Coordinated Infrastructure for Fault Tolerant
Systems

Fault Tolerance Backplane (FTB) API

FTB-Enabled Software Developer’'s Guide

Revision: FTB API Version 0.5 - Document Revison 0.2

FAULT TOLERANCE BACKPLANE: DEVELOPER S PROGRAMMING MANUAL

Contents

1 Who should use this guide? 3
2 Terms and Conventions 4
3 An Overview of CIFTS 6
3.1 TheFTBClientiInterface e 6
4 Fault Tolerance Backplane (FTB) Client Interface 7
4.1 Connecttothe FTB e 7
4.2 Declare publishable events e e 9
4.3 Publishevents e 10
4.4 Subscribetothe FTB e 12
4.5 Un-subscribe a subscription fromthe FTBnetwork 15
4.6 Getaneventfromeventqueueusingpolling0 o oo 16
4.7 DisconnecttheclientfromFTB 17
4.8 Additional errorcodes e e 18
4.9 Associating eVents e e e e 18
49.1 Gettheevertandle 20
4,92 Compareeveritandles e 20

The CIFTS Group 1

FAULT TOLERANCE BACKPLANE: DEVELOPER S PROGRAMMING MANUAL

410 Progressin FTB e e 21

5 Dealing with Schema files 28
5.1 Rulesfortheschemafiles 28

6 Sample Software and Examples of the FTB API 30
6.1 Example 1: Periodic Watchdog 30
2

The CIFTS Group

FAULT TOLERANCE BACKPLANE: DEVELOPER S PROGRAMMING MANUAL

Chapter

Who should use this guide?

This guide is intended for users who wish to develop Faultrémlee Backplance(FTB)-Enabled softwares.
This developers guide mostly discusses the FTB API, usingtwiiT B-enabled softwares can communicate (i.e

publish and subscribe) fault-related information to théFas well as other FTB-enabled softwares

The CIFTS Group 3

FAULT TOLERANCE BACKPLANE: DEVELOPER S PROGRAMMING MANUAL

Chapter

Terms an

d Conventions

This chapter explains some of the terms and conventionsingbi$ guide.

Terms

Description

Component

A component is broadly defined as a piece of software or a aoftywackage. Example

include: MPICHZ2, Linux, PVFS, LAMMPS application, IB netwolibrary etc.

Component categor

y Components are logically separated into component cagsgfor a systematic represe
tation in the FTB system. Examples of component categonddteeir associated comp(
nents include: MPI (with components like MPICH2, MVAPICHR2pen MPI), Applica-
tions (with components like NWCHEM, LAMPPS, SWIM) etc.

A
1

FTB Client

FTB Client is an entity that uses the FTB framework to exclegiaglt-related information

A single process can contain code which is a part of the opgraystem component, MF
component and user application component. If all the 3 softvpieces are FTB enable

then each of them will constitute an FTB client. Each FTBrdliean connect to the FTI

An example of an FTB client can be a FTB-enabled softwareepie@ process. For ex:

T —

and send/receive fault information.

The CIFTS Group

FAULT TOLERANCE BACKPLANE: DEVELOPER S PROGRAMMING MANUAL

A region is the first level of the FTB namespace. The regionendth’ is reserved by
the FTB system. All component categories and componentseagitnames under thg
‘ftb’ region name are also reserved by the CIFTS group. Séosgaf event names (latg
described) are pre-established and understood for altevermes in all the componen
and component categories in the ‘ftb’ region. For all otlegions, the semantics are n

defined and no component and components categories areaeser

Event Name

An event name is a string that provides information aboutdh#. Within the ‘ftb’ region,
event names are semantically pre-defined and understoadl fbe components and con
ponent categories. Event names are unique for a compongbamponent category com
bination within the ‘ftb’ region. Examples of event namergjrformats: MPICHABORT,
JOBKILLED. An event name string can be composed of case-inSeasilphanumeric

characters and underscores only.

\U

=

ts

ot

L

Event severity

Event severity provides additional information about aargyv The event severity is asso¢

ated with the event name. An event name can have only one ssearity. Currently, event

severities are predefined by the FTB system.

