objective

SYSTEMS, INC

MediaPlug-inlibrary

Objective systems
Version Version 0.1
8/9/2004 2:12 PM

Table of Contents

Module Index
Data Structure Index
File Index
Module Documentation
Media API Internal Common Helper Functions
Media API Internal Linux Helper Functions
Media API
Media API Internal Socket Layer
Media API Internal Windows Helper Functions
Data Structure Documentation
BufferNode
ooWaveFile
WaveBuffer
File Documentation
00Common.h
oortp.h
ooSock.h
ooWave.h
Index

MediaPlug-inlibrary Module Index

MediaPlug-inlibrary Modules

Here 1s a list of all modules:

Media API Internal Common Helper Functions
Media API Internal Linux Helper Functions
Media API

Media API Internal Socket Layer

Media API Internal Windows Helper Functions

O WD W N

iii

MediaPlug-inlibrary Data Structure Index

MediaPlug-inlibrary Data Structures

Here are the data structures with brief descriptions:

BufferNode (This holds the list of free buffers which can be used for sending data to waveout device)
25

ooWaveFile (Helper structure for reading wavefile) 26
WaveBuffer (This holds alist of buffers holding recorded data from MIC) 27

v

MediaPlug-inlibrary File Index

MediaPlug-inlibrary File List

Here is a list of all documented files with brief descriptions:

g711.h Error! Bookmark not defined.
00Common.h (This file contains common helper functions) 28
oomedialx.h Error! Bookmark not defined.
oortp.h (This file contains functions to create and use media channels) 29
00Sock.h (Common runtime constants, data structure definitions, and run-time functions to support

the sockets' operations) 31
ooWave.h (This file contains lowlevel wave functions) 34

vi

MediaPlug-inlibrary Module Documentation

Media API Internal Common Helper Functions
Media API Internal Common Helper Functions

Defines

#define OORTPPACKETDATASIZE 240 /* Send Receive Packet Data Size*/
#define MAXLOGMS GLEN 1024

#define OOLOG2(a, b) ooLog(a,b)

#define OOLOG3(a, b, ¢) oolLog(a,b,c)

#define OOLOG4(a, b, c,d) ooLog(a,b,c,d)

#define OOLOGS5(a, b, ¢, d, e) ooLog(a,b,c,d,e)

#define OOLOGY(a, b, c,d, e, f, g, h, 1) ooLog(a,b,c,d,e,f,g,h,i)

Functions
e EXTERN void ooLog (int level, const char *fmtspec,...)
This function logs a trace message into a log file.

e EXTERN void ooSleep (int milliseconds)
Platform independent sleep function.

Variables
e FILE * fpLog

Function Documentation

EXTERN void ooLog (int /evel, const char * fmtspec, ...)

This function logs a trace message into a log file.

Parameters:

level Log level(Currently not used)
fintspec Format specification for the log message.
... Variable number of arguments representing the message.

EXTERN void ooSleep (int milliseconds)

Platform independent sleep function.

Parameters:

milliseconds Sleep time in milliseconds.

vil

Media API Internal Linux Helper Functions
Media API Internal Linux Helper Functions

Functions

EXTERN int 000penWaveFileForRead (char *filename)
Opens a RAW audio data file for read.

EXTERN int ooReadWaveFileData (char *databuf, int size)
Reads data from the opened raw audio file.

EXTERN int ooCloseWaveFile ()
Close the open raw audio data file.

EXTERN int 00OpenAudioDevice ()
Opens the audio device for read/write operation.

EXTERN int ooPlayAudioBuffer (unsigned char *buff, long size)
Plays a buffer full of audio data onto the audio device.

EXTERN int ooGetMicAudioBuffer (unsigned char *buff, long size)
Reads audio data from the microphone device.

Variables

int ghSoundDevice
Global handle to open sound device.

int ghSndFile
Global handle to open raw audio data file.

Function Documentation

EXTERN int ooCloseWavefFile ()

Close the open raw audio data file.

viil

Returns:

Completion status - 0 on success, -1 on failure

EXTERN int ooGetMicAudioBuffer (unsigned char * buff, long size)

Reads audio data fromthe microphone device.

Parameters:

buff Buffer in which data has to be captured.
size Size of the capture buffer

Returns:
Completion status - 0 on success, -1 on failure

EXTERN int ooOpenAudioDevice ()

Opens the audio device for read/write operation.

Returns:

Completion status - 0 on success, -1 on failure

EXTERN int ooOpenWaveFileForRead (char * filename)
Opens a RAW audio data file for read.

Parameters:

filename Name of the file to be opened.

Returns:
Completion status - 0 on success, -1 on failure

EXTERN int ooPlayAudioBuffer (unsigned char * buff, long size)
Plays a buffer full of audio data onto the audio device.

Parameters:

buff Buffer containing the audio data to be played.
size Size of the audio data in the buffer

Returns:
Completion status - 0 on success, -1 on failure

EXTERN int ooReadWaveFileData (char * databuf, int size)
Reads data fromthe opened raw audio file.
The number of bytes to be read is specified by the size parameter.

Parameters:

databufPointer to a buffer in which data is returned.
size Number of bytes to be read.

Returns:
Number of bytes read on success, -1 on failure.

