AOMedia AV1 Codec
av1_common_int.h
1 /*
2  * Copyright (c) 2016, Alliance for Open Media. All rights reserved.
3  *
4  * This source code is subject to the terms of the BSD 2 Clause License and
5  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6  * was not distributed with this source code in the LICENSE file, you can
7  * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8  * Media Patent License 1.0 was not distributed with this source code in the
9  * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10  */
11 
12 #ifndef AOM_AV1_COMMON_AV1_COMMON_INT_H_
13 #define AOM_AV1_COMMON_AV1_COMMON_INT_H_
14 
15 #include <stdbool.h>
16 
17 #include "config/aom_config.h"
18 #include "config/av1_rtcd.h"
19 
20 #include "aom/internal/aom_codec_internal.h"
21 #include "aom_dsp/flow_estimation/corner_detect.h"
22 #include "aom_util/aom_pthread.h"
23 #include "av1/common/alloccommon.h"
24 #include "av1/common/av1_loopfilter.h"
25 #include "av1/common/entropy.h"
26 #include "av1/common/entropymode.h"
27 #include "av1/common/entropymv.h"
28 #include "av1/common/enums.h"
29 #include "av1/common/frame_buffers.h"
30 #include "av1/common/mv.h"
31 #include "av1/common/quant_common.h"
32 #include "av1/common/restoration.h"
33 #include "av1/common/tile_common.h"
34 #include "av1/common/timing.h"
35 #include "aom_dsp/grain_params.h"
36 #include "aom_dsp/grain_table.h"
37 #include "aom_dsp/odintrin.h"
38 #ifdef __cplusplus
39 extern "C" {
40 #endif
41 
42 #if defined(__clang__) && defined(__has_warning)
43 #if __has_feature(cxx_attributes) && __has_warning("-Wimplicit-fallthrough")
44 #define AOM_FALLTHROUGH_INTENDED [[clang::fallthrough]] // NOLINT
45 #endif
46 #elif defined(__GNUC__) && __GNUC__ >= 7
47 #define AOM_FALLTHROUGH_INTENDED __attribute__((fallthrough)) // NOLINT
48 #endif
49 
50 #ifndef AOM_FALLTHROUGH_INTENDED
51 #define AOM_FALLTHROUGH_INTENDED \
52  do { \
53  } while (0)
54 #endif
55 
56 #define CDEF_MAX_STRENGTHS 16
57 
58 /* Constant values while waiting for the sequence header */
59 #define FRAME_ID_LENGTH 15
60 #define DELTA_FRAME_ID_LENGTH 14
61 
62 #define FRAME_CONTEXTS (FRAME_BUFFERS + 1)
63 // Extra frame context which is always kept at default values
64 #define FRAME_CONTEXT_DEFAULTS (FRAME_CONTEXTS - 1)
65 #define PRIMARY_REF_BITS 3
66 #define PRIMARY_REF_NONE 7
67 
68 #define NUM_PING_PONG_BUFFERS 2
69 
70 #define MAX_NUM_TEMPORAL_LAYERS 8
71 #define MAX_NUM_SPATIAL_LAYERS 4
72 /* clang-format off */
73 // clang-format seems to think this is a pointer dereference and not a
74 // multiplication.
75 #define MAX_NUM_OPERATING_POINTS \
76  (MAX_NUM_TEMPORAL_LAYERS * MAX_NUM_SPATIAL_LAYERS)
77 /* clang-format on */
78 
79 // TODO(jingning): Turning this on to set up transform coefficient
80 // processing timer.
81 #define TXCOEFF_TIMER 0
82 #define TXCOEFF_COST_TIMER 0
83 
86 enum {
87  SINGLE_REFERENCE = 0,
88  COMPOUND_REFERENCE = 1,
89  REFERENCE_MODE_SELECT = 2,
90  REFERENCE_MODES = 3,
91 } UENUM1BYTE(REFERENCE_MODE);
92 
93 enum {
97  REFRESH_FRAME_CONTEXT_DISABLED,
102  REFRESH_FRAME_CONTEXT_BACKWARD,
103 } UENUM1BYTE(REFRESH_FRAME_CONTEXT_MODE);
104 
105 #define MFMV_STACK_SIZE 3
106 typedef struct {
107  int_mv mfmv0;
108  uint8_t ref_frame_offset;
109 } TPL_MV_REF;
110 
111 typedef struct {
112  int_mv mv;
113  MV_REFERENCE_FRAME ref_frame;
114 } MV_REF;
115 
116 typedef struct RefCntBuffer {
117  // For a RefCntBuffer, the following are reference-holding variables:
118  // - cm->ref_frame_map[]
119  // - cm->cur_frame
120  // - cm->scaled_ref_buf[] (encoder only)
121  // - pbi->output_frame_index[] (decoder only)
122  // With that definition, 'ref_count' is the number of reference-holding
123  // variables that are currently referencing this buffer.
124  // For example:
125  // - suppose this buffer is at index 'k' in the buffer pool, and
126  // - Total 'n' of the variables / array elements above have value 'k' (that
127  // is, they are pointing to buffer at index 'k').
128  // Then, pool->frame_bufs[k].ref_count = n.
129  int ref_count;
130 
131  unsigned int order_hint;
132  unsigned int ref_order_hints[INTER_REFS_PER_FRAME];
133 
134  // These variables are used only in encoder and compare the absolute
135  // display order hint to compute the relative distance and overcome
136  // the limitation of get_relative_dist() which returns incorrect
137  // distance when a very old frame is used as a reference.
138  unsigned int display_order_hint;
139  unsigned int ref_display_order_hint[INTER_REFS_PER_FRAME];
140  // Frame's level within the hierarchical structure.
141  unsigned int pyramid_level;
142  MV_REF *mvs;
143  uint8_t *seg_map;
144  struct segmentation seg;
145  int mi_rows;
146  int mi_cols;
147  // Width and height give the size of the buffer (before any upscaling, unlike
148  // the sizes that can be derived from the buf structure)
149  int width;
150  int height;
151  WarpedMotionParams global_motion[REF_FRAMES];
152  int showable_frame; // frame can be used as show existing frame in future
153  uint8_t film_grain_params_present;
154  aom_film_grain_t film_grain_params;
155  aom_codec_frame_buffer_t raw_frame_buffer;
156  YV12_BUFFER_CONFIG buf;
157  int temporal_id; // Temporal layer ID of the frame
158  int spatial_id; // Spatial layer ID of the frame
159  FRAME_TYPE frame_type;
160 
161  // This is only used in the encoder but needs to be indexed per ref frame
162  // so it's extremely convenient to keep it here.
163  int interp_filter_selected[SWITCHABLE];
164 
165  // Inter frame reference frame delta for loop filter
166  int8_t ref_deltas[REF_FRAMES];
167 
168  // 0 = ZERO_MV, MV
169  int8_t mode_deltas[MAX_MODE_LF_DELTAS];
170 
171  FRAME_CONTEXT frame_context;
172 } RefCntBuffer;
173 
174 typedef struct BufferPool {
175 // Protect BufferPool from being accessed by several FrameWorkers at
176 // the same time during frame parallel decode.
177 // TODO(hkuang): Try to use atomic variable instead of locking the whole pool.
178 // TODO(wtc): Remove this. See
179 // https://chromium-review.googlesource.com/c/webm/libvpx/+/560630.
180 #if CONFIG_MULTITHREAD
181  pthread_mutex_t pool_mutex;
182 #endif
183 
184  // Private data associated with the frame buffer callbacks.
185  void *cb_priv;
186 
188  aom_release_frame_buffer_cb_fn_t release_fb_cb;
189 
190  RefCntBuffer *frame_bufs;
191  uint8_t num_frame_bufs;
192 
193  // Frame buffers allocated internally by the codec.
194  InternalFrameBufferList int_frame_buffers;
195 } BufferPool;
196 
200 typedef struct {
202  uint16_t *colbuf[MAX_MB_PLANE];
204  uint16_t *linebuf[MAX_MB_PLANE];
206  uint16_t *srcbuf;
208  size_t allocated_colbuf_size[MAX_MB_PLANE];
210  size_t allocated_linebuf_size[MAX_MB_PLANE];
218  int cdef_strengths[CDEF_MAX_STRENGTHS];
220  int cdef_uv_strengths[CDEF_MAX_STRENGTHS];
227 } CdefInfo;
228 
231 typedef struct {
232  int delta_q_present_flag;
233  // Resolution of delta quant
234  int delta_q_res;
235  int delta_lf_present_flag;
236  // Resolution of delta lf level
237  int delta_lf_res;
238  // This is a flag for number of deltas of loop filter level
239  // 0: use 1 delta, for y_vertical, y_horizontal, u, and v
240  // 1: use separate deltas for each filter level
241  int delta_lf_multi;
242 } DeltaQInfo;
243 
244 typedef struct {
245  int enable_order_hint; // 0 - disable order hint, and related tools
246  int order_hint_bits_minus_1; // dist_wtd_comp, ref_frame_mvs,
247  // frame_sign_bias
248  // if 0, enable_dist_wtd_comp and
249  // enable_ref_frame_mvs must be set as 0.
250  int enable_dist_wtd_comp; // 0 - disable dist-wtd compound modes
251  // 1 - enable it
252  int enable_ref_frame_mvs; // 0 - disable ref frame mvs
253  // 1 - enable it
254 } OrderHintInfo;
255 
256 // Sequence header structure.