Events

In the FTB framework, an event is an set of information. Irerged regions like ‘ftb’, an
event can be uniquely identified by a combination of the camepb category, componer
and the event name. Associated with every event name is duefimed severity of tha
event. An FTB client can publish an event in an event namespather FTB clients caf
subscribe with the FTB system to receive this event. The FaBiéwork is responsible fq

delivering the events between the different FTB clients.

nt

=

Subscription String

This is a string (composed of wild-card options and specifitbate values) using whick
the FTB client specifies what events it wants to receive os&tile to, as a part of it

subscription.

192}

Event Namespace

An Event namespace describes the space where a FTB clierihimam an event, sucl
that it is interpreted with the correct semantics by otheBFlients. The current FTE
framework defines the namespace as a string of three paramgteaegionname, 2.com-

ponentcategory name 3.componename.

N

The CIFTS Group

FAULT TOLERANCE BACKPLANE: DEVELOPER S PROGRAMMING MANUAL

Chapter

An Overview of CIFTS

The Coordinated Infrastructure for Fault Tolerant SysteGiES) project aims to provide an environment and
infrastructure for sharing fault-related information,arder to help enable faults to be handled in a co-ordinated
and holistic manner in the entire system. The Fault TolexraBackplane (FTB) forms the back-bone of this
CIFTS environment. FTB provides an infrastructure which ba used by different software in the system to
exchange any fault-related information. The FTB also egp@s interface that can be used by different software

to communicate and tie to the FTB.

The software in a high-end system that can potentiallyzatithe capabilities of FTB span operating systems,
job schedulers, resource managers, middleware libraria#) libraries, file systems, applications, networking

software etc.

3.1 The FTB Client Interface

The FTB Software has a layered architecture. This guide matl delve into the details of the internal FTB
layers. The uppermost layer of FTB called FTB Client Inteefés the most important layer from the FTB end-
users perspective. This FTB Client Interface provides ah(APplication Programming Interface) that should
be used by any software wishing to communicate fault-rdlatérmation with other software on the system

using the FTB framework.

The rest of the guide gives details of the FTB Client Intezfac

The CIFTS Group 6

FAULT TOLERANCE BACKPLANE: DEVELOPER S PROGRAMMING MANUAL

Chapter

Fault Tolerance Backplane (FTB) Client

Interface

This chapter describes routines that are a part of the FTé&Clinterface. Note that the various string lengths for

arguments or their sub-fields can be found in Table 4.1

4.1 Connecttothe FTB

int FTB_Connect
(

IN const FTBclient_t *client_info
OUT FTB_client.handlet *client_handle

ARGUMENTS:
client_info: This structure provides information about the FTB cligRefer to Tables 4.2 and 4.3 for details of

this structure.

client_handle: An opaque handle returned by the FTB system.

RETURNS:
FTB_SUCCESS: Indicates that client has successfully regit@ith the FTB system

The CIFTS Group 7

FAULT TOLERANCE BACKPLANE: DEVELOPER'S PROGRAMMING MANUAL =00
FTB.LERREVENTSPACEFORMAT: Indicates that user specified evesplace field (part of the cliennfo struc-
ture) is not of required format

FTB.LERR.SUBSCRIPTIONSTYLE: Indicates that the subscription style string hasfeeint value than the
ones permitted by FTB

FTB_.ERRINVALID _VALUE: Indicates that one of the fields in the cliemifo structure is invalid
FTB.LERR.DUP_CALL: Indicates that the client has already been registemedl FTBConnect is being called
again

FTB_.ERRNULL _POINTER: Indicates that clierttandle is a NULL pointer. User needs to pass a pointer point-
ing to a valid location

FTB.LERR.INOT_SUPPORTED: Indicates that the subscriptitgle is not supported. This error code is returned

especially when an unsupported subscription style is ugeddomponent on an architecture that cant support it.

For example: subscription style of “FT8ubscriptionnotify” is not supported on IBM Blue Gene machines

DESCRIPTION:
This routine is to be used by every FTB client to initializeeif and connect to the FTB system. This is the first
routine to be called by an FTB client and it can be called omlgeo The routine returns an opaque handle that

will be used by the client during subsequent calls to idgritgelf.

For multi-threaded clients, this routine should be called only once. Different threafithe same process (i.e
having same pid) cannot individually call this routine.slup to the user to ensure that the ETBnnect routine
is the first FTB routine to be called by the process. Idealg main process should call this routine before

threads get created.