Media API
Media API

Data Structures
e struct OORTPChannel

Defines

e #define OO_CHAN_CLOSE 0
e #define OO_CHAN_OPEN 1

Functions
o EXTERN int oolnitializePlugin ()
This function initializes the plugin library.

e EXTERN int ooCreate Trans mitRTPChannel (int *channelld, char *destip, int port)

This function is invoked to create Transmit RTP channel.

e EXTERN int 00CloseTrans mitRTPChannel (int channelld)
This function is invoked to close the Transmit RTP channel.

e EXTERN int ooCreateReceiveRTPChannel (int *channelld, char *localip, int localport)

This function is invoked to create Receive RTP channel.

e EXTERN int 0oCloseReceiveRTPChannel (int channelld)

This function is invoked to close the Receive RTP channel.

e EXTERN int ooStartTrans mitWaveFile (int channelld, char *filename)
This function is used to transmit a wave file on already created transmit RTP channel.

e EXTERN int ooStopTransmitWaveFile (int channelld)
This function is used to stop transmitting the wave file.

e EXTERN int ooStartTransmitMic (int channelld)
This function is used to start capturing and transmitting the data from microphone.

o EXTERN int ooStopTransmitMic (int channelld)
This function is used to stop transmitting the data from microphone.

o EXTERN int ooStartReceiveAudioAndPlayback (int channelld)
This function is used to start receiving rtp stream and playing the received audio onto the speaker
device.

e EXTERN int ooStopReceiveAudioAndPlayback (int channelld)
This function is used to stop receiving rtp stream.

e EXTERN int ooStartReceiveAudioAndRecord (int channelld)
o EXTERN int ooStopReceiveAudioAndRecord (int channelld)

Variables

e OORTPChannel gXmitChannel
e OORTPChannel gRecvChannel
e pthread t gXmitThrdHdl

e pthread t gRecvIhrdHdl

Function Documentation

EXTERN int ooCloseReceiveRTPChannel (int channelld)

This function is invoked to close the Receive RTP channel.

Parameters:

channelld An integer value indicating the RTP channel to be closed. Not used currently as only
two channels are supported, 1 xmit channel and 1 recv channel.

Returns:

Completion status - 0 on success, -1 on failure

EXTERN int ooClose TransmitRTPChannel (int channelld)

This function is invoked to close the Transmit RTP channel.

Parameters:

channelld An integer value indicating the RTP channel to be closed. Not used currently as only
two channels are supported, 1 xmit channel and 1 recv channel.

Returns:
Completion status - 0 on success, -1 on failure

EXTERN int ooCreateReceiveRTPChannel (int * channelld, char * localip, int localport)

This function is invoked to create Receive RTP channel.

Parameters:

channelld Pointer to int for returning the newly created channel id. Not used currently as only two
channels are supported, 1 xmit channel and 1 recv channel.

localip TP address of'the local endpoint.

localport RTP receive port number at the local endpoint.

Returns:

Completion status - 0 on success, -1 on failure

EXTERN int ooCreateTransmitRTPChannel (int * channelld, char * destip, int port)

This function is invoked to create Transmit RTP channel.

Parameters:

channelld Pointer to int for returning the newly created channel id. Not used currently as only two
channels are supported, 1 xmit channel and 1 recv channel.

destip 1P address of the destination endpoint.

port RTP receive port number at the destination endpoint.

Returns:

Completion status - 0 on success, -1 on failure

EXTERN int oolnitializePlugin ()
This function initializes the plugin library.

Returns:

0, on success. -ve on failure.

EXTERN int ooStartReceive AudioAndPlayback (int channelld)

This function is used to start receiving rtp stream and playing the received audio onto the speaker
device.

Parameters:

channelld Indicates the receive channel on which data reception needs to be started. Not used
currently as only one transmit channel is supported.

Returns:

Completion status - 0 on success, -1 on failure.

EXTERN int ooStartTransmitMic (int channelld)

This function is used to start capturing and transmitting the data from microphone.

Parameters:

channelld Indicates the transmit channel on data transmission should begin. Not used currently as
only one transmit channel is supported.

Returns:

Completion status - 0 on success, -1 on failure.

EXTERN int ooStartTransmitWaveFile (int channelld, char * filename)
This function is used to transmit a wave file on already created transmit RTP channel.

This basically, creates a thread which will start reading from the wave file and transmit data as rtp
packets on the transmit channel.

Parameters:

channelld Indicates the transmit channel to be used. Not used currently as only one transmit
channel is supported.
filename Name of the wave file to be transmitted.

Returns:
Completion status - 0 on success, -1 on failure.

EXTERN int ooStopReceive AudioAndPlayback (int channelld)

This function is used to stop receiving rtp stream.

Parameters:
channelld Indicates the receive channel on which data reception needs to be halted. Not used
currently as only one transmit channel is supported.

Returns:
Completion status - 0 on success, -1 on failure.

EXTERN int ooStopTransmitMic (int channelld)

This function is used to stop transmitting the data from microphone.

Parameters:

channelld Indicates the transmit channel on which data transmission needs to be halted. Not used
currently as only one transmit channel is supported.

Returns:
Completion status - 0 on success, -1 on failure.

EXTERN int ooStopTransmitWaveFile (int channelld)

This function is used to stop transmitting the wave file.

Parameters:

channelld Indicates the transmit channel on which wave file transmission needs to be halted. Not
used currently as only one transmit channel is supported.

Returns:

Completion status - 0 on success, -1 on failure.

Media API Internal Socket Layer
Media API Internal Socket Layer

Defines

e #define OOSOCKET_INVALID ((OOSOCKEI)-1)
e #define ASN_OK 0

Xiv

#define ASN_E NOTINIT -1

#define ASN_E INVSOCKET -2

#define ASN_E INVPARAM -3

#define ASN_E BUFOVFLW -4

#define OOIPADDR_ANY ((OOIPADDR)0)

#define OOIPADDR_LOCAL ((OOIPADDR)0x7f000001UL) /* 127.0.0.1 */

Typedefs
o typedefint OOSOCKET
Socket's handle.

e typedefunsigned long OOIPADDR
The IP address represented as unsigned long value.

typedef char ASN1OCTET
typedefunsigned int ASN1UINT

Functions

e EXTERN int ooSocketAccept (OOSOCKET socket, OOSOCKET *pNewSocket, OOIPADDR
*destAddr, int *destPort)
This function permits an incoming connection attempt on a socket.

o EXTERN int ooSocketAddrToStr (OOIPADDR ipAddr, char *pbuf, int bufsize)
This function converts an IP address to its string representation.

e EXTERN int ooSocketBind (OOSOCKET socket, OOIPADDR addr, int port)
This function associates a local address with a socket.

e EXTERN int ooSocketClose (OOSOCKET socket)
This function closes an existing socket.

o EXTERN int coSocketConnect (OOSOCKET socket, const char *host, int port)
This function establishes a connection to a specified socket.