257 // Note: All syntax elements of sequence_header_obu that need to be
258 // bit-identical across multiple sequence headers must be part of this struct,
259 // so that consistency is checked by are_seq_headers_consistent() function.
260 // One exception is the last member 'op_params' that is ignored by
261 // are_seq_headers_consistent() function.
262 typedef struct SequenceHeader {
263  int num_bits_width;
264  int num_bits_height;
265  int max_frame_width;
266  int max_frame_height;
267  // Whether current and reference frame IDs are signaled in the bitstream.
268  // Frame id numbers are additional information that do not affect the
269  // decoding process, but provide decoders with a way of detecting missing
270  // reference frames so that appropriate action can be taken.
271  uint8_t frame_id_numbers_present_flag;
272  int frame_id_length;
273  int delta_frame_id_length;
274  BLOCK_SIZE sb_size; // Size of the superblock used for this frame
275  int mib_size; // Size of the superblock in units of MI blocks
276  int mib_size_log2; // Log 2 of above.
277 
278  OrderHintInfo order_hint_info;
279 
280  uint8_t force_screen_content_tools; // 0 - force off
281  // 1 - force on
282  // 2 - adaptive
283  uint8_t still_picture; // Video is a single frame still picture
284  uint8_t reduced_still_picture_hdr; // Use reduced header for still picture
285  uint8_t force_integer_mv; // 0 - Don't force. MV can use subpel
286  // 1 - force to integer
287  // 2 - adaptive
288  uint8_t enable_filter_intra; // enables/disables filterintra
289  uint8_t enable_intra_edge_filter; // enables/disables edge upsampling
290  uint8_t enable_interintra_compound; // enables/disables interintra_compound
291  uint8_t enable_masked_compound; // enables/disables masked compound
292  uint8_t enable_dual_filter; // 0 - disable dual interpolation filter
293  // 1 - enable vert/horz filter selection
294  uint8_t enable_warped_motion; // 0 - disable warp for the sequence
295  // 1 - enable warp for the sequence
296  uint8_t enable_superres; // 0 - Disable superres for the sequence
297  // and no frame level superres flag
298  // 1 - Enable superres for the sequence
299  // enable per-frame superres flag
300  uint8_t enable_cdef; // To turn on/off CDEF
301  uint8_t enable_restoration; // To turn on/off loop restoration
302  BITSTREAM_PROFILE profile;
303 
304  // Color config.
305  aom_bit_depth_t bit_depth; // AOM_BITS_8 in profile 0 or 1,
306  // AOM_BITS_10 or AOM_BITS_12 in profile 2 or 3.
307  uint8_t use_highbitdepth; // If true, we need to use 16bit frame buffers.
308  uint8_t monochrome; // Monochrome video
309  aom_color_primaries_t color_primaries;
310  aom_transfer_characteristics_t transfer_characteristics;
311  aom_matrix_coefficients_t matrix_coefficients;
312  int color_range;
313  int subsampling_x; // Chroma subsampling for x
314  int subsampling_y; // Chroma subsampling for y
315  aom_chroma_sample_position_t chroma_sample_position;
316  uint8_t separate_uv_delta_q;
317  uint8_t film_grain_params_present;
318 
319  // Operating point info.
320  int operating_points_cnt_minus_1;
321  int operating_point_idc[MAX_NUM_OPERATING_POINTS];
322  // True if operating_point_idc[op] is not equal to 0 for any value of op from
323  // 0 to operating_points_cnt_minus_1.
324  bool has_nonzero_operating_point_idc;
325  int timing_info_present;
326  aom_timing_info_t timing_info;
327  uint8_t decoder_model_info_present_flag;
328  aom_dec_model_info_t decoder_model_info;
329  uint8_t display_model_info_present_flag;
330  AV1_LEVEL seq_level_idx[MAX_NUM_OPERATING_POINTS];
331  uint8_t tier[MAX_NUM_OPERATING_POINTS]; // seq_tier in spec. One bit: 0 or 1.
332 
333  // IMPORTANT: the op_params member must be at the end of the struct so that
334  // are_seq_headers_consistent() can be implemented with a memcmp() call.
335  // TODO(urvang): We probably don't need the +1 here.
336  aom_dec_model_op_parameters_t op_params[MAX_NUM_OPERATING_POINTS + 1];
337 } SequenceHeader;
338 
339 typedef struct {
340  int skip_mode_allowed;
341  int skip_mode_flag;
342  int ref_frame_idx_0;
343  int ref_frame_idx_1;
344 } SkipModeInfo;
345 
346 typedef struct {
347  FRAME_TYPE frame_type;
348  REFERENCE_MODE reference_mode;
349 
350  unsigned int order_hint;
351  unsigned int display_order_hint;
352  // Frame's level within the hierarchical structure.
353  unsigned int pyramid_level;
354  unsigned int frame_number;
355  SkipModeInfo skip_mode_info;
356  int refresh_frame_flags; // Which ref frames are overwritten by this frame
357  int frame_refs_short_signaling;
358 } CurrentFrame;
359 
365 typedef struct {
413  TX_MODE tx_mode;
414  InterpFilter interp_filter;
428  REFRESH_FRAME_CONTEXT_MODE refresh_frame_context;
429 } FeatureFlags;
430 
434 typedef struct CommonTileParams {
435  int cols;
436  int rows;
444 
451 
456  int log2_cols;
457  int log2_rows;
458  int width;
459  int height;
481  int min_log2;
486  int col_start_sb[MAX_TILE_COLS + 1];
491  int row_start_sb[MAX_TILE_ROWS + 1];
495  unsigned int large_scale;
501  unsigned int single_tile_decoding;
503 
513  int mb_rows;
518  int mb_cols;
519 
523  int MBs;
524 
529  int mi_rows;
534  int mi_cols;
535 
557  BLOCK_SIZE mi_alloc_bsize;
558 
575 
582  TX_TYPE *tx_type_map;
583 
592  void (*free_mi)(struct CommonModeInfoParams *mi_params);
597  void (*setup_mi)(struct CommonModeInfoParams *mi_params);
607  void (*set_mb_mi)(struct CommonModeInfoParams *mi_params, int width,
608  int height, BLOCK_SIZE min_partition_size);
610 };
611 
612 typedef struct CommonQuantParams CommonQuantParams;
621 
627 
636 
647 
648  /*
649  * Note: The qindex per superblock may have a delta from the qindex obtained
650  * at frame level from parameters above, based on 'cm->delta_q_info'.
651  */
652 
660  int16_t y_dequant_QTX[MAX_SEGMENTS][2];
661  int16_t u_dequant_QTX[MAX_SEGMENTS][2];
662  int16_t v_dequant_QTX[MAX_SEGMENTS][2];
672  const qm_val_t *giqmatrix[NUM_QM_LEVELS][3][TX_SIZES_ALL];
676  const qm_val_t *gqmatrix[NUM_QM_LEVELS][3][TX_SIZES_ALL];
686  const qm_val_t *y_iqmatrix[MAX_SEGMENTS][TX_SIZES_ALL];
690  const qm_val_t *u_iqmatrix[MAX_SEGMENTS][TX_SIZES_ALL];
694  const qm_val_t *v_iqmatrix[MAX_SEGMENTS][TX_SIZES_ALL];
714 };
715 
716 typedef struct CommonContexts CommonContexts;
725  PARTITION_CONTEXT **partition;
726 
735  ENTROPY_CONTEXT **entropy[MAX_MB_PLANE];
736 
743  TXFM_CONTEXT **txfm;
744 
752 };
753 
757 typedef struct AV1Common {
761  CurrentFrame current_frame;
765  struct aom_internal_error_info *error;
766 
782  int width;
783  int height;
815 
822  uint32_t buffer_removal_times[MAX_NUM_OPERATING_POINTS + 1];
829 
833  RefCntBuffer *prev_frame;
834 
839  RefCntBuffer *cur_frame;
840 
861  int remapped_ref_idx[REF_FRAMES];
862 
868  struct scale_factors sf_identity;
869 
876  struct scale_factors ref_scale_factors[REF_FRAMES];
877 
885  RefCntBuffer *ref_frame_map[REF_FRAMES];
886 
893 
901 
908 
913 
918 
919 #if CONFIG_ENTROPY_STATS
920 
923  int coef_cdf_category;
924 #endif // CONFIG_ENTROPY_STATS
925 
930 
934  struct segmentation seg;
935 
940 
945  loop_filter_info_n lf_info;
946  struct loopfilter lf;
953  RestorationInfo rst_info[MAX_MB_PLANE];
954  int32_t *rst_tmpbuf;
955  RestorationLineBuffers *rlbs;
963 
967  aom_film_grain_t film_grain_params;
968 
972  DeltaQInfo delta_q_info;
973 
977  WarpedMotionParams global_motion[REF_FRAMES];
978 
983  SequenceHeader *seq_params;
984 
988  FRAME_CONTEXT *fc;
994  FRAME_CONTEXT *default_frame_context;
995 
1000 
1004  BufferPool *buffer_pool;
1005 
1013 
1019  int ref_frame_id[REF_FRAMES];
1029  TPL_MV_REF *tpl_mvs;
1038  int ref_frame_sign_bias[REF_FRAMES];
1044  int8_t ref_frame_side[REF_FRAMES];
1045 
1051 
1057 
1058 #if TXCOEFF_TIMER
1059  int64_t cum_txcoeff_timer;
1060  int64_t txcoeff_timer;
1061  int txb_count;
1062 #endif // TXCOEFF_TIMER
1063 
1064 #if TXCOEFF_COST_TIMER
1065  int64_t cum_txcoeff_cost_timer;
1066  int64_t txcoeff_cost_timer;
1067  int64_t txcoeff_cost_count;
1068 #endif // TXCOEFF_COST_TIMER
1069 } AV1_COMMON;
1070 
1073 // TODO(hkuang): Don't need to lock the whole pool after implementing atomic
1074 // frame reference count.