It is possible, however, to trick the FTB system into beligythat each thread isdifferent client if each thread
in a process identifies itself with a unique clieamme and then calls the FTBonnect routine. This usefulness

of this option is debatable and it needs to be throughly deste

NOTE:

This routine was called FTHit in prior implementations.

The CIFTS Group 8

FAULT TOLERANCE BACKPLANE: DEVELOPER S PROGRAMMING MANUAL

4.2 Declare publishable events

int FTB_Declarepublishableevents

(
IN FTB_client handlet client handle
IN const char *schemdiile
IN const FTBeventinfo_t *eventinfo
IN int num_events

)

ARGUMENTS:
client_handle: This is a opaque handle that was returned by the FTB systeimgcihe FTBConnect call

schemafile: This is a string which indicates the absolute path and fitenaf the schema file. Setting the value
to NULL indicates that the events are specified in the FTBitle®de through the evemfo structure array (the
third argument to this routine) and the nuevents (the fourth argument to this routine). The workingafema

files are indicated in Section 5.

eventinfo: A data structure containing information about the pulalisk events. Refer to Table 4.5 for additional

details of this eveninfo data structure. This argument is ignored if a schemadilesed to declare events

num_events An integer specifying the number of events in the eviefd array that the client wants to declare

to FTB. This argument is ignored if a schema file is used toateavents

RETURNS:

FTB_SUCCESS: Indicates success

FTB_.ERRINVALID HANDLE: Indicates an invalid client handle

FTB_.ERR.INVALID _FIELD: Indicates that one of the fields (event name or sewenit the data structure
eventinfo or the schema file is invalid

FTB.ERRDUP_CALL: Indicates that this routine is being called more thac®

FTB_.LERR.DUP_EVENT: Indicates that the schema file or evanfb structure contains a duplicate event. Event
names within an event space should be unique

FTB_.ERR.INVALID _SCHEMA_FILE: Indicates that the schema file may not be valid. This inalude issues

like: Schema file is not present, schema file does not havediteat read permissions, schema file does not

The CIFTS Group 9

FAULT TOLERANCE BACKPLANE: DEVELOPER S PROGRAMMING MANUAL

contain the correct eversipace or the schema file is not of the right format

DESCRIPTION:

This routine will be called by the client to declare the eganplans to publish in its lifetime. This routine should
be called before the client tries to publish any event usnegRTB Publish routine. This routine can be called
only once - which means that all the events should be dectaghdin the beginning before the publishing can

take place.

If the schemdfile argument is not NULL, then its value will be treated as asaddute path to the schema file
name. The routine will return an error code if the file is iregsible or is of incorrect format. The evanfo and

num.events arguments are ignored in this case.

If the schemdfile parameter is set to NULL, the evemifo and numevents arguments will be considered. If
num.events is set to 0, then no events will be registered (andtévtnthus ignored) but the routine will how-

ever return FTBSUCCESS.

For multi-threaded clients, the user should ensure that the routine gets called aftBr&dnnect and before

any FTBPublish routine. Ideally, the the main process should balrioutine before threads get created.

4.3 Publish events

int FTB_Publish

(
IN FTB_client handlet client handle
IN const char *evenhame
IN const FTBeventproperties *evenproperties
OUT FTB_eventhandlet *event handle
)

ARGUMENTS:
client_handle: This is the opaque handle that was returned by the FTB sydteimg the FTBConnect call

The CIFTS Group 10

FAULT TOLERANCE BACKPLANE: DEVELOPER S PROGRAMMING MANUAL
eventname A case-insensitive string of size FTRAX _EVENT_NAME characters. The string can only con-
sist of case-insensitive alphanumeric characters andrtierscore character. The evarame should have been

declared before this routine is called by calling the ED8clarepublishableevents routine
eventproperties: The eventproperties data structure is defined in Table 4.6

eventhandle: A opaque handle that uniquely identify this published ¢ven

RETURNS:

FTB_SUCCESS.: Indicates success

FTB_.ERR.INVALID _-EVENT_NAME: Indicates that the event name is invalid. It has either been declared
using the FTBDeclarepublishableevents routine

FTB_.ERR.INVALID _[EVENT_TYPE: Indicates that the user entered an invalid exgpé in the evenproperties
data structure. The evehtpe is ‘1’ for normal events (default if evemtroperties is NULL) and ‘2’ for response
events. Any other value explicitly specified by the user vaturn this error code

FTB_.ERRINVALID HANDLE: Indicates an invalid client handle

FTB.LERRINULL _POINTER: Indicates that the event handle pointer is NULLisTpointer should point to a

valid memory location

DESCRIPTION:
This routine will be called by the client to publish eventsngseventname. The evenpayload field (part
of eventproperties structure) will not be interpreted by FTB. Thadar and the receiver should be in sync

regarding the syntax and semantics of the payload.