o EXTERN int ooSocketCreate (OOSOCKET *psocket)
This function creates a socket.

e EXTERN int coSocketCreateUDP (OOSOCKET *psocket)
This function creates a UDP datagram socket.

e EXTERN int ooSocketsInit (void)
This function initiates use of sockets by an application.

e EXTERN int ooSockets Cleanup (void)

This function terminates use of sockets by an application.

o EXTERN int ooSocketListen (OOSOCKET socket, int maxConnection)
This function places a socket a state where it is listening for an incoming connection.

e EXTERN int ooSocketRecv (OOSOCKET socket, ASNIOCTET *pbuf, ASNIUINT bufsize)
This function receives data from a connected socket.

o EXTERN int ooSocketRecvFrom (OOSOCKET socket, ASNIOCTET *pbuf, ASN1UINT bufsize, char
*remotehost, int *remoteport)
This function receives data from a connected/unconnected socket.

e EXTERN int ooSocketSend (OOSOCKET socket, const ASNIOCTET *pdata, ASNIUINT size)
This function sends data on a connected socket.

e EXTERN int ooSocketSendTo (OOSOCKET socket, const ASNIOCTET *pdata, ASNIUINT size,
const char *remotehost, int remoteport)
This function sends data on a connected or unconnected socket.

o EXTERN int ooSocketSelect (int nfds, fd_set *readfds, fd_set *writefds, fd_set *exceptfds, struct
timeval *timeout)
This function is used for synchronous monitoring of multiple sockets.

e EXTERN int ooSocketStrToAddr (const char *pIPAddrStr, OOIPADDR *pIPAddr)
This function converts the string with IP address to a double word representation.

o EXTERN int 0oGetLocallPAddress (char *pIPAddrs)
This function retrives the IP address of the local host.

e EXTERN long 0oHTONL (long val)
This function converts a long value from host to network byte order.

o EXTERN short 0oHTONS (short val)
This function converts a short value from host to network byte order.

Typedef Documentation

typedef unsigned long OOIPADDR
The IP address represented as unsigned long value.

The most significant 8 bits in this unsigned long value represent the first number of the IP address. The
least significant 8 bits represent the last number of the IP address.

Definition at line 80 of file ooSock.h.

Function Documentation

EXTERN int ooGetLocallPAddress (char * p/IPAddrs)

This function retrives the IP address of the local host.

Parameters:
pIPAddrs Pointer to a char buffer in which local IP address will be returned.

Returns:
Completion status of operation: 0 (ASN_OK) = success, negative return value is error.

EXTERN long ooHTONL (long val)

This function converts a long value fromhost to network byte order.

Parameters:

val Value to be converted.

Returns:

Value converted to network byte order.

EXTERN short ooHTONS (short val)

This function converts a short value fromhost to network byte order.

Parameters:

val Value to be converted.

Returns:
Value converted to network byte order.

EXTERN int ooSocketAccept (OOSOCKET socket, OOSOCKET * pNewSocket, OOIPADDR *
destAddr, int * destPort)

This function permits an incoming connection attempt on a socket.

It extracts the first connection on the queue of pending connections on socket. It then creates a new

socket and returns a handle to the new socket. The newly created socket is the socket that will handle
the actual connection and has the same properties as original socket. See description of 'accept' socket
function for further details.

Parameters:

socket The socket's handle created by call to ::rtSocketCreate function.

pNewSocket The pointer to variable to receive the new socket's handle.

destAddr Optional pointer to a buffer that receives the IP address of the connecting entity. It may
be NULL.

destPort Optional pointer to a buffer that receives the port of the connecting entity. It may be
NULL.

Returns:

Completion status of operation: 0 (ASN_OK) = success, negative return value is error.

EXTERN int ooSocketAddrToStr (OOIPADDR ipAddr, char * pbuf, int bufsize)

This function converts an IP address to its string representation.

Parameters:

ipAddr The IP address to be converted.
pbufPointer to the buffer to receive a string with the IP address.
bufsize Size of the buffer.

Returns:
Completion status of operation: 0 (ASN_OK) = success, negative return value is error.

EXTERN int ooSocketBind (OOSOCKET socket, OOIPADDR addr, int port)
This function associates a local address with a socket.

It is used on an unconnected socket before subsequent calls to the :rtSocketConnect or
rtSocketListen functions. See description of 'bind' socket function for further details.

Parameters:

socket The socket's handle created by call to ::rtSocketCreate function.
addr The local IP address to assign to the socket.
port The local port number to assign to the socket.

Returns:

Completion status of operation: 0 (ASN_OK) = success, negative return value is error.

EXTERN int ooSocketClose (OOSOCKET socket)

This function closes an existing socket.

Parameters:

socket The socket's handle created by call to ::rtSocketCreate or ::rtSocketAccept function.

Returns:

Completion status of operation: 0 (ASN_OK) =success, negative return value is etror.

EXTERN int ooSocketConnect (OOSOCKET socket, const char * host, int port)
This function establishes a connection to a specified socket.

It is used to create a connection to the specified destination. When the socket call completes
successfully, the socket is ready to send and receive data. See description of 'connect' socket function
for further details.

Parameters:

socket The socket's handle created by call to ::rtSocketCreate function.
host The null-terminated string with the IP address in the following format:
"NNN.NNN.NNN.NNN", where NNN is a number in the range (0..255).
port The destination port to connect.

Returns:

Completion status of operation: 0 (ASN_OK) = success, negative return value is error.

EXTERN int ooSocketCreate (OOSOCKET * psocket)

This function creates a socket.

The only streaming TCP/IP sockets are supported at the moment.

Parameters:

psocket The pointer to the socket's handle variable to receive the handle of new socket.

Returns:
Completion status of operation: 0 (ASN_OK) = success, negative return value is error.

EXTERN int ooSocketCreate UDP (OOSOCKET * psocketf)

This function creates a UDP datagram socket.

Parameters:

psocket The pointer to the socket's handle variable to receive the handle of new socket.

Returns:

Completion status of operation: 0 (ASN_OK) =success, negative return value is etror.

