Point Cloud Library (PCL)
1.7.2
|
IterativeClosestPoint provides a base implementation of the Iterative Closest Point algorithm. More...
#include <pcl/registration/icp.h>
Public Member Functions | |
IterativeClosestPoint () | |
Empty constructor. More... | |
virtual | ~IterativeClosestPoint () |
Empty destructor. More... | |
pcl::registration::DefaultConvergenceCriteria < Scalar >::Ptr | getConvergeCriteria () |
Returns a pointer to the DefaultConvergenceCriteria used by the IterativeClosestPoint class. More... | |
virtual void | setInputSource (const PointCloudSourceConstPtr &cloud) |
Provide a pointer to the input source (e.g., the point cloud that we want to align to the target) More... | |
virtual void | setInputTarget (const PointCloudTargetConstPtr &cloud) |
Provide a pointer to the input target (e.g., the point cloud that we want to align to the target) More... | |
void | setUseReciprocalCorrespondences (bool use_reciprocal_correspondence) |
Set whether to use reciprocal correspondence or not. More... | |
bool | getUseReciprocalCorrespondences () const |
Obtain whether reciprocal correspondence are used or not. More... | |
![]() | |
Registration () | |
Empty constructor. More... | |
virtual | ~Registration () |
destructor. More... | |
void | setTransformationEstimation (const TransformationEstimationPtr &te) |
Provide a pointer to the transformation estimation object. More... | |
void | setCorrespondenceEstimation (const CorrespondenceEstimationPtr &ce) |
Provide a pointer to the correspondence estimation object. More... | |
void | setInputCloud (const PointCloudSourceConstPtr &cloud) |
Provide a pointer to the input source (e.g., the point cloud that we want to align to the target) More... | |
PointCloudSourceConstPtr const | getInputCloud () |
Get a pointer to the input point cloud dataset target. More... | |
virtual void | setInputSource (const PointCloudSourceConstPtr &cloud) |
Provide a pointer to the input source (e.g., the point cloud that we want to align to the target) More... | |
PointCloudSourceConstPtr const | getInputSource () |
Get a pointer to the input point cloud dataset target. More... | |
virtual void | setInputTarget (const PointCloudTargetConstPtr &cloud) |
Provide a pointer to the input target (e.g., the point cloud that we want to align the input source to) More... | |
PointCloudTargetConstPtr const | getInputTarget () |
Get a pointer to the input point cloud dataset target. More... | |
void | setSearchMethodTarget (const KdTreePtr &tree, bool force_no_recompute=false) |
Provide a pointer to the search object used to find correspondences in the target cloud. More... | |
KdTreePtr | getSearchMethodTarget () const |
Get a pointer to the search method used to find correspondences in the target cloud. More... | |
void | setSearchMethodSource (const KdTreeReciprocalPtr &tree, bool force_no_recompute=false) |
Provide a pointer to the search object used to find correspondences in the source cloud (usually used by reciprocal correspondence finding). More... | |
KdTreeReciprocalPtr | getSearchMethodSource () const |
Get a pointer to the search method used to find correspondences in the source cloud. More... | |
Matrix4 | getFinalTransformation () |
Get the final transformation matrix estimated by the registration method. More... | |
Matrix4 | getLastIncrementalTransformation () |
Get the last incremental transformation matrix estimated by the registration method. More... | |
void | setMaximumIterations (int nr_iterations) |
Set the maximum number of iterations the internal optimization should run for. More... | |
int | getMaximumIterations () |
Get the maximum number of iterations the internal optimization should run for, as set by the user. More... | |
void | setRANSACIterations (int ransac_iterations) |
Set the number of iterations RANSAC should run for. More... | |
double | getRANSACIterations () |
Get the number of iterations RANSAC should run for, as set by the user. More... | |
void | setRANSACOutlierRejectionThreshold (double inlier_threshold) |
Set the inlier distance threshold for the internal RANSAC outlier rejection loop. More... | |
double | getRANSACOutlierRejectionThreshold () |