1075 static void lock_buffer_pool(BufferPool *const pool) {
1076 #if CONFIG_MULTITHREAD
1077  pthread_mutex_lock(&pool->pool_mutex);
1078 #else
1079  (void)pool;
1080 #endif
1081 }
1082 
1083 static void unlock_buffer_pool(BufferPool *const pool) {
1084 #if CONFIG_MULTITHREAD
1085  pthread_mutex_unlock(&pool->pool_mutex);
1086 #else
1087  (void)pool;
1088 #endif
1089 }
1090 
1091 static inline YV12_BUFFER_CONFIG *get_ref_frame(AV1_COMMON *cm, int index) {
1092  if (index < 0 || index >= REF_FRAMES) return NULL;
1093  if (cm->ref_frame_map[index] == NULL) return NULL;
1094  return &cm->ref_frame_map[index]->buf;
1095 }
1096 
1097 static inline int get_free_fb(AV1_COMMON *cm) {
1098  RefCntBuffer *const frame_bufs = cm->buffer_pool->frame_bufs;
1099  int i;
1100 
1101  lock_buffer_pool(cm->buffer_pool);
1102  const int num_frame_bufs = cm->buffer_pool->num_frame_bufs;
1103  for (i = 0; i < num_frame_bufs; ++i)
1104  if (frame_bufs[i].ref_count == 0) break;
1105 
1106  if (i != num_frame_bufs) {
1107  if (frame_bufs[i].buf.use_external_reference_buffers) {
1108  // If this frame buffer's y_buffer, u_buffer, and v_buffer point to the
1109  // external reference buffers. Restore the buffer pointers to point to the
1110  // internally allocated memory.
1111  YV12_BUFFER_CONFIG *ybf = &frame_bufs[i].buf;
1112  ybf->y_buffer = ybf->store_buf_adr[0];
1113  ybf->u_buffer = ybf->store_buf_adr[1];
1114  ybf->v_buffer = ybf->store_buf_adr[2];
1115  ybf->use_external_reference_buffers = 0;
1116  }
1117 
1118  frame_bufs[i].ref_count = 1;
1119  } else {
1120  // We should never run out of free buffers. If this assertion fails, there
1121  // is a reference leak.
1122  assert(0 && "Ran out of free frame buffers. Likely a reference leak.");
1123  // Reset i to be INVALID_IDX to indicate no free buffer found.
1124  i = INVALID_IDX;
1125  }
1126 
1127  unlock_buffer_pool(cm->buffer_pool);
1128  return i;
1129 }
1130 
1131 static inline RefCntBuffer *assign_cur_frame_new_fb(AV1_COMMON *const cm) {
1132  // Release the previously-used frame-buffer
1133  if (cm->cur_frame != NULL) {
1134  --cm->cur_frame->ref_count;
1135  cm->cur_frame = NULL;
1136  }
1137 
1138  // Assign a new framebuffer
1139  const int new_fb_idx = get_free_fb(cm);
1140  if (new_fb_idx == INVALID_IDX) return NULL;
1141 
1142  cm->cur_frame = &cm->buffer_pool->frame_bufs[new_fb_idx];
1143 #if CONFIG_AV1_ENCODER && !CONFIG_REALTIME_ONLY
1144  aom_invalidate_pyramid(cm->cur_frame->buf.y_pyramid);
1145  av1_invalidate_corner_list(cm->cur_frame->buf.corners);
1146 #endif // CONFIG_AV1_ENCODER && !CONFIG_REALTIME_ONLY
1147  av1_zero(cm->cur_frame->interp_filter_selected);
1148  return cm->cur_frame;
1149 }
1150 
1151 // Modify 'lhs_ptr' to reference the buffer at 'rhs_ptr', and update the ref
1152 // counts accordingly.
1153 static inline void assign_frame_buffer_p(RefCntBuffer **lhs_ptr,
1154  RefCntBuffer *rhs_ptr) {
1155  RefCntBuffer *const old_ptr = *lhs_ptr;
1156  if (old_ptr != NULL) {
1157  assert(old_ptr->ref_count > 0);
1158  // One less reference to the buffer at 'old_ptr', so decrease ref count.
1159  --old_ptr->ref_count;
1160  }
1161 
1162  *lhs_ptr = rhs_ptr;
1163  // One more reference to the buffer at 'rhs_ptr', so increase ref count.
1164  ++rhs_ptr->ref_count;
1165 }
1166 
1167 static inline int frame_is_intra_only(const AV1_COMMON *const cm) {
1168  return cm->current_frame.frame_type == KEY_FRAME ||
1169  cm->current_frame.frame_type == INTRA_ONLY_FRAME;
1170 }
1171 
1172 static inline int frame_is_sframe(const AV1_COMMON *cm) {
1173  return cm->current_frame.frame_type == S_FRAME;
1174 }
1175 
1176 // These functions take a reference frame label between LAST_FRAME and
1177 // EXTREF_FRAME inclusive. Note that this is different to the indexing
1178 // previously used by the frame_refs[] array.
1179 static inline int get_ref_frame_map_idx(const AV1_COMMON *const cm,
1180  const MV_REFERENCE_FRAME ref_frame) {
1181  return (ref_frame >= LAST_FRAME && ref_frame <= EXTREF_FRAME)
1182  ? cm->remapped_ref_idx[ref_frame - LAST_FRAME]
1183  : INVALID_IDX;
1184 }
1185 
1186 static inline RefCntBuffer *get_ref_frame_buf(
1187  const AV1_COMMON *const cm, const MV_REFERENCE_FRAME ref_frame) {
1188  const int map_idx = get_ref_frame_map_idx(cm, ref_frame);
1189  return (map_idx != INVALID_IDX) ? cm->ref_frame_map[map_idx] : NULL;
1190 }
1191 
1192 // Both const and non-const versions of this function are provided so that it
1193 // can be used with a const AV1_COMMON if needed.
1194 static inline const struct scale_factors *get_ref_scale_factors_const(
1195  const AV1_COMMON *const cm, const MV_REFERENCE_FRAME ref_frame) {
1196  const int map_idx = get_ref_frame_map_idx(cm, ref_frame);
1197  return (map_idx != INVALID_IDX) ? &cm->ref_scale_factors[map_idx] : NULL;
1198 }
1199 
1200 static inline struct scale_factors *get_ref_scale_factors(
1201  AV1_COMMON *const cm, const MV_REFERENCE_FRAME ref_frame) {
1202  const int map_idx = get_ref_frame_map_idx(cm, ref_frame);
1203  return (map_idx != INVALID_IDX) ? &cm->ref_scale_factors[map_idx] : NULL;
1204 }
1205 
1206 static inline RefCntBuffer *get_primary_ref_frame_buf(
1207  const AV1_COMMON *const cm) {
1208  const int primary_ref_frame = cm->features.primary_ref_frame;
1209  if (primary_ref_frame == PRIMARY_REF_NONE) return NULL;
1210  const int map_idx = get_ref_frame_map_idx(cm, primary_ref_frame + 1);
1211  return (map_idx != INVALID_IDX) ? cm->ref_frame_map[map_idx] : NULL;
1212 }
1213 
1214 // Returns 1 if this frame might allow mvs from some reference frame.