EXTERN int ooSocketListen (OOSOCKET socket, int maxConnection)
This function places a socket a state where it is listening for an incoming connection.

To accept connections, a socket is first created with the ::rtSocketCreate function and bound to a local
address with the :rtSocketBind function, a maxConnection for incoming connections is specified with
:rtSocketListen, and then the connections are accepted with the :rtSocketAccept function. See
description of 'listen' socket function for further details.

Parameters:

socket The socket's handle created by call to ::rtSocketCreate function.
maxConnection Maximum length of the queue of pending connections.

Returns:

Completion status of operation: 0 (ASN_OK) = success, negative return value is error.

EXTERN int ooSocketRecv (OOSOCKET socket, ASN1OCTET * pbuf, ASN1UINT bufsize)
This function receives data froma connected socket.

It is used to read incoming data on sockets. The socket must be connected before calling this function.
See description of 'recv' socket function for further details.

Parameters:

socket The socket's handle created by call to :rtSocketCreate or :rtSocketAccept function.
pbufPointer to the buffer for the incoming data.
bufsize Length of the buffer.

Returns:

If no error occurs, returns the number of bytes received. Otherwise, the negative value is error
code.

EXTERN int ooSocketRecvFrom (OOSOCKET socket, ASN1OCTET * pbuf, ASN1UINT bufsize,
char * remotehost, int * remoteport)

This function receives data froma connected/unconnected socket.

It is used to read incoming data on sockets. It populates the remotehost and remoteport parameters with
information of remote host. See description of 'recvfrom' socket function for further details.

Parameters:

socket The socket's handle created by call to ooSocketCreate
pbufPointer to the buffer for the incoming data.

bufsize Length of the buffer.

remotehost Pointer to a buffer in which remote ip address will be returned.
remoteport Pointer to an int in which remote port number will be returned.

Returns:

Ifno error occurs, returns the number of bytes received. Otherwise, the negative value is error
code.

EXTERN int ooSocketsCleanup (void)
This function terminates use of sockets by an application.

This function must be called after done with sockets.

Returns:
Completion status of operation: 0 (ASN_OK) = success, negative return value is error.

EXTERN int ooSocketSelect (int nfds, fd_set * readfds, fd_set * writefds, fd_set * exceptfds,
struct timeval * timeout)

This function is used for synchronous monitoring of multiple sockets.

For more information refer to documnetation of "select" system call.

Parameters:

nfds The highest numbered descriptor to be monitored plus one.

readfds The descriptors listed in readfds will be watched for whether read would block on them.
writefds The descriptors listed in writefds will be watched for whether write would block on them.
exceptfds The descriptors listed in exceptfds will be watched for exceptions.

timeout Upper bound on amout of time elapsed before select returns.

Returns:

Completion status of operation: 0 (ASN_OK) =success, negative return value is etror.

EXTERN int ooSocketSend (OOSOCKET socket, const ASN1OCTET * pdata, ASN1UINT size)
This function sends data on a connected socket.

It is used to write outgoing data on a connected socket. See description of 'send' socket function for
further details.

Parameters:

socket The socket's handle created by call to ::rtSocketCreate or ::rtSocketAccept function.
pdata Buffer containing the data to be transmitted.

size Length of the data in pdata.

Returns:

Completion status of operation: 0 (ASN_OK) =success, negative return value is etror.

EXTERN int ooSocketSendTo (OOSOCKET socket, const ASN1OCTET * pdata, ASN1UINT
size, const char * remotehost, int remoteport)

This function sends data on a connected or unconnected socket.

See description of 'sendto’ socket function for further details.

Parameters:

socket The socket's handle created by call to ::rtSocketCreate or ::rtSocketAccept function.
pdata Buffer containing the data to be transmitted.

size Length of the data in pdata.

remotehost Remote host ip address to which data has to be sent.

remoteport Remote port ip address to which data has to be sent.

Returns:

Completion status of operation: 0 (ASN_OK) = success, negative return value is error.

EXTERN int ooSocketslnit (void)

This function initiates use of sockets by an application.

This function must be called first before use sockets.

Returns:
Completion status of operation: 0 (ASN_OK) = success, negative return value is error.

EXTERN int ooSocketStrToAddr (const char * pIPAddrStr, OOIPADDR * pIPAddr)
This function converts the string with IP address to a double word representation.

The converted address may be used with the ::rtSocketBind function.

Parameters:

pIPAddrStr The null-terminated string with the IP address in the following format:
"NNN.NNN.NNN.NNN", where NNN is a number in the range (0..255).
pIPAddr Pointer to the converted IP address.

Returns:

Completion status of operation: 0 (ASN_OK) = success, negative return value is error.

Media API Internal Windows Helper Functions
Media API Internal Windows Helper Functions

Data Structures

struct ooWaveFile
Helper structure for reading wavefile.

struct WaveBuffer
This holds a list of buffers holding recorded data from MIC.

struct BufferNode
This holds the list of free buffers which can be used for sending data to waveout device.

Functions

EXTERN int 000penWaveFileForRead (char *filename)
Opens a WaveFile for read and traverses upto the data chunk, so that next mmioRead will return
wavedata.

EXTERN int 00CloseWaveFile ()
Closes the open WaveFile.

EXTERN int ooReadWaveFileData (char *buffer, int size)
Reads data from already opened wave file.

EXTERN int 00OpenSpeaker (HWA VEOUT *phWaveOut, WA VEFORMATEX waveFormat)
Opens a waveQut device, i.e., speaker for playback.

EXTERN int ooPlayWaveBuffer (HW A VEOUT hWaveOut, unsigned char *buff, long size)
Plays the number of bytes specified by the size parameter from the buff onto the speaker device.

EXTERN int 0oCloseSpeaker (HWAVEOUT hWaveOut)
Release all the buffers queued into the waveQOut device(speaker) for playback and close speaker.

EXTERN int 00OpenMic ()
Opens the Waveln device, MIC, for recording and queues the buffers into the device which can be
used for storing recorded data.

EXTERN int ooS tartMicDataCapture (HW A VEIN hWaveln)

Start recording audio into the buffers.