Get the inlier distance threshold for the internal outlier rejection loop as set by the user. More... | |
void | setMaxCorrespondenceDistance (double distance_threshold) |
Set the maximum distance threshold between two correspondent points in source <-> target. More... | |
double | getMaxCorrespondenceDistance () |
Get the maximum distance threshold between two correspondent points in source <-> target. More... | |
void | setTransformationEpsilon (double epsilon) |
Set the transformation epsilon (maximum allowable difference between two consecutive transformations) in order for an optimization to be considered as having converged to the final solution. More... | |
double | getTransformationEpsilon () |
Get the transformation epsilon (maximum allowable difference between two consecutive transformations) as set by the user. More... | |
void | setEuclideanFitnessEpsilon (double epsilon) |
Set the maximum allowed Euclidean error between two consecutive steps in the ICP loop, before the algorithm is considered to have converged. More... | |
double | getEuclideanFitnessEpsilon () |
Get the maximum allowed distance error before the algorithm will be considered to have converged, as set by the user. More... | |
void | setPointRepresentation (const PointRepresentationConstPtr &point_representation) |
Provide a boost shared pointer to the PointRepresentation to be used when comparing points. More... | |
template<typename FunctionSignature > | |
bool | registerVisualizationCallback (boost::function< FunctionSignature > &visualizerCallback) |
Register the user callback function which will be called from registration thread in order to update point cloud obtained after each iteration. More... | |
double | getFitnessScore (double max_range=std::numeric_limits< double >::max()) |
Obtain the Euclidean fitness score (e.g., sum of squared distances from the source to the target) More... | |
double | getFitnessScore (const std::vector< float > &distances_a, const std::vector< float > &distances_b) |
Obtain the Euclidean fitness score (e.g., sum of squared distances from the source to the target) from two sets of correspondence distances (distances between source and target points) More... | |
bool | hasConverged () |
Return the state of convergence after the last align run. More... | |
void | align (PointCloudSource &output) |
Call the registration algorithm which estimates the transformation and returns the transformed source (input) as output. More... | |
void | align (PointCloudSource &output, const Matrix4 &guess) |
Call the registration algorithm which estimates the transformation and returns the transformed source (input) as output. More... | |
const std::string & | getClassName () const |
Abstract class get name method. More... | |
bool | initCompute () |
Internal computation initalization. More... | |
bool | initComputeReciprocal () |
Internal computation when reciprocal lookup is needed. More... | |
void | addCorrespondenceRejector (const CorrespondenceRejectorPtr &rejector) |
Add a new correspondence rejector to the list. More... | |
std::vector < CorrespondenceRejectorPtr > | getCorrespondenceRejectors () |
Get the list of correspondence rejectors. More... | |
bool | removeCorrespondenceRejector (unsigned int i) |
Remove the i-th correspondence rejector in the list. More... | |
void | clearCorrespondenceRejectors () |
Clear the list of correspondence rejectors. More... | |
![]() | |
PCLBase () | |
Empty constructor. More... | |
PCLBase (const PCLBase &base) | |
Copy constructor. More... | |
virtual | ~PCLBase () |
Destructor. More... | |
PointCloudConstPtr const | getInputCloud () const |
Get a pointer to the input point cloud dataset. More... | |
virtual void | setIndices (const IndicesPtr &indices) |
Provide a pointer to the vector of indices that represents the input data. More... | |
virtual void | setIndices (const IndicesConstPtr &indices) |
Provide a pointer to the vector of indices that represents the input data. More... | |
virtual void | setIndices (const PointIndicesConstPtr &indices) |
Provide a pointer to the vector of indices that represents the input data. More... | |