1215 static inline int frame_might_allow_ref_frame_mvs(const AV1_COMMON *cm) {
1216  return !cm->features.error_resilient_mode &&
1217  cm->seq_params->order_hint_info.enable_ref_frame_mvs &&
1218  cm->seq_params->order_hint_info.enable_order_hint &&
1219  !frame_is_intra_only(cm);
1220 }
1221 
1222 // Returns 1 if this frame might use warped_motion
1223 static inline int frame_might_allow_warped_motion(const AV1_COMMON *cm) {
1224  return !cm->features.error_resilient_mode && !frame_is_intra_only(cm) &&
1225  cm->seq_params->enable_warped_motion;
1226 }
1227 
1228 static inline void ensure_mv_buffer(RefCntBuffer *buf, AV1_COMMON *cm) {
1229  const int buf_rows = buf->mi_rows;
1230  const int buf_cols = buf->mi_cols;
1231  const CommonModeInfoParams *const mi_params = &cm->mi_params;
1232 
1233  if (buf->mvs == NULL || buf_rows != mi_params->mi_rows ||
1234  buf_cols != mi_params->mi_cols) {
1235  aom_free(buf->mvs);
1236  buf->mi_rows = mi_params->mi_rows;
1237  buf->mi_cols = mi_params->mi_cols;
1238  CHECK_MEM_ERROR(cm, buf->mvs,
1239  (MV_REF *)aom_calloc(((mi_params->mi_rows + 1) >> 1) *
1240  ((mi_params->mi_cols + 1) >> 1),
1241  sizeof(*buf->mvs)));
1242  aom_free(buf->seg_map);
1243  CHECK_MEM_ERROR(
1244  cm, buf->seg_map,
1245  (uint8_t *)aom_calloc(mi_params->mi_rows * mi_params->mi_cols,
1246  sizeof(*buf->seg_map)));
1247  }
1248 
1249  const int mem_size =
1250  ((mi_params->mi_rows + MAX_MIB_SIZE) >> 1) * (mi_params->mi_stride >> 1);
1251 
1252  if (cm->tpl_mvs == NULL || cm->tpl_mvs_mem_size < mem_size) {
1253  aom_free(cm->tpl_mvs);
1254  CHECK_MEM_ERROR(cm, cm->tpl_mvs,
1255  (TPL_MV_REF *)aom_calloc(mem_size, sizeof(*cm->tpl_mvs)));
1256  cm->tpl_mvs_mem_size = mem_size;
1257  }
1258 }
1259 
1260 #if !CONFIG_REALTIME_ONLY || CONFIG_AV1_DECODER
1261 void cfl_init(CFL_CTX *cfl, const SequenceHeader *seq_params);
1262 #endif
1263 
1264 static inline int av1_num_planes(const AV1_COMMON *cm) {
1265  return cm->seq_params->monochrome ? 1 : MAX_MB_PLANE;
1266 }
1267 
1268 static inline void av1_init_above_context(CommonContexts *above_contexts,
1269  int num_planes, int tile_row,
1270  MACROBLOCKD *xd) {
1271  for (int i = 0; i < num_planes; ++i) {
1272  xd->above_entropy_context[i] = above_contexts->entropy[i][tile_row];
1273  }
1274  xd->above_partition_context = above_contexts->partition[tile_row];
1275  xd->above_txfm_context = above_contexts->txfm[tile_row];
1276 }
1277 
1278 static inline void av1_init_macroblockd(AV1_COMMON *cm, MACROBLOCKD *xd) {
1279  const int num_planes = av1_num_planes(cm);
1280  const CommonQuantParams *const quant_params = &cm->quant_params;
1281 
1282  for (int i = 0; i < num_planes; ++i) {
1283  if (xd->plane[i].plane_type == PLANE_TYPE_Y) {
1284  memcpy(xd->plane[i].seg_dequant_QTX, quant_params->y_dequant_QTX,
1285  sizeof(quant_params->y_dequant_QTX));
1286  memcpy(xd->plane[i].seg_iqmatrix, quant_params->y_iqmatrix,
1287  sizeof(quant_params->y_iqmatrix));
1288 
1289  } else {
1290  if (i == AOM_PLANE_U) {
1291  memcpy(xd->plane[i].seg_dequant_QTX, quant_params->u_dequant_QTX,
1292  sizeof(quant_params->u_dequant_QTX));
1293  memcpy(xd->plane[i].seg_iqmatrix, quant_params->u_iqmatrix,
1294  sizeof(quant_params->u_iqmatrix));
1295  } else {
1296  memcpy(xd->plane[i].seg_dequant_QTX, quant_params->v_dequant_QTX,
1297  sizeof(quant_params->v_dequant_QTX));
1298  memcpy(xd->plane[i].seg_iqmatrix, quant_params->v_iqmatrix,
1299  sizeof(quant_params->v_iqmatrix));
1300  }
1301  }
1302  }
1303  xd->mi_stride = cm->mi_params.mi_stride;
1304  xd->error_info = cm->error;
1305 #if !CONFIG_REALTIME_ONLY || CONFIG_AV1_DECODER
1306  cfl_init(&xd->cfl, cm->seq_params);
1307 #endif
1308 }
1309 
1310 static inline void set_entropy_context(MACROBLOCKD *xd, int mi_row, int mi_col,
1311  const int num_planes) {
1312  int i;
1313  int row_offset = mi_row;
1314  int col_offset = mi_col;
1315  for (i = 0; i < num_planes; ++i) {
1316  struct macroblockd_plane *const pd = &xd->plane[i];
1317  // Offset the buffer pointer
1318  const BLOCK_SIZE bsize = xd->mi[0]->bsize;
1319  if (pd->subsampling_y && (mi_row & 0x01) && (mi_size_high[bsize] == 1))
1320  row_offset = mi_row - 1;
1321  if (pd->subsampling_x && (mi_col & 0x01) && (mi_size_wide[bsize] == 1))
1322  col_offset = mi_col - 1;
1323  int above_idx = col_offset;
1324  int left_idx = row_offset & MAX_MIB_MASK;
1325  pd->above_entropy_context =
1326  &xd->above_entropy_context[i][above_idx >> pd->subsampling_x];
1327  pd->left_entropy_context =
1328  &xd->left_entropy_context[i][left_idx >> pd->subsampling_y];
1329  }
1330 }
1331 
1332 static inline int calc_mi_size(int len) {
1333  // len is in mi units. Align to a multiple of SBs.
1334  return ALIGN_POWER_OF_TWO(len, MAX_MIB_SIZE_LOG2);
1335 }
1336 
1337 static inline void set_plane_n4(MACROBLOCKD *const xd, int bw, int bh,
1338  const int num_planes) {
1339  int i;
1340  for (i = 0; i < num_planes; i++) {
1341  xd->plane[i].width = (bw * MI_SIZE) >> xd->plane[i].subsampling_x;
1342  xd->plane[i].height = (bh * MI_SIZE) >> xd->plane[i].subsampling_y;
1343 
1344  xd->plane[i].width = AOMMAX(xd->plane[i].width, 4);
1345  xd->plane[i].height = AOMMAX(xd->plane[i].height, 4);
1346  }
1347 }
1348 
1349 static inline void set_mi_row_col(MACROBLOCKD *xd, const TileInfo *const tile,
1350  int mi_row, int bh, int mi_col, int bw,
1351  int mi_rows, int mi_cols) {
1352  xd->mb_to_top_edge = -GET_MV_SUBPEL(mi_row * MI_SIZE);
1353  xd->mb_to_bottom_edge = GET_MV_SUBPEL((mi_rows - bh - mi_row) * MI_SIZE);
1354  xd->mb_to_left_edge = -GET_MV_SUBPEL((mi_col * MI_SIZE));
1355  xd->mb_to_right_edge = GET_MV_SUBPEL((mi_cols - bw - mi_col) * MI_SIZE);
1356 
1357  xd->mi_row = mi_row;
1358  xd->mi_col = mi_col;
1359 
1360  // Are edges available for intra prediction?
1361  xd->up_available = (mi_row > tile->mi_row_start);
1362 
1363  const int ss_x = xd->plane[1].subsampling_x;
1364  const int ss_y = xd->plane[1].subsampling_y;
1365 
1366  xd->left_available = (mi_col > tile->mi_col_start);
1369  if (ss_x && bw < mi_size_wide[BLOCK_8X8])
1370  xd->chroma_left_available = (mi_col - 1) > tile->mi_col_start;
1371  if (ss_y && bh < mi_size_high[BLOCK_8X8])
1372  xd->chroma_up_available = (mi_row - 1) > tile->mi_row_start;
1373  if (xd->up_available) {
1374  xd->above_mbmi = xd->mi[-xd->mi_stride];
1375  } else {
1376  xd->above_mbmi = NULL;
1377  }
1378 
1379  if (xd->left_available) {
1380  xd->left_mbmi = xd->mi[-1];
1381  } else {
1382  xd->left_mbmi = NULL;
1383  }
1384 
1385  const int chroma_ref = ((mi_row & 0x01) || !(bh & 0x01) || !ss_y) &&
1386  ((mi_col & 0x01) || !(bw & 0x01) || !ss_x);
1387  xd->is_chroma_ref = chroma_ref;
1388  if (chroma_ref) {
1389  // To help calculate the "above" and "left" chroma blocks, note that the
1390  // current block may cover multiple luma blocks (e.g., if partitioned into
1391  // 4x4 luma blocks).
1392  // First, find the top-left-most luma block covered by this chroma block
1393  MB_MODE_INFO **base_mi =
1394  &xd->mi[-(mi_row & ss_y) * xd->mi_stride - (mi_col & ss_x)];
1395 
1396  // Then, we consider the luma region covered by the left or above 4x4 chroma
1397  // prediction. We want to point to the chroma reference block in that
1398  // region, which is the bottom-right-most mi unit.