EXTERN int ooS topMicDataCapture (HW AVEIN hWaveln)
Stop recording audio.

EXTERN int 00CloseMic (HW A VEIN hWaveln)
This releases all the buffers queued inside wave-in device, mic, and then closes the mic.

EXTERN void CALLBACK ooMICCallback (HW AVEIN hwi, UINT uMsg, DWORD dwlInstance,
DWORD dwParaml, DWORD dwParam?2)

This is a callback function registered with the mic.

EXTERN void CALLBACK ooSpeakerCallback (HWAVEOUT hwo, UINT uMsg, DWORD
dwInstance, DWORD dwParaml, DWORD dwParam?2)

This is a callback function registered with the speaker.

EXTERN int ooAddToWaveBufferList (WA VEHDR *waveHdr)
Helper function to maintain the list of buffers returned by mic, after recording.

EXTERN int ooRemoveHeadOfWave BufferList ()
Helper function which removes the WAVEHDR at the front of the list.

EXTERN int coAddToFreeBufferList (char *buffer)
Helper function to put a buffer back into the free buffer list.

EXTERN char * ooGetFreeBuffer ()
Get a free buffer from free buffer list.

Variables

ooWaveFile gWaweFile
Global handle to open wave file.

WaveBuffer * gpWaveHead
Global pointers to list of wave buffers.

WaveBuffer * gpWaveTail
Global pointers to list of wave buffers.

int gRecording
int gQueuedBufCount
Count of number of buffers queued inside the wave-in device.

BufferNode * gpFreeBufHead

Global pointers to the list holding free buffers.

e BufferNode * gpFreeBufTail
Global pointers to the list holding free buffers.

int gPlayQueueCount
HWAVEIN ghWaveln

Global handle to open wave-in device.

e HWAVEOUT ghWaveOut
Global handle to open wave-out device.

e CRITICAL SECTION gPlayMutex
As callback functions run in their own threads, we need mutex protection for data which is used by
multiple threads.

e CRITICAL SECTION gReadMutex
As callback functions run in their own threads, we need mutex protection for data which is used by
multiple threads.

Function Documentation

EXTERN int ooAddToFreeBufferList (char * buffer)
Helper function to put a buffer back into the free buffer list.
Once the buffer playback is done, it can be added to the free list

Parameters:
buffer Pointer to the buffer to be added to the free list.

Returns:
Completion status - 0 on success, -1 on failure

EXTERN int ooAddToWaveBufferList (WAVEHDR * waveHdr)
Helper function to maintain the list of buffers returned by mic, after recording.

These buffers are kept in this list till there processing is done and then again queued back into the mic
for further recording.

Parameters:

waveHdr Pointer to wave header structure which in turn contains the data buffer.

Returns:
Completion status - 0 on success, -1 on failure.

EXTERN int ooCloseMic (HWAVEIN hWaveln)

This releases all the buffers queued inside wave-in device, mic, and then closes the mic.

Parameters:
hWaveln Handle to the wave-in device.

Returns:

Completion status - 0 on success, -1 on failure

EXTERN int ooCloseSpeaker (HWAVEOUT hWaveOuft)

Release all the buffers queued into the waveOut device(speaker) for playback and close speaker.

Parameters:

hWaveOut Handle to the wave out device to be closed.

Returns:

Completion status - 0 on success, -1 on failure.

EXTERN int ooCloseWavecFile ()
Closes the open WaveFile.

Returns:

Completion status - 0 on success, -1 on failure.

EXTERN char* ooGetFreeBuffer ()
Get a free buffer from free buffer list.

A free buffer is retrieved using this function for storing data which will then passed onto
ooPlayWaveBuffer function for playback.

Returns:
Pointer to a character buffer

XXv1

EXTERN void CALLBACK ooMICCallback (HWAVEIN hwi, UINT uMsg, DWORD dwinstance,
DWORD dwParam1, DWORD dwParam2)

This is a callback function registered with the mic.
It will be called by mic device when a buffer full of data is recorded.

Parameters:

hwi Handle to the wave-in device.

uMsg Event message sent by the device.
dwinstance User data.

dwParaml Message parameter.
dwParam?2 Message parameter.

Returns:
None

EXTERN int ooOpenMic ()

Opens the Waveln device, MIC, for recording and queues the buffers into the device which can be
used for storing recorded data.

Returns:
Completion status - 0 on success, -1 on failure.

EXTERN int ooOpenSpeaker (HWAVEOUT * phWaveOut, WAVEFORMATEX waveFormat)
Opens a waveOut device, i.e., speaker for playback.
waveFormat specifies the format to be used for playback.
Parameters:

phWaveOut Pointer to an empty HW AVEOUT handle which will contain the handle to the opened
device on return.
waveFormat Wave format to be used for playback.

Returns:

Completion status - 0 on success, -1 on failure.

EXTERN int ooOpenWaveFileForRead (char * filename)

Opens a WaveFile for read and traverses upto the data chunk, so that next mmioRead will return
wavedata.

Parameters:

filename Name of the wave file to be opened.

XxXvil

Returns:

Completion status - 0 on success, -1 on failure.

EXTERN int ooPlayWaveBuffer (HWAVEOUT hWaveOut, unsigned char * buff, long size)
Plays the number of bytes specified by the size parameter fromthe buff onto the speaker device.

Parameters:

hWaveOut Handle to the speaker device.
buffPointer to the buffer containing the data to be played.
size Size of the buffer to be played out.

Returns:
Completion status - 0 on success, -1 on failure.

EXTERN int ooReadWaveFileData (char * buffer, int size)
Reads data fromalready opened wave file.

Number of bytes to be read is specified by the "size" parameter. The data is returned in "buffer"
parameter and the number of bytes read is returned as a return value.

Parameters:

buffer Buffer which will contain the data read.
size Size of the buffer passed.

Returns:

Number of bytes read on success, -1 on failure

EXTERN int ooRemoveHeadOfWaveBufferList ()
Helper function which removes the WA VEHDR at the front of the list.