virtual void | setIndices (size_t row_start, size_t col_start, size_t nb_rows, size_t nb_cols) |
Set the indices for the points laying within an interest region of the point cloud. More... | |
IndicesPtr const | getIndices () |
Get a pointer to the vector of indices used. More... | |
IndicesConstPtr const | getIndices () const |
Get a pointer to the vector of indices used. More... | |
const PointSource & | operator[] (size_t pos) const |
Override PointCloud operator[] to shorten code. More... | |
Public Attributes | |
pcl::registration::DefaultConvergenceCriteria < Scalar >::Ptr | convergence_criteria_ |
Protected Member Functions | |
virtual void | transformCloud (const PointCloudSource &input, PointCloudSource &output, const Matrix4 &transform) |
Apply a rigid transform to a given dataset. More... | |
virtual void | computeTransformation (PointCloudSource &output, const Matrix4 &guess) |
Rigid transformation computation method with initial guess. More... | |
virtual void | determineRequiredBlobData () |
Looks at the Estimators and Rejectors and determines whether their blob-setter methods need to be called. More... | |
![]() | |
bool | searchForNeighbors (const PointCloudSource &cloud, int index, std::vector< int > &indices, std::vector< float > &distances) |
Search for the closest nearest neighbor of a given point. More... | |
virtual void | computeTransformation (PointCloudSource &output, const Matrix4 &guess)=0 |
Abstract transformation computation method with initial guess. More... | |
![]() | |
bool | initCompute () |
This method should get called before starting the actual computation. More... | |
bool | deinitCompute () |
This method should get called after finishing the actual computation. More... | |
Protected Attributes | |
size_t | x_idx_offset_ |
XYZ fields offset. More... | |
size_t | y_idx_offset_ |
size_t | z_idx_offset_ |
size_t | nx_idx_offset_ |
Normal fields offset. More... | |
size_t | ny_idx_offset_ |
size_t | nz_idx_offset_ |
bool | use_reciprocal_correspondence_ |
The correspondence type used for correspondence estimation. More... | |
bool | source_has_normals_ |
Internal check whether source dataset has normals or not. More... | |
bool | target_has_normals_ |
Internal check whether target dataset has normals or not. More... | |
bool | need_source_blob_ |
Checks for whether estimators and rejectors need various data. More... | |
bool | need_target_blob_ |
![]() | |
std::string | reg_name_ |
The registration method name. More... | |
KdTreePtr | tree_ |
A pointer to the spatial search object. More... | |
KdTreeReciprocalPtr | tree_reciprocal_ |
A pointer to the spatial search object of the source. More... | |
int | nr_iterations_ |
The number of iterations the internal optimization ran for (used internally). More... | |
int | max_iterations_ |
The maximum number of iterations the internal optimization should run for. More... | |
int | ransac_iterations_ |
The number of iterations RANSAC should run for. More... | |
PointCloudTargetConstPtr | target_ |
The input point cloud dataset target. More... | |
Matrix4 | final_transformation_ |
The final transformation matrix estimated by the registration method after N iterations. More... | |
Matrix4 | transformation_ |
The transformation matrix estimated by the registration method. More... | |
Matrix4 | previous_transformation_ |
The previous transformation matrix estimated by the registration method (used internally). More... | |
double | transformation_epsilon_ |
The maximum difference between two consecutive transformations in order to consider convergence (user defined). More... | |
double | euclidean_fitness_epsilon_ |
The maximum allowed Euclidean error between two consecutive steps in the ICP loop, before the algorithm is considered to have converged. More... | |
double | corr_dist_threshold_ |
The maximum distance threshold between two correspondent points in source <-> target. More... | |
double | inlier_threshold_ |
The inlier distance threshold for the internal RANSAC outlier rejection loop. More... | |
bool | converged_ |
Holds internal convergence state, given user parameters. More... | |
int | min_number_correspondences_ |
