPAddrStr, OOIPADDR *pIPAddr)
This function converts the string with IP address to a double word representation.

EXTERN int ooGetLocalIPAddress (char *pIPAddrs)

xxxviii

This function retrives the IP address of the local host.

EXTERN long ooHTONL (long val)
This function converts a long value from host to network byte order.

EXTERN short ooHTONS (short val)
This function converts a short value from host to network byte order.

Detailed Description
Common runtime constants, data structure definitions, and run-time functions to support the sockets'
operations.

Definition in file ooSock.h.

xxxix

ooWave.h File Reference
ooWave.hThis file contains low level wave functions.
#include <stdio.h>
#include "ooCommon.h"
#include <Windows.h>
#include <Mmsystem.h>
#include <Basetsd.h>

Data Structures
struct ooWaveFile
Helper structure for reading wavefile.

struct WaveBuffer
This holds a list of buffers holding recorded data from MIC.

struct BufferNode
This holds the list of free buffers which can be used for sending data to waveout device.

Functions
EXTERN int ooOpenWaveFileForRead (char *filename)
Opens a WaveFile for read and traverses upto the data chunk, so that next mmioRead will return
wavedata.

EXTERN int ooCloseWaveFile ()
Closes the open WaveFile.

EXTERN int ooReadWaveFileData (char *buffer, int size)
Reads data from already opened wave file.

EXTERN int ooOpenSpeaker (HWAVEOUT *phWaveOut, WAVEFORMATEX waveFormat)
Opens a waveOut device, i.e., speaker for playback.

EXTERN int ooPlayWaveBuffer (HWAVEOUT hWaveOut, unsigned char *buff, long size)
Plays the number of bytes specified by the size parameter from the buff onto the speaker device.

EXTERN int ooCloseSpeaker (HWAVEOUT hWaveOut)
Release all the buffers queued into the waveOut device(speaker) for playback and close speaker.

EXTERN int ooOpenMic ()
Opens the WaveIn device, MIC, for recording and queues the buffers into the device which can be

xl

used for storing recorded data.

EXTERN int ooStartMicDataCapture (HWAVEIN hWaveIn)
Start recording audio into the buffers.

EXTERN int ooStopMicDataCapture (HWAVEIN hWaveIn)
Stop recording audio.

EXTERN int ooCloseMic (HWAVEIN hWaveIn)
This releases all the buffers queued inside wave-in device, mic, and then closes the mic.

EXTERN void CALLBACK ooMICCallback (HWAVEIN hwi, UINT uMsg, DWORD dwInstance,
DWORD dwParam1, DWORD dwParam2)
This is a callback function registered with the mic.

EXTERN void CALLBACK ooSpeakerCallback (HWAVEOUT hwo, UINT uMsg, DWORD
dwInstance, DWORD dwParam1, DWORD dwParam2)
This is a callback function registered with the speaker.

EXTERN int ooAddToWaveBufferList (WAVEHDR *waveHdr)
Helper function to maintain the list of buffers returned by mic, after recording.

EXTERN int ooRemoveHeadOfWaveBufferList ()
Helper function which removes the WAVEHDR at the front of the list.

EXTERN int ooAddToFreeBufferList (char *buffer)
Helper function to put a buffer back into the free buffer list.

EXTERN char * ooGetFreeBuffer ()
Get a free buffer from free buffer list.

Variables
ooWaveFile gWaveFile
Global handle to open wave file.

WaveBuffer * gpWaveHead
Global pointers to list of wave buffers.

WaveBuffer * gpWaveTail
Global pointers to list of wave buffers.

int gRecording
int gQueuedBufCount

xli

Count of number of buffers queued inside the wave-in device.

BufferNode * gpFreeBufHead
Global pointers to the list holding free buffers.

BufferNode * gpFreeBufTail
Global pointers to the list holding free buffers.

int gPlayQueueCount
HWAVEIN ghWaveIn
Global handle to open wave-in device.

HWAVEOUT ghWaveOut
Global handle to open wave-out device.

CRITICAL_SECTION gPlayMutex
As callback functions run in their own threads, we need mutex protection for data which is used by
multiple threads.

CRITICAL_SECTION gReadMutex
As callback functions run in their own threads, we need mutex protection for data which is used by
multiple threads.

Detailed Description
This file contains low level wave functions.