1399  // This leads to the following offsets:
1400  MB_MODE_INFO *chroma_above_mi =
1401  xd->chroma_up_available ? base_mi[-xd->mi_stride + ss_x] : NULL;
1402  xd->chroma_above_mbmi = chroma_above_mi;
1403 
1404  MB_MODE_INFO *chroma_left_mi =
1405  xd->chroma_left_available ? base_mi[ss_y * xd->mi_stride - 1] : NULL;
1406  xd->chroma_left_mbmi = chroma_left_mi;
1407  }
1408 
1409  xd->height = bh;
1410  xd->width = bw;
1411 
1412  xd->is_last_vertical_rect = 0;
1413  if (xd->width < xd->height) {
1414  if (!((mi_col + xd->width) & (xd->height - 1))) {
1415  xd->is_last_vertical_rect = 1;
1416  }
1417  }
1418 
1419  xd->is_first_horizontal_rect = 0;
1420  if (xd->width > xd->height)
1421  if (!(mi_row & (xd->width - 1))) xd->is_first_horizontal_rect = 1;
1422 }
1423 
1424 static inline aom_cdf_prob *get_y_mode_cdf(FRAME_CONTEXT *tile_ctx,
1425  const MB_MODE_INFO *above_mi,
1426  const MB_MODE_INFO *left_mi) {
1427  const PREDICTION_MODE above = av1_above_block_mode(above_mi);
1428  const PREDICTION_MODE left = av1_left_block_mode(left_mi);
1429  const int above_ctx = intra_mode_context[above];
1430  const int left_ctx = intra_mode_context[left];
1431  return tile_ctx->kf_y_cdf[above_ctx][left_ctx];
1432 }
1433 
1434 static inline void update_partition_context(MACROBLOCKD *xd, int mi_row,
1435  int mi_col, BLOCK_SIZE subsize,
1436  BLOCK_SIZE bsize) {
1437  PARTITION_CONTEXT *const above_ctx = xd->above_partition_context + mi_col;
1438  PARTITION_CONTEXT *const left_ctx =
1439  xd->left_partition_context + (mi_row & MAX_MIB_MASK);
1440 
1441  const int bw = mi_size_wide[bsize];
1442  const int bh = mi_size_high[bsize];
1443  memset(above_ctx, partition_context_lookup[subsize].above, bw);
1444  memset(left_ctx, partition_context_lookup[subsize].left, bh);
1445 }
1446 
1447 static inline int is_chroma_reference(int mi_row, int mi_col, BLOCK_SIZE bsize,
1448  int subsampling_x, int subsampling_y) {
1449  assert(bsize < BLOCK_SIZES_ALL);
1450  const int bw = mi_size_wide[bsize];
1451  const int bh = mi_size_high[bsize];
1452  int ref_pos = ((mi_row & 0x01) || !(bh & 0x01) || !subsampling_y) &&
1453  ((mi_col & 0x01) || !(bw & 0x01) || !subsampling_x);
1454  return ref_pos;
1455 }
1456 
1457 static inline aom_cdf_prob cdf_element_prob(const aom_cdf_prob *cdf,
1458  size_t element) {
1459  assert(cdf != NULL);
1460  return (element > 0 ? cdf[element - 1] : CDF_PROB_TOP) - cdf[element];
1461 }
1462 
1463 static inline void partition_gather_horz_alike(aom_cdf_prob *out,
1464  const aom_cdf_prob *const in,
1465  BLOCK_SIZE bsize) {
1466  (void)bsize;
1467  out[0] = CDF_PROB_TOP;
1468  out[0] -= cdf_element_prob(in, PARTITION_HORZ);
1469  out[0] -= cdf_element_prob(in, PARTITION_SPLIT);
1470  out[0] -= cdf_element_prob(in, PARTITION_HORZ_A);
1471  out[0] -= cdf_element_prob(in, PARTITION_HORZ_B);
1472  out[0] -= cdf_element_prob(in, PARTITION_VERT_A);
1473  if (bsize != BLOCK_128X128) out[0] -= cdf_element_prob(in, PARTITION_HORZ_4);
1474  out[0] = AOM_ICDF(out[0]);
1475  out[1] = AOM_ICDF(CDF_PROB_TOP);
1476 }
1477 
1478 static inline void partition_gather_vert_alike(aom_cdf_prob *out,
1479  const aom_cdf_prob *const in,
1480  BLOCK_SIZE bsize) {
1481  (void)bsize;
1482  out[0] = CDF_PROB_TOP;
1483  out[0] -= cdf_element_prob(in, PARTITION_VERT);
1484  out[0] -= cdf_element_prob(in, PARTITION_SPLIT);
1485  out[0] -= cdf_element_prob(in, PARTITION_HORZ_A);
1486  out[0] -= cdf_element_prob(in, PARTITION_VERT_A);
1487  out[0] -= cdf_element_prob(in, PARTITION_VERT_B);
1488  if (bsize != BLOCK_128X128) out[0] -= cdf_element_prob(in, PARTITION_VERT_4);
1489  out[0] = AOM_ICDF(out[0]);
1490  out[1] = AOM_ICDF(CDF_PROB_TOP);
1491 }
1492 
1493 static inline void update_ext_partition_context(MACROBLOCKD *xd, int mi_row,
1494  int mi_col, BLOCK_SIZE subsize,
1495  BLOCK_SIZE bsize,
1496  PARTITION_TYPE partition) {
1497  if (bsize >= BLOCK_8X8) {
1498  const int hbs = mi_size_wide[bsize] / 2;
1499  BLOCK_SIZE bsize2 = get_partition_subsize(bsize, PARTITION_SPLIT);
1500  switch (partition) {
1501  case PARTITION_SPLIT:
1502  if (bsize != BLOCK_8X8) break;
1503  AOM_FALLTHROUGH_INTENDED;
1504  case PARTITION_NONE:
1505  case PARTITION_HORZ:
1506  case PARTITION_VERT:
1507  case PARTITION_HORZ_4:
1508  case PARTITION_VERT_4:
1509  update_partition_context(xd, mi_row, mi_col, subsize, bsize);
1510  break;
1511  case PARTITION_HORZ_A:
1512  update_partition_context(xd, mi_row, mi_col, bsize2, subsize);
1513  update_partition_context(xd, mi_row + hbs, mi_col, subsize, subsize);
1514  break;
1515  case PARTITION_HORZ_B:
1516  update_partition_context(xd, mi_row, mi_col, subsize, subsize);
1517  update_partition_context(xd, mi_row + hbs, mi_col, bsize2, subsize);
1518  break;
1519  case PARTITION_VERT_A:
1520  update_partition_context(xd, mi_row, mi_col, bsize2, subsize);
1521  update_partition_context(xd, mi_row, mi_col + hbs, subsize, subsize);
1522  break;
1523  case PARTITION_VERT_B:
1524  update_partition_context(xd, mi_row, mi_col, subsize, subsize);
1525  update_partition_context(xd, mi_row, mi_col + hbs, bsize2, subsize);
1526  break;
1527  default: assert(0 && "Invalid partition type");
1528  }
1529  }
1530 }
1531 
1532 static inline int partition_plane_context(const MACROBLOCKD *xd, int mi_row,
1533  int mi_col, BLOCK_SIZE bsize) {
1534  const PARTITION_CONTEXT *above_ctx = xd->above_partition_context + mi_col;
1535  const PARTITION_CONTEXT *left_ctx =
1536  xd->left_partition_context + (mi_row & MAX_MIB_MASK);
1537  // Minimum partition point is 8x8. Offset the bsl accordingly.
1538  const int bsl = mi_size_wide_log2[bsize] - mi_size_wide_log2[BLOCK_8X8];
1539  int above = (*above_ctx >> bsl) & 1, left = (*left_ctx >> bsl) & 1;
1540 
1541  assert(mi_size_wide_log2[bsize] == mi_size_high_log2[bsize]);
1542  assert(bsl >= 0);
1543 
1544  return (left * 2 + above) + bsl * PARTITION_PLOFFSET;
1545 }
1546 
1547 // Return the number of elements in the partition CDF when
1548 // partitioning the (square) block with luma block size of bsize.
1549 static inline int partition_cdf_length(BLOCK_SIZE bsize) {
1550  if (bsize <= BLOCK_8X8)
1551  return PARTITION_TYPES;
1552  else if (bsize == BLOCK_128X128)
1553  return EXT_PARTITION_TYPES - 2;
1554  else
1555  return EXT_PARTITION_TYPES;
1556 }
1557 
1558 static inline int max_block_wide(const MACROBLOCKD *xd, BLOCK_SIZE bsize,
1559  int plane) {
1560  assert(bsize < BLOCK_SIZES_ALL);
1561  int max_blocks_wide = block_size_wide[bsize];
1562 
1563  if (xd->mb_to_right_edge < 0) {
1564  const struct macroblockd_plane *const pd = &xd->plane[plane];
1565  max_blocks_wide += xd->mb_to_right_edge >> (3 + pd->subsampling_x);
1566  }
1567 
1568  // Scale the width in the transform block unit.
1569  return max_blocks_wide >> MI_SIZE_LOG2;
1570 }
1571 
1572 static inline int max_block_high(const MACROBLOCKD *xd, BLOCK_SIZE bsize,
1573  int plane) {
1574  int max_blocks_high = block_size_high[bsize];
1575 
1576  if (xd->mb_to_bottom_edge < 0) {
1577  const struct macroblockd_plane *const pd = &xd->plane[plane];
1578  max_blocks_high += xd->mb_to_bottom_edge >> (3 + pd->subsampling_y);
1579  }
1580 
1581  // Scale the height in the transform block unit.