Note this does not free up the mem used by WAVEHDR as it will be queued into the mic for further
recording.

Returns:
Completion status - 0 on success, -1 on failure.

EXTERN void CALLBACK ooSpeakerCallback (HWAVEOUT hwo, UINT uMsg, DWORD
dwinstance, DNORD dwParam1, DWORD dwParam2)

This is a callback function registered with the speaker.
It is called by the speaker, when a buffer full of data is played back.

Parameters:

hwo Handle to the wave out device.

uMsg Waveform audio output message.

dwinstance User instance data passed during waveOutOpen.
dwParaml Message parameter.

dwParam?2 Message parameter

Returns:
None

EXTERN int ooStartMicDataCapture (HWAVEIN hWaveln)

Start recording audio into the buffers.

Parameters:
hWaveln Handle to wave-in device.

Returns:

Completion status - 0 on success, -1 on failure.

EXTERN int ooStopMicDataCapture (HWAVEIN hWaveln)

Stop recording audio.

Note that this marks current buffer as done and frees it by calling callback function. However, other
queued buffers will stay there in wave-in device.

Parameters:

hWaveln Handle to the wave-in device.

Returns:
Completion status - 0 on success, -1 on failure

MediaPlug-inlibrary Data Structure
Documentation

BufferNode Struct Reference

BufferNodeThis holds the list of free buffers which can be used for sending data to waveout
device.

#include <ooWave.h>

Data Fields

e char * buf
e BufferNode * next

Detailed Description
This holds the list of free buffers which can be used for sending data to waveout device.

Definition at line 83 of file ooWave.h.

The documentation for this struct was generated from the following file:
e ooWave.h

ooWaveFile Struct Reference
ooWaveFileHelper structure for reading wavefile.

#include <ooWave.h>

Data Fields

char filename [1024]
HMMIO hWaveFile

Wave file name.

e WAVEFORMATEX waveFormat
Wave file handle.

e int dataSize
Wave file format.

Detailed Description
Helper structure for reading wavefile.
Definition at line 54 of file ooWave.h.

The documentation for this struct was generated from the following file:
e ooWave.h

WaveBuffer Struct Reference
WaveBufferThis holds a list of buffers holding recorded data from MIC.

#include <ooWave.h>

Data Fields

e WAVEHDR * pWaveHdr
e WaveBuffer * next

Detailed Description
This holds a list of buffers holding recorded data from MIC.

This data can then be sent on rtp channel or played back on speakers.
Definition at line 70 of file ooWave.h.

The documentation for this struct was generated from the following file:
e ooWave.h

MediaPlug-inlibrary File Documentation

ooCommon.h File Reference

0oCommon.hThis file contains common helper functions.

#include <stdarg.h>
#include <stdlib.h>
#include <stdio.h>
#include "ooSock.h"

Defines

#define OORTPPACKETDATASIZE 240 /* Send Receive Packet Data Size*/
#define MAXLOGMSGLEN 1024

#define OOLOG2(a, b) ooLog(a,b)

#define OOLOG3(a, b, ¢) oolLog(a,b,c)

#define OOLOG4(a, b, c,d) oolog(a,b,c,d)

#define OOLOGS5(a, b, ¢, d, e) ooLog(a,b,c,d,e)

#define OOLOGY(a, b, c,d, e, f, g, h, 1) ooLog(a,b,c,d,e,f,g,h,i)

Functions

e EXTERN void ooLog (int level, const char *fmtspec,...)
This function logs a trace message into a log file.

e EXTERN void ooSleep (int milliseconds)
Platform independent sleep function.

Variables
e FILE * fpLog

Detailed Description
This file contains common helper functions.

Definition in file ooCommon.h.

oortp.h File Reference

oortp.hThis file contains functions to create and use media channels.

#include <stdio.h>
#include "ooSock.h"
#include "ooCommon.h"

Data Structures

struct OORTPChannel

Defines

#define 00_CHAN_CLOSE 0
#define 00_CHAN_OPEN 1

Functions

EXTERN int oolnitializePlugin ()
This function initializes the plugin library.

EXTERN int 0oCreateTrans mitRTPChannel (int *channelld, char *destip, int port)
This function is invoked to create Transmit RTP channel.

EXTERN int 00CloseTrans mitRTPChannel (int channelld)
This function is invoked to close the Transmit RTP channel.

EXTERN int ooCreateReceiveRTPChannel (int *channelld, char *localip, int localport)
This function is invoked to create Receive RTP channel.

EXTERN int 00CloseReceiveRTPChannel (int channelld)
This function is invoked to close the Receive RTP channel.

EXTERN int ooStartTrans mitWaveFile (int channelld, char *filename)

This function is used to transmit a wave file on already created transmit RTP channel.

EXTERN int ooStopTrans mitWaveFile (int channelld)
This function is used to stop transmitting the wave file.

EXTERN int ooStartTransmitMic (int channelld)
This function is used to start capturing and transmitting the data from microphone.

EXTERN int ooStopTransmitMic (int channelld)
This function is used to stop transmitting the data from microphone.

XXXV

e EXTERN int ooStartReceiveAudioAndPlayback (int channelld)
This function is used to start receiving rtp stream and playing the received audio onto the speaker
device.

e EXTERN int ooStopReceiveAudioAndPlayback (int channelld)
This function is used to stop receiving rtp stream.

o EXTERN int ooStartReceiveAudioAndRecord (int channelld)
o EXTERN int ooStopReceiveAudioAndRecord (int channelld)

Variables

e OORTPChannel gXmitChannel
e OORTPChannel gRecvChannel
e pthread t gXmitThrdHdl

e pthread t gRecvIhrdHdl

Detailed Description
This file contains functions to create and use media channels.

Definition in file oortp.h.

ooSock.h File Reference

ooSock.hCommon runtime constants, data structure definitions, and run-time functions to support
the sockets' operations.