Definition in file ooWave.h.

xlii

Index
BufferNode, 25
linuxhelpers

ooCloseWaveFile, 3
ooGetMicAudioBuffer, 4
ooOpenAudioDevice, 4
ooOpenWaveFileForRead, 4
ooPlayAudioBuffer, 4
ooReadWaveFileData, 5

Media API, 5
Media API Internal Common Helper Functions, 2
Media API Internal Linux Helper Functions, 3
Media API Internal Socket Layer, 9
Media API Internal Windows Helper Functions, 17
mediaapi

ooCloseReceiveRTPChannel, 6
ooCloseTransmitRTPChannel, 6
ooCreateReceiveRTPChannel, 7
ooCreateTransmitRTPChannel, 7
ooInitializePlugin, 7
ooStartReceiveAudioAndPlayback, 8
ooStartTransmitMic, 8
ooStartTransmitWaveFile, 8
ooStopReceiveAudioAndPlayback, 8
ooStopTransmitMic, 9
ooStopTransmitWaveFile, 9

mediacommoin
ooLog, 2
ooSleep, 2

ooAddToFreeBufferList
winhelpers, 20

ooAddToWaveBufferList
winhelpers, 20

ooCloseMic
winhelpers, 20

ooCloseReceiveRTPChannel
mediaapi, 6

ooCloseSpeaker
winhelpers, 21

ooCloseTransmitRTPChannel
mediaapi, 6

ooCloseWaveFile
linuxhelpers, 3
winhelpers, 21

ooCommon.h, 28
ooCreateReceiveRTPChannel

mediaapi, 7
ooCreateTransmitRTPChannel

mediaapi, 7
ooGetFreeBuffer

winhelpers, 21
ooGetLocalIPAddress

sockets, 12

xliii

ooGetMicAudioBuffer
linuxhelpers, 4

ooHTONL
sockets, 12

ooHTONS
sockets, 12

ooInitializePlugin
mediaapi, 7

OOIPADDR
sockets, 11

ooLog
mediacommoin, 2

ooMICCallback
winhelpers, 21

ooOpenAudioDevice
linuxhelpers, 4

ooOpenMic
winhelpers, 22

ooOpenSpeaker
winhelpers, 22

ooOpenWaveFileForRead
linuxhelpers, 4
winhelpers, 22

ooPlayAudioBuffer
linuxhelpers, 4

ooPlayWaveBuffer
winhelpers, 22

ooReadWaveFileData
linuxhelpers, 5
winhelpers, 23

ooRemoveHeadOfWaveBufferList
winhelpers, 23

oortp.h, 29
ooSleep

mediacommoin, 2
ooSock.h, 31
ooSocketAccept

sockets, 12
ooSocketAddrToStr

sockets, 13
ooSocketBind

sockets, 13
ooSocketClose

sockets, 13
ooSocketConnect

sockets, 14
ooSocketCreate

sockets, 14
ooSocketCreateUDP

sockets, 14
ooSocketListen

sockets, 15
ooSocketRecv

sockets, 15
ooSocketRecvFrom

xliv

sockets, 15
ooSocketsCleanup

sockets, 16
ooSocketSelect

sockets, 16
ooSocketSend

sockets, 16
ooSocketSendTo

sockets, 17
ooSocketsInit

sockets, 17
ooSocketStrToAddr

sockets, 17
ooSpeakerCallback

winhelpers, 23
ooStartMicDataCapture

winhelpers, 24
ooStartReceiveAudioAndPlayback

mediaapi, 8
ooStartTransmitMic

mediaapi, 8
ooStartTransmitWaveFile

mediaapi, 8
ooStopMicDataCapture

winhelpers, 24
ooStopReceiveAudioAndPlayback

mediaapi, 8
ooStopTransmitMic

mediaapi, 9
ooStopTransmitWaveFile

mediaapi, 9
ooWave.h, 34
ooWaveFile, 26
sockets

ooGetLocalIPAddress, 12
ooHTONL, 12
ooHTONS, 12
OOIPADDR, 11
ooSocketAccept, 12
ooSocketAddrToStr, 13
ooSocketBind, 13
ooSocketClose, 13
ooSocketConnect, 14
ooSocketCreate, 14
ooSocketCreateUDP, 14
ooSocketListen, 15
ooSocketRecv, 15
ooSocketRecvFrom, 15
ooSocketsCleanup, 16
ooSocketSelect, 16
ooSocketSend, 16
ooSocketSendTo, 17
ooSocketsInit, 17
ooSocketStrToAddr, 17

WaveBuffer, 27

xlv

winhelpers
ooAddToFreeBufferList, 20
ooAddToWaveBufferList, 20
ooCloseMic, 20
ooCloseSpeaker, 21
ooCloseWaveFile, 21
ooGetFreeBuffer, 21
ooMICCallback, 21
ooOpenMic, 22
ooOpenSpeaker, 22
ooOpenWaveFileForRead, 22
ooPlayWaveBuffer, 22
ooReadWaveFileData, 23
ooRemoveHeadOfWaveBufferList, 23
ooSpeakerCallback, 23
ooStartMicDataCapture, 24
ooStopMicDataCapture, 24

xlvi