The minimum number of correspondences that the algorithm needs before attempting to estimate the transformation. More... | |
CorrespondencesPtr | correspondences_ |
The set of correspondences determined at this ICP step. More... | |
TransformationEstimationPtr | transformation_estimation_ |
A TransformationEstimation object, used to calculate the 4x4 rigid transformation. More... | |
CorrespondenceEstimationPtr | correspondence_estimation_ |
A CorrespondenceEstimation object, used to estimate correspondences between the source and the target cloud. More... | |
std::vector < CorrespondenceRejectorPtr > | correspondence_rejectors_ |
The list of correspondence rejectors to use. More... | |
bool | target_cloud_updated_ |
Variable that stores whether we have a new target cloud, meaning we need to pre-process it again. More... | |
bool | source_cloud_updated_ |
Variable that stores whether we have a new source cloud, meaning we need to pre-process it again. More... | |
bool | force_no_recompute_ |
A flag which, if set, means the tree operating on the target cloud will never be recomputed. More... | |
bool | force_no_recompute_reciprocal_ |
A flag which, if set, means the tree operating on the source cloud will never be recomputed. More... | |
boost::function< void(const pcl::PointCloud< PointSource > &cloud_src, const std::vector < int > &indices_src, const pcl::PointCloud< PointTarget > &cloud_tgt, const std::vector < int > &indices_tgt)> | update_visualizer_ |
Callback function to update intermediate source point cloud position during it's registration to the target point cloud. More... | |
![]() | |
PointCloudConstPtr | input_ |
The input point cloud dataset. More... | |
IndicesPtr | indices_ |
A pointer to the vector of point indices to use. More... | |
bool | use_indices_ |
Set to true if point indices are used. More... | |
bool | fake_indices_ |
If no set of indices are given, we construct a set of fake indices that mimic the input PointCloud. More... | |
IterativeClosestPoint provides a base implementation of the Iterative Closest Point algorithm.
The transformation is estimated based on Singular Value Decomposition (SVD).
The algorithm has several termination criteria:
Usage example:
typedef boost::shared_ptr<const IterativeClosestPoint<PointSource, PointTarget, Scalar> > pcl::IterativeClosestPoint< PointSource, PointTarget, Scalar >::ConstPtr |
typedef Registration<PointSource, PointTarget, Scalar>::Matrix4 pcl::IterativeClosestPoint< PointSource, PointTarget, Scalar >::Matrix4 |
typedef Registration<PointSource, PointTarget, Scalar>::PointCloudSource pcl::IterativeClosestPoint< PointSource, PointTarget, Scalar >::PointCloudSource |
typedef PointCloudSource::ConstPtr pcl::IterativeClosestPoint< PointSource, PointTarget, Scalar >::PointCloudSourceConstPtr |
typedef PointCloudSource::Ptr pcl::IterativeClosestPoint< PointSource, PointTarget, Scalar >::PointCloudSourcePtr |
typedef Registration<PointSource, PointTarget, Scalar>::PointCloudTarget pcl::IterativeClosestPoint< PointSource, PointTarget, Scalar >::PointCloudTarget |
typedef PointCloudTarget::ConstPtr pcl::IterativeClosestPoint< PointSource, PointTarget, Scalar >::PointCloudTargetConstPtr |
typedef PointCloudTarget::Ptr pcl::IterativeClosestPoint< PointSource, PointTarget, Scalar >::PointCloudTargetPtr |
typedef PointIndices::ConstPtr pcl::IterativeClosestPoint< PointSource, PointTarget, Scalar >::PointIndicesConstPtr |
typedef PointIndices::Ptr pcl::IterativeClosestPoint< PointSource, PointTarget, Scalar >::PointIndicesPtr |
typedef boost::shared_ptr<IterativeClosestPoint<PointSource, PointTarget, Scalar> > pcl::IterativeClosestPoint< PointSource, PointTarget, Scalar >::Ptr |
|
inline |
|
inlinevirtual |
|
protectedvirtual |
Rigid transformation computation method with initial guess.
output | the transformed input point cloud dataset using the rigid transformation found |
guess | the initial guess of the transformation to compute |
Reimplemented in pcl::JointIterativeClosestPoint< PointSource, PointTarget, Scalar >.
Definition at line 119 of file icp.hpp.
References pcl::toPCLPointCloud2().
|
protectedvirtual |
Looks at the Estimators and Rejectors and determines whether their blob-setter methods need to be called.