1582  return max_blocks_high >> MI_SIZE_LOG2;
1583 }
1584 
1585 static inline void av1_zero_above_context(AV1_COMMON *const cm,
1586  const MACROBLOCKD *xd,
1587  int mi_col_start, int mi_col_end,
1588  const int tile_row) {
1589  const SequenceHeader *const seq_params = cm->seq_params;
1590  const int num_planes = av1_num_planes(cm);
1591  const int width = mi_col_end - mi_col_start;
1592  const int aligned_width =
1593  ALIGN_POWER_OF_TWO(width, seq_params->mib_size_log2);
1594  const int offset_y = mi_col_start;
1595  const int width_y = aligned_width;
1596  const int offset_uv = offset_y >> seq_params->subsampling_x;
1597  const int width_uv = width_y >> seq_params->subsampling_x;
1598  CommonContexts *const above_contexts = &cm->above_contexts;
1599 
1600  av1_zero_array(above_contexts->entropy[0][tile_row] + offset_y, width_y);
1601  if (num_planes > 1) {
1602  if (above_contexts->entropy[1][tile_row] &&
1603  above_contexts->entropy[2][tile_row]) {
1604  av1_zero_array(above_contexts->entropy[1][tile_row] + offset_uv,
1605  width_uv);
1606  av1_zero_array(above_contexts->entropy[2][tile_row] + offset_uv,
1607  width_uv);
1608  } else {
1609  aom_internal_error(xd->error_info, AOM_CODEC_CORRUPT_FRAME,
1610  "Invalid value of planes");
1611  }
1612  }
1613 
1614  av1_zero_array(above_contexts->partition[tile_row] + mi_col_start,
1615  aligned_width);
1616 
1617  memset(above_contexts->txfm[tile_row] + mi_col_start,
1618  tx_size_wide[TX_SIZES_LARGEST], aligned_width * sizeof(TXFM_CONTEXT));
1619 }
1620 
1621 static inline void av1_zero_left_context(MACROBLOCKD *const xd) {
1622  av1_zero(xd->left_entropy_context);
1623  av1_zero(xd->left_partition_context);
1624 
1625  memset(xd->left_txfm_context_buffer, tx_size_high[TX_SIZES_LARGEST],
1626  sizeof(xd->left_txfm_context_buffer));
1627 }
1628 
1629 static inline void set_txfm_ctx(TXFM_CONTEXT *txfm_ctx, uint8_t txs, int len) {
1630  int i;
1631  for (i = 0; i < len; ++i) txfm_ctx[i] = txs;
1632 }
1633 
1634 static inline void set_txfm_ctxs(TX_SIZE tx_size, int n4_w, int n4_h, int skip,
1635  const MACROBLOCKD *xd) {
1636  uint8_t bw = tx_size_wide[tx_size];
1637  uint8_t bh = tx_size_high[tx_size];
1638 
1639  if (skip) {
1640  bw = n4_w * MI_SIZE;
1641  bh = n4_h * MI_SIZE;
1642  }
1643 
1644  set_txfm_ctx(xd->above_txfm_context, bw, n4_w);
1645  set_txfm_ctx(xd->left_txfm_context, bh, n4_h);
1646 }
1647 
1648 static inline int get_mi_grid_idx(const CommonModeInfoParams *const mi_params,
1649  int mi_row, int mi_col) {
1650  return mi_row * mi_params->mi_stride + mi_col;
1651 }
1652 
1653 static inline int get_alloc_mi_idx(const CommonModeInfoParams *const mi_params,
1654  int mi_row, int mi_col) {
1655  const int mi_alloc_size_1d = mi_size_wide[mi_params->mi_alloc_bsize];
1656  const int mi_alloc_row = mi_row / mi_alloc_size_1d;
1657  const int mi_alloc_col = mi_col / mi_alloc_size_1d;
1658 
1659  return mi_alloc_row * mi_params->mi_alloc_stride + mi_alloc_col;
1660 }
1661 
1662 // For this partition block, set pointers in mi_params->mi_grid_base and xd->mi.
1663 static inline void set_mi_offsets(const CommonModeInfoParams *const mi_params,
1664  MACROBLOCKD *const xd, int mi_row,
1665  int mi_col) {
1666  // 'mi_grid_base' should point to appropriate memory in 'mi'.
1667  const int mi_grid_idx = get_mi_grid_idx(mi_params, mi_row, mi_col);
1668  const int mi_alloc_idx = get_alloc_mi_idx(mi_params, mi_row, mi_col);
1669  mi_params->mi_grid_base[mi_grid_idx] = &mi_params->mi_alloc[mi_alloc_idx];
1670  // 'xd->mi' should point to an offset in 'mi_grid_base';
1671  xd->mi = mi_params->mi_grid_base + mi_grid_idx;
1672  // 'xd->tx_type_map' should point to an offset in 'mi_params->tx_type_map'.
1673  xd->tx_type_map = mi_params->tx_type_map + mi_grid_idx;
1674  xd->tx_type_map_stride = mi_params->mi_stride;
1675 }
1676 
1677 static inline void txfm_partition_update(TXFM_CONTEXT *above_ctx,
1678  TXFM_CONTEXT *left_ctx,
1679  TX_SIZE tx_size, TX_SIZE txb_size) {
1680  BLOCK_SIZE bsize = txsize_to_bsize[txb_size];
1681  int bh = mi_size_high[bsize];
1682  int bw = mi_size_wide[bsize];
1683  uint8_t txw = tx_size_wide[tx_size];
1684  uint8_t txh = tx_size_high[tx_size];
1685  int i;
1686  for (i = 0; i < bh; ++i) left_ctx[i] = txh;
1687  for (i = 0; i < bw; ++i) above_ctx[i] = txw;
1688 }
1689 
1690 static inline TX_SIZE get_sqr_tx_size(int tx_dim) {
1691  switch (tx_dim) {
1692  case 128:
1693  case 64: return TX_64X64; break;
1694  case 32: return TX_32X32; break;
1695  case 16: return TX_16X16; break;
1696  case 8: return TX_8X8; break;
1697  default: return TX_4X4;
1698  }
1699 }
1700 
1701 static inline TX_SIZE get_tx_size(int width, int height) {
1702  if (width == height) {
1703  return get_sqr_tx_size(width);
1704  }
1705  if (width < height) {
1706  if (width + width == height) {
1707  switch (width) {
1708  case 4: return TX_4X8; break;
1709  case 8: return TX_8X16; break;
1710  case 16: return TX_16X32; break;
1711  case 32: return TX_32X64; break;
1712  }
1713  } else {
1714  switch (width) {
1715  case 4: return TX_4X16; break;
1716  case 8: return TX_8X32; break;
1717  case 16: return TX_16X64; break;
1718  }
1719  }
1720  } else {
1721  if (height + height == width) {
1722  switch (height) {
1723  case 4: return TX_8X4; break;
1724  case 8: return TX_16X8; break;
1725  case 16: return TX_32X16; break;
1726  case 32: return TX_64X32; break;
1727  }
1728  } else {
1729  switch (height) {
1730  case 4: return TX_16X4; break;
1731  case 8: return TX_32X8; break;
1732  case 16: return TX_64X16; break;
1733  }
1734  }
1735  }
1736  assert(0);
1737  return TX_4X4;
1738 }
1739 
1740 static inline int txfm_partition_context(const TXFM_CONTEXT *const above_ctx,
1741  const TXFM_CONTEXT *const left_ctx,
1742  BLOCK_SIZE bsize, TX_SIZE tx_size) {
1743  const uint8_t txw = tx_size_wide[tx_size];
1744  const uint8_t txh = tx_size_high[tx_size];
1745  const int above = *above_ctx < txw;
1746  const int left = *left_ctx < txh;
1747  int category = TXFM_PARTITION_CONTEXTS;
1748 
1749  // dummy return, not used by others.
1750  if (tx_size <= TX_4X4) return 0;
1751 
1752  TX_SIZE max_tx_size =
1753  get_sqr_tx_size(AOMMAX(block_size_wide[bsize], block_size_high[bsize]));
1754 
1755  if (max_tx_size >= TX_8X8) {
1756  category =
1757  (txsize_sqr_up_map[tx_size] != max_tx_size && max_tx_size > TX_8X8) +
1758  (TX_SIZES - 1 - max_tx_size) * 2;
1759  }
1760  assert(category != TXFM_PARTITION_CONTEXTS);
1761  return category * 3 + above + left;
1762 }
1763 
1764 // Compute the next partition in the direction of the sb_type stored in the mi
1765 // array, starting with bsize.
1766 static inline PARTITION_TYPE get_partition(const AV1_COMMON *const cm,
1767  int mi_row, int mi_col,
1768  BLOCK_SIZE bsize) {
1769  const CommonModeInfoParams *const mi_params = &cm->mi_params;
1770  if (mi_row >= mi_params->mi_rows || mi_col >= mi_params->mi_cols)
1771  return PARTITION_INVALID;
1772 
1773  const int offset = mi_row * mi_params->mi_stride + mi_col;
1774  MB_MODE_INFO **mi = mi_params->mi_grid_base + offset;
1775  const BLOCK_SIZE subsize = mi[0]->bsize;
1776 
1777  assert(bsize < BLOCK_SIZES_ALL);
1778 
1779  if (subsize == bsize) return PARTITION_NONE;
1780 
1781  const int bhigh = mi_size_high[bsize];
1782  const int bwide = mi_size_wide[bsize];
1783  const int sshigh = mi_size_high[subsize];
1784  const int sswide = mi_size_wide[subsize];
1785 
1786  if (bsize > BLOCK_8X8 && mi_row + bwide / 2 < mi_params->mi_rows &&
1787  mi_col + bhigh / 2 < mi_params->mi_cols) {
1788  // In this case, the block might be using an extended partition
1789  // type.
1790  const MB_MODE_INFO *const mbmi_right = mi[bwide / 2];
1791  const MB_MODE_INFO *const mbmi_below = mi[bhigh / 2 * mi_params->mi_stride];
1792 
1793  if (sswide == bwide) {
1794  // Smaller height but same width. Is PARTITION_HORZ_4, PARTITION_HORZ or
1795  // PARTITION_HORZ_B. To distinguish the latter two, check if the lower
1796  // half was split.