For multi-threading clients, any thread can call this routine. The user needs to ensatehth event has been

declared using the FTBeclarepublishableevents routine before this FTBublish routine is called.

The CIFTS Group 11

FAULT TOLERANCE BACKPLANE: DEVELOPER S PROGRAMMING MANUAL

4.4 Subscribe tothe FTB

int FTB_Subscribe
(
OUT FTB_subscribehandlet *subscribehandle
IN FTB_client handlet client handle
IN const char *subscriptiarstr
IN int (*callback)(OUT FTBreceiveeventt *, OUT void*)

IN void *arg

ARGUMENTS:

subscribe handle: This is a opaque handle returned by the FTB system, thatialjidgdentifies this subscription
client_handle: This is the opaque handle that was returned to the cliemglthe FTBConnect call

subscription_str: A string that specifies the options that a client can bassulscriptions on. Currently, the
subscriptionstr is of the formatattributel=valuel, attribute2=value2, attribute3=value3”. The supported
attributes and values are defined in Table 4.7. The subsgriptr is case-insensitive. If an attribute is not
present in the subscription string, it will default to thdue‘all’, unless faced with constraints arising due to
sub-dependencies with other fields. The subscripsimrtan be set to *” to subscribe to all evenEscamples of
subscriptionstr : To subscribe to all events of severity fatal: subsaviptstr="severity=fatal”’, To subscribe to

events of severity fatal and jobid=1234: subscriptisin="severity=fatal, jobid=1234".

Specifying the correct subscription string is the userpaasibility. For ex: If the user specifies an “evarame

= MPICH_ABORT, eventspace=ftb.os.all”, it may never obtain that event sinceptiitdisher, in the ‘ftb’ region,
may throw the event in the ftb.mpi.mpich2 eventspace onlgweéler, the FTB system in this casadl not re-
turn any error during FTESubscribe. Another example of a subscriptginof “eventname = MPICHABORT,
severity=info” might not result in the subscriber gettingy@vents if evenname = MPICHABORT is of sever-
ity=fatal. In particular, while specifying evemame in subscriptiarstr, it is best not to mention the severity field,

and if mentioned then set it to ‘all’ or to the correct valudltdt eventname.

int (*callback)(): This is the natification callback/handler function thag ttlient wishes to register to handle
events matching the above subscription string. This argtinseset to NULL, if the client wants to get events

using the polling mechanism instead of the notification raegm.

The CIFTS Group 12

FAULT TOLERANCE BACKPLANE: DEVELOPER S PROGRAMMING MANUAL

void *arg: These are the arguments that the client can pass to thadallbnction (third argument), if it wants.

This argument is set to NULL if the client is using the pollimgchanism.

RETURNS:

FTB_SUCCESS: Indicates that the subscription was posted sfatlgs

FTB.ERRINULL _POINTER: Indicates that subscritteandle is NULL

FTB_.ERRINVALID HANDLE: Indicates that the clienthandle is invalid

FTB_.ERRFILTER_ATTR: Indicates that the attribute name used in the subisonistr is not a valid name
FTB_.ERRFILTER_VALUE: Indicates that a value for the attribute used in thessuiptionstr is not valid
FTB.LERREVENTSPACEFORMAT: Indicates that value for the evespace field is of incorrect format
FTB.LERR.SUBSCRIPTIONSTR: Indicates that the subscription string is of an invaditnat. This error code is
also returned if the same attribute is specified twice in thissription string (ex: subscriptiostr="severity=info,
severity=info”

FTB.LERRINOT_SUPPORTED: Indicates that the subscription method (mplimotification, both, neither) being

used was not specified by the client during the EC8nnect routine

DESCRIPTION:
This routine is used by the client to subscribe for event® dllent specifies two things while subscribing to the

FTB network.