Reimplemented in pcl::JointIterativeClosestPoint< PointSource, PointTarget, Scalar >.
|
inline |
Returns a pointer to the DefaultConvergenceCriteria used by the IterativeClosestPoint class.
This allows to check the convergence state after the align() method as well as to configure DefaultConvergenceCriteria's parameters not available through the ICP API before the align() method is called. Please note that the align method sets max_iterations_, euclidean_fitness_epsilon_ and transformation_epsilon_ and therefore overrides the default / set values of the DefaultConvergenceCriteria instance.
|
inline |
|
inlinevirtual |
Provide a pointer to the input source (e.g., the point cloud that we want to align to the target)
[in] | cloud | the input point cloud source |
Reimplemented in pcl::GeneralizedIterativeClosestPoint< PointSource, PointTarget >.
Definition at line 178 of file icp.h.
Referenced by pcl::GeneralizedIterativeClosestPoint< PointSource, PointTarget >::setInputSource().
|
inlinevirtual |
Provide a pointer to the input target (e.g., the point cloud that we want to align to the target)
[in] | cloud | the input point cloud target |
Reimplemented in pcl::GeneralizedIterativeClosestPoint< PointSource, PointTarget >.
Definition at line 213 of file icp.h.
Referenced by pcl::GeneralizedIterativeClosestPoint< PointSource, PointTarget >::setInputTarget().
|
inline |
|
protectedvirtual |
Apply a rigid transform to a given dataset.
Here we check whether whether the dataset has surface normals in addition to XYZ, and rotate normals as well.
[in] | input | the input point cloud |
[out] | output | the resultant output point cloud |
[in] | transform | a 4x4 rigid transformation |
Reimplemented in pcl::IterativeClosestPointWithNormals< PointSource, PointTarget, Scalar >.
Definition at line 49 of file icp.hpp.
References pcl::PointCloud< PointT >::size().
pcl::registration::DefaultConvergenceCriteria<Scalar>::Ptr pcl::IterativeClosestPoint< PointSource, PointTarget, Scalar >::convergence_criteria_ |
Definition at line 134 of file icp.h.
Referenced by pcl::IterativeClosestPoint< PointSource, PointTarget >::getConvergeCriteria().
|
protected |
|
protected |
|
protected |
Normal fields offset.
Definition at line 275 of file icp.h.
Referenced by pcl::IterativeClosestPoint< PointSource, PointTarget >::setInputSource().
|
protected |
Definition at line 275 of file icp.h.
Referenced by pcl::IterativeClosestPoint< PointSource, PointTarget >::setInputSource().
|
protected |
Definition at line 275 of file icp.h.
Referenced by pcl::IterativeClosestPoint< PointSource, PointTarget >::setInputSource().
|
protected |
Internal check whether source dataset has normals or not.
Definition at line 281 of file icp.h.
Referenced by pcl::IterativeClosestPoint< PointSource, PointTarget >::setInputSource().
|
protected |
Internal check whether target dataset has normals or not.
Definition at line 283 of file icp.h.
Referenced by pcl::IterativeClosestPoint< PointSource, PointTarget >::setInputTarget().
|
protected |
The correspondence type used for correspondence estimation.
Definition at line 278 of file icp.h.
Referenced by pcl::IterativeClosestPoint< PointSource, PointTarget >::getUseReciprocalCorrespondences(), and pcl::IterativeClosestPoint< PointSource, PointTarget >::setUseReciprocalCorrespondences().
|
protected |
XYZ fields offset.
Definition at line 272 of file icp.h.
Referenced by pcl::IterativeClosestPoint< PointSource, PointTarget >::setInputSource().
|
protected |
Definition at line 272 of file icp.h.
Referenced by pcl::IterativeClosestPoint< PointSource, PointTarget >::setInputSource().
|
protected |
Definition at line 272 of file icp.h.
Referenced by pcl::IterativeClosestPoint< PointSource, PointTarget >::setInputSource().