1797  if (sshigh * 4 == bhigh) return PARTITION_HORZ_4;
1798  assert(sshigh * 2 == bhigh);
1799 
1800  if (mbmi_below->bsize == subsize)
1801  return PARTITION_HORZ;
1802  else
1803  return PARTITION_HORZ_B;
1804  } else if (sshigh == bhigh) {
1805  // Smaller width but same height. Is PARTITION_VERT_4, PARTITION_VERT or
1806  // PARTITION_VERT_B. To distinguish the latter two, check if the right
1807  // half was split.
1808  if (sswide * 4 == bwide) return PARTITION_VERT_4;
1809  assert(sswide * 2 == bwide);
1810 
1811  if (mbmi_right->bsize == subsize)
1812  return PARTITION_VERT;
1813  else
1814  return PARTITION_VERT_B;
1815  } else {
1816  // Smaller width and smaller height. Might be PARTITION_SPLIT or could be
1817  // PARTITION_HORZ_A or PARTITION_VERT_A. If subsize isn't halved in both
1818  // dimensions, we immediately know this is a split (which will recurse to
1819  // get to subsize). Otherwise look down and to the right. With
1820  // PARTITION_VERT_A, the right block will have height bhigh; with
1821  // PARTITION_HORZ_A, the lower block with have width bwide. Otherwise
1822  // it's PARTITION_SPLIT.
1823  if (sswide * 2 != bwide || sshigh * 2 != bhigh) return PARTITION_SPLIT;
1824 
1825  if (mi_size_wide[mbmi_below->bsize] == bwide) return PARTITION_HORZ_A;
1826  if (mi_size_high[mbmi_right->bsize] == bhigh) return PARTITION_VERT_A;
1827 
1828  return PARTITION_SPLIT;
1829  }
1830  }
1831  const int vert_split = sswide < bwide;
1832  const int horz_split = sshigh < bhigh;
1833  const int split_idx = (vert_split << 1) | horz_split;
1834  assert(split_idx != 0);
1835 
1836  static const PARTITION_TYPE base_partitions[4] = {
1837  PARTITION_INVALID, PARTITION_HORZ, PARTITION_VERT, PARTITION_SPLIT
1838  };
1839 
1840  return base_partitions[split_idx];
1841 }
1842 
1843 static inline void set_sb_size(SequenceHeader *const seq_params,
1844  BLOCK_SIZE sb_size) {
1845  seq_params->sb_size = sb_size;
1846  seq_params->mib_size = mi_size_wide[seq_params->sb_size];
1847  seq_params->mib_size_log2 = mi_size_wide_log2[seq_params->sb_size];
1848 }
1849 
1850 // Returns true if the frame is fully lossless at the coded resolution.
1851 // Note: If super-resolution is used, such a frame will still NOT be lossless at
1852 // the upscaled resolution.
1853 static inline int is_coded_lossless(const AV1_COMMON *cm,
1854  const MACROBLOCKD *xd) {
1855  int coded_lossless = 1;
1856  if (cm->seg.enabled) {
1857  for (int i = 0; i < MAX_SEGMENTS; ++i) {
1858  if (!xd->lossless[i]) {
1859  coded_lossless = 0;
1860  break;
1861  }
1862  }
1863  } else {
1864  coded_lossless = xd->lossless[0];
1865  }
1866  return coded_lossless;
1867 }
1868 
1869 static inline int is_valid_seq_level_idx(AV1_LEVEL seq_level_idx) {
1870  return seq_level_idx == SEQ_LEVEL_MAX ||
1871  (seq_level_idx < SEQ_LEVELS &&
1872  // The following levels are currently undefined.
1873  seq_level_idx != SEQ_LEVEL_2_2 && seq_level_idx != SEQ_LEVEL_2_3 &&
1874  seq_level_idx != SEQ_LEVEL_3_2 && seq_level_idx != SEQ_LEVEL_3_3 &&
1875  seq_level_idx != SEQ_LEVEL_4_2 && seq_level_idx != SEQ_LEVEL_4_3
1876 #if !CONFIG_CWG_C013
1877  && seq_level_idx != SEQ_LEVEL_7_0 && seq_level_idx != SEQ_LEVEL_7_1 &&
1878  seq_level_idx != SEQ_LEVEL_7_2 && seq_level_idx != SEQ_LEVEL_7_3 &&
1879  seq_level_idx != SEQ_LEVEL_8_0 && seq_level_idx != SEQ_LEVEL_8_1 &&
1880  seq_level_idx != SEQ_LEVEL_8_2 && seq_level_idx != SEQ_LEVEL_8_3
1881 #endif
1882  );
1883 }
1884 
1887 #ifdef __cplusplus
1888 } // extern "C"
1889 #endif
1890 
1891 #endif // AOM_AV1_COMMON_AV1_COMMON_INT_H_
bool reduced_tx_set_used
Definition: av1_common_int.h:401
DeltaQInfo delta_q_info
Definition: av1_common_int.h:972
struct scale_factors sf_identity
Definition: av1_common_int.h:868
#define AOM_PLANE_U
Definition: aom_image.h:211
bool allow_warped_motion
Definition: av1_common_int.h:384
CdefInfo cdef_info
Definition: av1_common_int.h:962
YV12_BUFFER_CONFIG rst_frame
Definition: av1_common_int.h:956
int qmatrix_level_u
Definition: av1_common_int.h:711
void(* set_mb_mi)(struct CommonModeInfoParams *mi_params, int width, int height, BLOCK_SIZE min_partition_size)
Definition: av1_common_int.h:607
int log2_cols
Definition: av1_common_int.h:456
int u_ac_delta_q
Definition: av1_common_int.h:641
TPL_MV_REF * tpl_mvs
Definition: av1_common_int.h:1029
int show_frame
Definition: av1_common_int.h:892
int max_width_sb
Definition: av1_common_int.h:437
int spatial_layer_id
Definition: av1_common_int.h:1056
int mb_to_left_edge
Definition: blockd.h:677
bool allow_ref_frame_mvs
Definition: av1_common_int.h:388
const qm_val_t * u_iqmatrix[8][TX_SIZES_ALL]
Definition: av1_common_int.h:690
RefCntBuffer * prev_frame
Definition: av1_common_int.h:833
uint8_t superres_scale_denominator
Definition: av1_common_int.h:814
The coded data for this stream is corrupt or incomplete.
Definition: aom_codec.h:195
struct loopfilter lf
Definition: av1_common_int.h:946
int mi_row
Definition: blockd.h:575
FeatureFlags features
Definition: av1_common_int.h:912
int min_log2_cols
Definition: av1_common_int.h:465
int cdef_damping
CDEF damping factor.
Definition: av1_common_int.h:214
int min_inner_width
Definition: av1_common_int.h:443
TXFM_CONTEXT left_txfm_context_buffer[MAX_MIB_SIZE]
Definition: blockd.h:747
bool is_chroma_ref
Definition: blockd.h:601
TXFM_CONTEXT ** txfm
Definition: av1_common_int.h:743
struct macroblockd_plane plane[3]
Definition: blockd.h:606
TX_TYPE * tx_type_map
Definition: av1_common_int.h:582
void(* free_mi)(struct CommonModeInfoParams *mi_params)
Definition: av1_common_int.h:592
TX_MODE tx_mode
Definition: av1_common_int.h:413
FRAME_CONTEXT * fc
Definition: av1_common_int.h:988
int cdef_bits
Number of CDEF strength values in bits.
Definition: av1_common_int.h:222
size_t allocated_srcbuf_size
CDEF intermediate buffer size.
Definition: av1_common_int.h:212
enum aom_color_primaries aom_color_primaries_t
List of supported color primaries.
uint8_t * tx_type_map
Definition: blockd.h:666
int primary_ref_frame
Definition: av1_common_int.h:419
enum aom_matrix_coefficients aom_matrix_coefficients_t
List of supported matrix coefficients.
int mi_grid_size
Definition: av1_common_int.h:570
aom_film_grain_t film_grain_params
Definition: av1_common_int.h:967
External frame buffer.
Definition: aom_frame_buffer.h:40
bool using_qmatrix
Definition: av1_common_int.h:703
ENTROPY_CONTEXT ** entropy[3]
Definition: av1_common_int.h:735
MB_MODE_INFO ** mi_grid_base
Definition: av1_common_int.h:566
int remapped_ref_idx[REF_FRAMES]
Definition: av1_common_int.h:861
bool left_available
Definition: blockd.h:626
TXFM_CONTEXT * left_txfm_context
Definition: blockd.h:740
Contexts used for transmitting various symbols in the bitstream.
Definition: av1_common_int.h:720
int superres_upscaled_height
Definition: av1_common_int.h:807
bool is_first_horizontal_rect
Definition: blockd.h:792
int num_tile_rows
Definition: av1_common_int.h:750
int(* aom_get_frame_buffer_cb_fn_t)(void *priv, size_t min_size, aom_codec_frame_buffer_t *fb)
get frame buffer callback prototype
Definition: aom_frame_buffer.h:64
int mi_cols
Definition: av1_common_int.h:534
CommonQuantParams quant_params
Definition: av1_common_int.h:929
FRAME_CONTEXT * default_frame_context
Definition: av1_common_int.h:994
bool all_lossless
Definition: av1_common_int.h:396
bool switchable_motion_mode
Definition: av1_common_int.h:412
int allocated_mi_rows
Number of rows in the frame in 4 pixel.