#include <sys/types.h>
#include "sys/time.h"
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#include <unistd.h>
finclude <arpa/inet.h>

Defines

#define EXTERN

#define OOSOCKET INVALID ((OOSOCKEI)-1)

#define ASN_OK 0

#define ASN_E NOTINIT -1

#define ASN_E INVSOCKET -2

#define ASN_E INVPARAM -3

#define ASN_E BUFOVFLW -4

#define OOIPADDR_ANY ((OOIPADDR)0)

#define OOIPADDR_LOCAL ((OOIPADDR)0X7f000001UL) /* 127.0.0.1 */

Typedefs
o typedefint OOSOCKET
Socket's handle.

e typedefunsigned long OOIPADDR
The IP address represented as unsigned long value.

o typedefchar ASN1OCTET
o typedefunsigned int ASN1UINT

Functions

e EXTERN int ooSocketAccept (OOSOCKET socket, OOSOCKET *pNewSocket, OOIPADDR
*destAddr, int *destPort)

This function permits an incoming connection attempt on a socket.

e EXTERN int ooSocketAddrToStr (OOIPADDR ipAddr, char *pbuf, int bufsize)
This function converts an IP address to its string representation.

e EXTERN int ooSocketBind (OOSOCKET socket, OOIPADDR addr, int port)
This function associates a local address with a socket.

XXXV1

EXTERN int ooSocketClose (OOSOCKET socket)
This function closes an existing socket.

EXTERN int ooSocketConnect (OOSOCKET socket, const char *host, int port)
This function establishes a connection to a specified socket.

EXTERN int ooSocketCreate (OOS OCKET *psocket)
This function creates a socket.

EXTERN int ooSocketCreateUDP (OOSOCKET *psocket)
This function creates a UDP datagram socket.

EXTERN int ooSockets Init (void)
This function initiates use of sockets by an application.

EXTERN int ooSockets Cleanup (void)
This function terminates use of sockets by an application.

EXTERN int ooSocketListen (OOSOCKET socket, int maxConnection)
This function places a socket a state where it is listening for an incoming connection.

EXTERN int ooSocketRecv (OOSOCKET socket, ASNIOCTET *pbuf, ASNIUINT bufsize)
This function receives data from a connected socket.

EXTERN int ooSocketRecvFrom (OOSOCKET socket, ASNIOCTET *pbuf, ASNIUINT bufsize, char
*remotehost, int *remoteport)
This function receives data from a connected/unconnected socket.

EXTERN int ooSocketSend (OOSOCKET socket, const ASNIOCTET *pdata, ASNIUINT size)
This function sends data on a connected socket.

EXTERN int ooSocketSendTo (OOSOCKET socket, const ASNIOCTET *pdata, ASN1UINT size,
const char *remotehost, int remoteport)
This function sends data on a connected or unconnected socket.

EXTERN int ooSocketSelect (int nfds, fd_set *readfds, fd_set *writefds, fd_set *exceptfds, struct
timeval *timeout)
This function is used for synchronous monitoring of multiple sockets.

EXTERN int ooSocketStrToAddr (const char *pIPAddrStr, OOIPADDR *pIPAddr)
This function converts the string with IP address to a double word representation.

EXTERN int 00GetLocallPAddress (char *pIPAddrs)

XXxvil

This function retrives the IP address of the local host.

e EXTERN long 00HTONL (long val)
This function converts a long value from host to network byte order.

e EXTERN short 0oHTONS (short val)
This function converts a short value from host to network byte order.

Detailed Description
Common runtime constants, data structure definitions, and run-time functions to support the sockets'
operations.

Definition in file ooSock.h.

ooWave.h File Reference

ooWave.hThis file contains low level wave functions.

#include <stdio.h>

#include "ooCommon.h"
#include <Windows.h>
#include <Mmsystem.h>
#include <Basetsd.h>

Data Structures

struct ooWaveFile
Helper structure for reading wavefile.

struct WaveBuffer
This holds a list of buffers holding recorded data from MIC.

struct BufferNode
This holds the list of free buffers which can be used for sending data to waveout device.

Functions

EXTERN int 000penWaveFileForRead (char *filename)
Opens a WaveFile for read and traverses upto the data chunk, so that next mmioRead will return
wavedata.

EXTERN int 00CloseWaveFile ()
Closes the open WaveFile.

EXTERN int ooReadWaveFileData (char *buffer, int size)
Reads data from already opened wave file.

EXTERN int 0o0OpenSpeaker (HWAVEOUT *phWaveOut, WA VEFORMATEX waveFormat)
Opens a waveOut device, i.e., speaker for playback.

EXTERN int ooPlayWaveBuffer (HW A VEOUT hWaveOut, unsigned char *buff, long size)
Plays the number of bytes specified by the size parameter from the buff onto the speaker device.

EXTERN int ooCloseSpeaker (HWA VEOUT hWaveOut)
Release all the buffers queued into the waveQOut device(speaker) for playback and close speaker.

EXTERN int 00OpenMic ()
Opens the Waveln device, MIC, for recording and queues the buffers into the device which can be

used for storing recorded data.

EXTERN int ooStartMicDataCapture (HW A VEIN hWaveln)
Start recording audio into the buffers.

EXTERN int ooS topMicDataCapture (HW AVEIN hWaveln)
Stop recording audio.

EXTERN int 00CloseMic (HW A VEIN hWaveln)
This releases all the buffers queued inside wave-in device, mic, and then closes the mic.

EXTERN void CALLBACK ooMICCallback (HW A VEIN hwi, UINT uMsg, DWORD dwlInstance,
DWORD dwParaml, DWORD dwParam?2)

This is a callback function registered with the mic.

EXTERN void CALLBACK ooSpeakerCallback (HWAVEOUT hwo, UINT uMsg, DWORD
dwInstance, DWORD dwParaml, DWORD dwParam?2)
This is a callback function registered with the speaker.

EXTERN int ooAddToWaveBufferList (WA VEHDR *waveHdr)
Helper function to maintain the list of buffers returned by mic, after recording.

EXTERN int ooRemoveHeadOfWaveBufferList ()
Helper function which removes the WAVEHDR at the front of the list.

EXTERN int coAddToFreeBufferList (char *buffer)
Helper function to put a buffer back into the free buffer list.

EXTERN char * ooGetFreeBuffer ()
Get a free buffer from free buffer list.