1. The subscription criteria - which it specifies in the suipgion string.

2. The mechanism (polling or notification) to be used to nexd#ie events matching the above subscription

criteria in the subscription string.

During the FTBConnect call, if the client has specified “FTBUBSCRIPTIONNOTIFY” as the value for the
client subscriptionstyle (part of the clientnfo data structure), then it needs to specify the callbasiction

details in this current routine.

During the FTBConnect call, if the client has specified “FTBJBSCRIPTIONPOLLING” as the value for the
client.subscriptionstyle (part of the clieninfo data structure), then it needs to specify NULL in thedhand

fourth arguments of the routine call.

During the FTBConnect call, if the client has specified “FTBJBSCRIPTIONNONE” as the value for the

client subscriptionstyle (part of the clieninfo data structure), then this routine should not be cedleall.

The CIFTS Group 13

FAULT TOLERANCE BACKPLANE: DEVELOPER S PROGRAMMING MANUAL

If the client specified “FTBSUBSCRIPTIONBOTH” during the FTBConnect call, then either notification or

polling mechanism can be used, as described above.

An event will be reported only once. An event may match marpsstption strings. It may thus have options
wherein it can be obtained by the client using polling or ficdtion mechanisms. There may be multiple valid
callback/handler functions that can be trigerred in the @ds match. If an event matches both polling and noti-
fication, the notification mechanism(s) will have prece@eoeer polling. If multiple callback/handler functions

can be called - then the callback function for the first matghsubscription string will be trigerred.

An example of this is as follows: Consider the three ESBbscribe calls made by a client, in the below order,

with the following options-

1. subscriptionstr="severity=fatal,jobid=1234 " and subscripti@tyle="FTB.SUBSCRIPTIONPOLLING”
2. subscriptionstr="severity=fatal " and subscriptiostyle="FTB_.SUBSCRIPTIONNOTIFY” with callback
function as funccallback1.

3. subscriptionstr="" and subscriptiorstyle="FTB.SUBSCRIPTIONNOTIFY” with callback function as

func_callback?2.

An event with “severity=fatal” and “jobid=1234" should aetly be a match against all the three subscription
strings. However, on the event arrival, the event will beahatl against the subscription strings in the notifi-
cation subscrihestyle list, in the order in which they were subscribed. Isttase, the event matches against

subscriptionstr="severity=fatal” and the funcallbackl callback function will be called.

The FTBSubscribe routine returns the subscrhmndle that can be used by the client at later stages to un-

subscribe the subscription string from the FTB system.

For multi-threading clients, the FTB.Subscribe routine can be called by any thread.

The CIFTS Group 14

FAULT TOLERANCE BACKPLANE: DEVELOPER S PROGRAMMING MANUAL

4.5 Un-subscribe a subscription from the FTB network

int FTB_Unsubscribe

(
INOUT FTB_subscribehandlet *subscribehandle

ARGUMENTS:
subscribe handle: This is a opaque handle that was returned by the FTB systeimgdine FTBSubscribe call.

In the FTB Unsubscribe routine, FTB updates the handle to make itith¥at use in subsequent calls

RETURNS:
FTB_SUCCESS: Indicates that the subscription was un-substsbecessfully
FTB_.ERR.INVALID _HANDLE: Indicates that the subscrideandle is invalid

DESCRIPTION:
This routine is used by the client to un-subscribe subgoriptfrom the FTB system. Once an subscription
is un-subscribed, the client will no longer receive evengahing that subscription string. The thread for the

notification callback handler will be terminated.

For multi-threading clients, any thread can call the FTBnsubscribe routine. Since the FIsubscribe
message may take some time to propagate in the FTB frametherk,TB agents may still forward some events
matching the subscription string to the FTB client. Suchévenay be silently dropped by the FTB client library
linked to the FTB client.

The user also needs to ensure that certain FTB routinesTiBe@Gonnect, FTBSubscribe, FTBDisconnect etc.
are called appropriately before or after FTBisubscribe. If threads changes the sequence in which tbase

tines are called, it may result in un-predictable behavior.

The CIFTS Group 15

FAULT TOLERANCE BACKPLANE: DEVELOPER S PROGRAMMING MANUAL

4.6 Get an event from event queue using polling

int FTB_Poll_event
(
IN FTB_subscribehandlet subscribehandle

OUT FTB_.receiveeventt *receive event

ARGUMENTS:
subscribe handle: This is the opaque handle that was returned by the FTB sydteing the FTBSubscribe
call. The subscribdnandle internally also indicates to the FTB the subscripsitsing, matching which the event

needs to be returned.

receiveevent This is a data structure containing information about #eeived event. Refer to Table 4.8 for

details on the receivevent data structure.