Definition: av1_common_int.h:224
int mb_to_right_edge
Definition: blockd.h:678
int lossless[8]
Definition: blockd.h:817
bool up_available
Definition: blockd.h:622
int current_frame_id
Definition: av1_common_int.h:1018
int16_t y_dequant_QTX[8][2]
Definition: av1_common_int.h:660
int(* aom_release_frame_buffer_cb_fn_t)(void *priv, aom_codec_frame_buffer_t *fb)
release frame buffer callback prototype
Definition: aom_frame_buffer.h:77
int u_dc_delta_q
Definition: av1_common_int.h:631
int nb_cdef_strengths
Number of CDEF strength values.
Definition: av1_common_int.h:216
struct aom_internal_error_info * error_info
Definition: blockd.h:838
int allocated_num_workers
Number of CDEF workers.
Definition: av1_common_int.h:226
PARTITION_CONTEXT * above_partition_context
Definition: blockd.h:718
bool allow_intrabc
Definition: av1_common_int.h:383
int y_dc_delta_q
Definition: av1_common_int.h:626
CommonModeInfoParams mi_params
Definition: av1_common_int.h:917
int mi_col
Definition: blockd.h:576
RestorationInfo rst_info[3]
Definition: av1_common_int.h:953
const qm_val_t * v_iqmatrix[8][TX_SIZES_ALL]
Definition: av1_common_int.h:694
MB_MODE_INFO * mi_alloc
Definition: av1_common_int.h:542
uint16_t * srcbuf
CDEF intermediate buffer.
Definition: av1_common_int.h:206
MB_MODE_INFO * chroma_left_mbmi
Definition: blockd.h:652
int min_log2
Definition: av1_common_int.h:481
bool allow_screen_content_tools
Definition: av1_common_int.h:382
int mi_alloc_size
Definition: av1_common_int.h:546
int v_ac_delta_q
Definition: av1_common_int.h:646
int height
Definition: av1_common_int.h:459
int showable_frame
Definition: av1_common_int.h:900
int mb_cols
Definition: av1_common_int.h:518
int width
Definition: av1_common_int.h:782
int16_t u_dequant_QTX[8][2]
Definition: av1_common_int.h:661
int tpl_mvs_mem_size
Definition: av1_common_int.h:1033
RefCntBuffer * ref_frame_map[REF_FRAMES]
Definition: av1_common_int.h:885
REFRESH_FRAME_CONTEXT_MODE refresh_frame_context
Definition: av1_common_int.h:428
ENTROPY_CONTEXT * above_entropy_context[3]
Definition: blockd.h:703
Params related to MB_MODE_INFO arrays and related info.
Definition: av1_common_int.h:508
int render_height
Definition: av1_common_int.h:794
const qm_val_t * giqmatrix[(1<< 4)][3][TX_SIZES_ALL]
Definition: av1_common_int.h:672
bool coded_lossless
Definition: av1_common_int.h:392
int log2_rows
Definition: av1_common_int.h:457
Frame level features.
Definition: av1_common_int.h:365
SequenceHeader * seq_params
Definition: av1_common_int.h:983
int ref_frame_id[REF_FRAMES]
Definition: av1_common_int.h:1019
int v_dc_delta_q
Definition: av1_common_int.h:635
Parameters related to quantization at the frame level.
Definition: av1_common_int.h:616
Parameters related to Restoration Info.
Definition: restoration.h:246
int mb_rows
Definition: av1_common_int.h:513
int col_start_sb[MAX_TILE_COLS+1]
Definition: av1_common_int.h:486
int mb_to_bottom_edge
Definition: blockd.h:680
CommonContexts above_contexts
Definition: av1_common_int.h:1012
bool allow_high_precision_mv
Definition: av1_common_int.h:374
WarpedMotionParams global_motion[REF_FRAMES]
Definition: av1_common_int.h:977
MB_MODE_INFO * above_mbmi
Definition: blockd.h:645
loop_filter_info_n lf_info
Definition: av1_common_int.h:945
BufferPool * buffer_pool
Definition: av1_common_int.h:1004
bool cur_frame_force_integer_mv
Definition: av1_common_int.h:378
int mi_rows
Definition: av1_common_int.h:529
bool chroma_left_available
Definition: blockd.h:634
uint8_t width
Definition: blockd.h:765
CommonTileParams tiles
Definition: av1_common_int.h:999
CurrentFrame current_frame
Definition: av1_common_int.h:761
int render_width
Definition: av1_common_int.h:793
int uniform_spacing
Definition: av1_common_int.h:450
const qm_val_t * gqmatrix[(1<< 4)][3][TX_SIZES_ALL]
Definition: av1_common_int.h:676
YV12 frame buffer data structure.
Definition: yv12config.h:46
CFL_CTX cfl
Definition: blockd.h:894
RestorationLineBuffers * rlbs
Definition: av1_common_int.h:955
bool is_last_vertical_rect
Definition: blockd.h:787
int32_t * rst_tmpbuf
Definition: av1_common_int.h:954
Parameters related to CDEF.
Definition: av1_common_int.h:200
int min_log2_rows
Definition: av1_common_int.h:469
struct scale_factors ref_scale_factors[REF_FRAMES]
Definition: av1_common_int.h:876
MB_MODE_INFO ** mi
Definition: blockd.h:617
ENTROPY_CONTEXT left_entropy_context[3][MAX_MIB_SIZE]
Definition: blockd.h:710
RefCntBuffer * cur_frame
Definition: av1_common_int.h:839
Variables related to current coding block.
Definition: blockd.h:570
Params related to tiles.
Definition: av1_common_int.h:434
int num_mi_cols
Definition: av1_common_int.h:751
int rows
Definition: av1_common_int.h:436
int mi_alloc_stride
Definition: av1_common_int.h:550
int max_log2_cols
Definition: av1_common_int.h:473
int temporal_layer_id
Definition: av1_common_int.h:1050
bool chroma_up_available
Definition: blockd.h:630
int cols
Definition: av1_common_int.h:435
int mi_stride
Definition: av1_common_int.h:574
uint8_t height
Definition: blockd.h:766
enum aom_bit_depth aom_bit_depth_t
Bit depth for codecThis enumeration determines the bit depth of the codec.
int byte_alignment
Definition: av1_common_int.h:423
int16_t v_dequant_QTX[8][2]
Definition: av1_common_int.h:662
uint8_t * last_frame_seg_map
Definition: av1_common_int.h:939
Top level common structure used by both encoder and decoder.
Definition: av1_common_int.h:757
enum aom_chroma_sample_position aom_chroma_sample_position_t
List of chroma sample positions.
BLOCK_SIZE bsize
The block size of the current coding block.
Definition: blockd.h:228
InterpFilter interp_filter
Definition: av1_common_int.h:414
Stores the prediction/txfm mode of the current coding block.
Definition: blockd.h:222
int row_start_sb[MAX_TILE_ROWS+1]
Definition: av1_common_int.h:491
struct segmentation seg
Definition: av1_common_int.h:934
unsigned int large_scale
Definition: av1_common_int.h:495
bool disable_cdf_update
Definition: av1_common_int.h:369
int superres_upscaled_width
Definition: av1_common_int.h:806
int tx_type_map_stride
Definition: blockd.h:671
int qmatrix_level_y
Definition: av1_common_int.h:710
BLOCK_SIZE mi_alloc_bsize
Definition: av1_common_int.h:557
int max_log2_rows
Definition: av1_common_int.h:477
int base_qindex
Definition: av1_common_int.h:620
TXFM_CONTEXT * above_txfm_context
Definition: blockd.h:733
const qm_val_t * y_iqmatrix[8][TX_SIZES_ALL]
Definition: av1_common_int.h:686
MB_MODE_INFO * left_mbmi
Definition: blockd.h:640
int max_height_sb
Definition: av1_common_int.h:438
MB_MODE_INFO * chroma_above_mbmi
Definition: blockd.h:659
int mb_to_top_edge
Definition: blockd.h:679
enum aom_transfer_characteristics aom_transfer_characteristics_t
List of supported transfer functions.
int width
Definition: av1_common_int.h:458
int8_t ref_frame_side[REF_FRAMES]
Definition: av1_common_int.h:1044
int qmatrix_level_v
Definition: av1_common_int.h:712
int mi_stride
Definition: blockd.h:582
int height
Definition: av1_common_int.h:783
bool error_resilient_mode
Definition: av1_common_int.h:407
int ref_frame_sign_bias[REF_FRAMES]
Definition: av1_common_int.h:1038
int MBs
Definition: av1_common_int.h:523
int num_planes
Definition: av1_common_int.h:749
uint32_t buffer_removal_times[(8 *4)+1]
Definition: av1_common_int.h:822
void(* setup_mi)(struct CommonModeInfoParams *mi_params)
Definition: av1_common_int.h:597
PARTITION_CONTEXT left_partition_context[MAX_MIB_SIZE]
Definition: blockd.h:725
struct aom_internal_error_info * error
Definition: av1_common_int.h:765
uint32_t frame_presentation_time
Definition: av1_common_int.h:828
PARTITION_CONTEXT ** partition
Definition: av1_common_int.h:725
unsigned int single_tile_decoding
Definition: av1_common_int.h:501
int show_existing_frame
Definition: av1_common_int.h:907