Variables

ooWaveFile gWaweFile
Global handle to open wave file.

WaveBuffer * gpWaveHead
Global pointers to list of wave buffers.

WaveBuffer * gpWaveTail
Global pointers to list of wave buffers.

int gRecording
int gQueuedBufCount

Count of number of buffers queued inside the wave-in device.

o BufferNode * gpFreeBufHead
Global pointers to the list holding free buffers.

e BufferNode * gpFreeBufTail
Global pointers to the list holding free buffers.

e int gPlayQueueCount
e HWAVEIN ghWaveln
Global handle to open wave-in device.

¢ HWAVEOUT ghWaveOut
Global handle to open wave-out device.

e CRITICAL SECTION gPlayMutex

As callback functions run in their own threads, we need mutex protection for data which is used by
multiple threads.

e CRITICAL SECTION gReadMutex

As callback functions run in their own threads, we need mutex protection for data which is used by
multiple threads.

Detailed Description
This file contains low level wave functions.

Definition in file ooWave.h.

Index

BufferNode, 25
linuxhelpers
ooCloseWaveFile, 3
o00GetMicAudioBuffer, 4
000penAudioDevice, 4
0oOpenWaveFileForRead, 4
ooPlayAudioBuffer, 4
ooReadWaveFileData, 5
Media API, 5
Media API Internal Common Helper Functions, 2
Media API Internal Linux Helper Functions, 3
Media API Internal Socket Layer, 9
Media API Internal Windows Helper Functions, 17
mediaapi
ooCloseReceiveRTPChannel, 6
00CloseTransmitRTPChannel, 6
ooCreateReceiveRTPChannel, 7
ooCreateTransmitRTPChannel, 7
oolnitializePlugin, 7
ooStartReceiveAudioAndPlayback, 8
ooStartTransmitMic, 8
ooStartTransmitWaveFile, 8
ooStopReceiveAudioAndPlayback, 8
ooStopTransmitMic, 9
ooStopTransmitWaveFile, 9
mediacommoin
oolog, 2
ooSleep, 2
00oAddToFreeBufferList
winhelpers, 20
00AddToWaveBufferList
winhelpers, 20
00CloseMic
winhelpers, 20
00CloseReceiveRTPChannel
mediaapi, 6
ooCloseSpeaker
winhelpers, 21
00CloseTransmitRTPChannel
mediaapi, 6
ooCloseWaveFile
linuxhelpers, 3
winhelpers, 21
ooCommon.h, 28
ooCreateReceiveRTPChannel
mediaapi, 7
o0oCreateTransmitRTPChannel
mediaapi, 7
00GetFreeBuffer
winhelpers, 21
o00GetLocallPAddress
sockets, 12

00GetMicAudioBuffer
linuxhelpers, 4
00HTONL
sockets, 12
00HTONS
sockets, 12
oolnitializePlugin
mediaapi, 7
OOIPADDR
sockets, 11
ooLog
mediacommoin, 2
ooMICCallback
winhelpers, 21
000OpenAudioDevice
linuxhelpers, 4
000penMic
winhelpers, 22
000penSpeaker
winhelpers, 22
000OpenWaveFileForRead
linuxhelpers, 4
winhelpers, 22
ooPlayAudioBuffer
linuxhelpers, 4
ooPlayWaveBuffer
winhelpers, 22
ooReadWaveFileData
linuxhelpers, 5
winhelpers, 23
ooRemoveHeadOfWaveBufferList
winhelpers, 23
oortp.h, 29
ooSleep
mediacommoin, 2
ooSock.h, 31
ooSocketAccept
sockets, 12
ooSocketAddrToStr
sockets, 13
ooSocketBind
sockets, 13
ooSocketClose
sockets, 13
ooSocketConnect
sockets, 14
ooSocketCreate
sockets, 14
ooSocketCreateUDP
sockets, 14
ooSocketListen
sockets, 15
ooSocketRecv
sockets, 15
ooSocketRecvFrom

sockets, 15
ooSocketsCleanup
sockets, 16
ooSocketSelect
sockets, 16
ooSocketSend
sockets, 16
ooSocketSendTo
sockets, 17
ooSocketsInit
sockets, 17
ooSocketStrToAddr
sockets, 17
ooSpeakerCallback
winhelpers, 23
ooStartMicDataCapture
winhelpers, 24
ooStartReceiveAudioAndPlayback
mediaapi, 8
ooStartTransmitMic
mediaapi, 8
ooStartTransmitWaveFile
mediaapi, 8
ooStopMicDataCapture
winhelpers, 24
ooStopReceiveAudioAndPlayback
mediaapi, 8
ooStopTransmitMic
mediaapi, 9
ooStopTransmitWaveFile
mediaapi, 9
ooWave.h, 34
ooWaveFile, 26
sockets
ooGetLocallPAddress, 12
00HTONL, 12
00HTONS, 12
OOIPADDR, 11
ooSocketAccept, 12
ooSocketAddrToStr, 13
ooSocketBind, 13
ooSocketClose, 13
ooSocketConnect, 14
ooSocketCreate, 14
ooSocketCreateUDP, 14
ooSocketListen, 15
ooSocketRecv, 15
ooSocketRecvFrom, 15
ooSocketsCleanup, 16
ooSocketSelect, 16
ooSocketSend, 16
ooSocketSendTo, 17
ooSocketsInit, 17
ooSocketStrToAddr, 17
WaveBuffer, 27

winhelpers
00AddToFreeBufferList, 20
00AddToWaveBufferList, 20
o0oCloseMic, 20
ooCloseSpeaker, 21
00CloseWaveFile, 21
00GetFreeBuffer, 21
ooMICCallback, 21
000penMic, 22
o0oOpenSpeaker, 22
o0o0OpenWaveFileForRead, 22
ooPlayWaveBuffer, 22
ooReadWaveFileData, 23
ooRemoveHeadOfWaveBufferList, 23
ooSpeakerCallback, 23
ooStartMicDataCapture, 24
ooStopMicDataCapture, 24

xlv

xlvi