RETURNS:

FTB_SUCCESS: Indicates an event was successfully obtaineddrmue

FTB.LERR.NULL _POINTER: Indicates that receiv&vent is a NULL pointer. This pointer should point to a valid
memory location

FTB_.ERRINVALID HANDLE: Indicates that the subscrideandle is invalid

FTB.LERRINOT_SUPPORTED: Indicates that the polling mechanism is not patged mechanism for this client
and the provided subscrideandle

FTB_.GOT_NO_EVENT: Indicates no event was present in the queue

DESCRIPTION:

This routine is used by the client to check if there is any ewesiiching gparticular subscription string present

in the queue. The client needs to provide the subsdrdredle obtained from the FTBubscribe routine (that
was called to subscribe that particular subscription gjritf an event is successfully obtained from the queue, it

will be returned in the receivevent data structure.

Subscribers receiving events through the polling mechanised the ensure that this routine is called frequently

enough in order to ensure progress of FTB. If this routineoiscalled frequently enough, the FTB library will

The CIFTS Group 16

FAULT TOLERANCE BACKPLANE: DEVELOPER S PROGRAMMING MANUAL

drop events for this subscriber once it runs of buffer resesir In other words, progress of FTB in upto the end

user when polling is used as a subscription method.

The receiveevent data structure contains a field named ewgm. This field is important from the Event asso-
ciation (refer to section 4.9) point-of-view. If evetytpe is ‘1’, the received event is considered@mal event
and the interpretation of the evepayload field is left to the client. If evenype is ‘2’, the received event is
considered aesponse or follow-upo a prior published or received event. In this case, it issetgd that the

received event payloadshould have theventhandle of the prior event as the first field.

If a client wants to generate the evdrandle for any received event, it can do so by calling the I8 eventhandle
routine described in the later sections of the guide. Plesfge to Section 4.9 on ‘Event association’ to get a

better understanding of evetypes and evenbandles.

For multi-threading clients, any thread can call this routine.

4.7 Disconnect the client from FTB

int FTB_Disconnect

(
IN FTB_client.handlet client. handle

ARGUMENTS:
client_handle: This is a opaque handle that was returned by the FTB systeimgcihe FTBConnect call.

RETURNS:
FTB_SUCCESS: Indicates success
FTB_.ERR.INVALID . HANDLE: Indicates invalid client handle

DESCRIPTION:
This routine will be used to disconnect the client from FTBvill terminate all FTB-related existing connections

and free-up all resources.

The CIFTS Group 17

FAULT TOLERANCE BACKPLANE: DEVELOPER S PROGRAMMING MANUAL

For multi-threaded clients, only one thread can call FTB Disconnect. It is ideally recoended that the main
thread call FTBDisconnect after all threads have terminated. It it up touer to ensure that FTBisconnect

is the last routine to be called for FTB.

4.8 Additional error codes

All the above routines may return some additional error spds follows. These error codes may reflect the

internal state of FTB

1. FTB.ERRNETWORK. GENERAL - An internal general network error
2. FTBEERRNETWORKNO_ROUTE - The FTB system could not find a route to send the message

3. FTB.ERRINVALID _.PARAMETER - FTB unexpectedly failed on a require parameter

4.9 Associating events

In the FTB framework, on receiving an event, the FTB clients/rfrequently find a need to publishr@sponse

event. An FTB client may also find a need to publisiolfow-up event to its prior published event.

‘Event association’ takes place when an event in publistzed #ollow-up to a prior published event or as a

response to a received event. Consider the below examplasdge scenarios when this may take place

1. A component may publish an “potential failure” event (@vE). After some time, it may want to publish a
“recovered from failure” follow-up event (event 2). It whle useful if it can associate event 2 and indicate

it as a follow-up event to event 1.

2. MPI publishes “cannot communicate with node 1” eventiiedg. The InfiniBand network library, then,
publishes “communication re-established” event (everart) indicates that this is a response event to

event 1.

3. OS publishes “process x has 100% cpu usage”. The schethdar publishes a response event “process

X: priority lowered”.

Event association will provide a mechanism to exchange devetof event-response information among differ-

ent clients.

The current FTB implementation implements event assacidtirough the use of event handles. At the sender

FTB client end, FTBPublish() routine returns a unigue event handle for eveeneit publishes. At the receiver

The CIFTS Group 18

FAULT TOLERANCE BACKPLANE: DEVELOPER S PROGRAMMING MANUAL

FTB client end, the client can request for this event harmllgetgenerated from the received message (see Table

4.8 for the received message data structure) using theGdtventhandle routine.

When the receiver FTB client wants to publish a responsetgnamed event?2) in response to a received event

(named eventl), it does the following

1. Obtain and keep track of the evedmdndle for eventl. The evehtindle for eventl can be obtained using the
FTB_Geteventhandle routine (described in next section). The EGBteventhandle routine re-generates
the eventhandle for eventl from the FTBeceiveeventt structure, which contains the received eventl

2. Create thevent propertiestructure to be passed to FTRublish routine for event2. In this eveptoperties

structure, set the evemype to ‘2’ and copy the evertiandle for eventl in the evepiiyload section

3. Publish the event using FTBublish

When an FTB client wants to publish an event (named event2)altow-up to its prior published event (hamed

eventl), it does the following

1. Keep track of the everttandle provided to it on the return of the FIRublish routine for eventl

2. Create thevent propertiestructure to be passed to FTRublish routine for event2. In this eveptoperties

structure, set the evemype to ‘2’ and copy the everttandle for eventl in the evepiyload section

When the new receivers receive the response/follow-uptetresy should check the evetype field. If the field
indicates that the event is a follow-up event, the new reredlient can read the original event’s evédwandle

from the received event’s payload section.

The Event association feature currently works with theofeihg assumptions

1. Event handles are opaque to the FTB client

2. The FTB system does not maintain a record of published acgived events. It is the client’s respon-
sibility to keep track of the published event handles andréweived events. The client can use the
FTB_Compareeventhandle routine to compare event handles to determine a match

3. From the FTB systems point-of-view, the evéype and evenpayload are transparent fields. The FTB
system makes no decisions based on these fields. Thus, egentadion is transparent to FTB. The FTB

system will not attempt to send the response/follow-up &s/Enany specific destination

4. The subscriptiorstring does not contain any specific criteria for subscghim follow-up events. A FTB

client can only realize that an event is a follow-up evergradixamining the evertype field in the received

The CIFTS Group 19

FAULT TOLERANCE BACKPLANE: DEVELOPER S PROGRAMMING MANUAL

49.1 Getthe eventhandle

int FTB_Get.eventhandle
(

IN const FTBreceiveeventt receiveevent

OUT FTB_.eventhandlet * eventhandle

ARGUMENTS:
eventhandle: This is a opaque handle that identifies the event that walsspel by the FTB client

RETURNS:
FTB_SUCCESS: Indicates that event handle was successfullgnestu

FTB_FAILURE: Indicates that event handle could not be generfiedome reason

DESCRIPTION:

This routine will return an event handle from a receexent structure. The event handle will be an opaque

handle.

For multi-threaded clients, any thread can call this routine

4.9.2 Compare evenihandles

int FTB_Compareeventhandles

(

IN const FTBeventhandlet eventhandlel

IN const FTBeventhandlet eventhandle2

ARGUMENTS:
eventhandle: This is a opaque handle that identifies the event that walsspel by the FTB client

The CIFTS Group 20

FAULT TOLERANCE BACKPLANE: DEVELOPER'S PROGRAMMING MANUAL =0
RETURNS:

FTB_SUCCESS: Indicates that handles match

FTB_FAILURE: Indicates that handles do not match

FTB_.ERR.INVALID _HANDLE: Indicates invalid event handle

DESCRIPTION:
This routine can be used by the FTB client to compare two evandles. This would most likely be useful when

the received event has an evaype of ‘'2’, whose payload contains an evdrandle of the original event.

For multi-threaded clients, any thread can call this routine

4.10 Progressin FTB

The FTB provides an infrastructure for communication ofrdsdetween publishers and subscribers. Subscribers
may subscribe to receive any event that matches the sutisargiteria. To ensure that events do not get lost or
dropped, the subscribers need to ensure frequent progditbessrand to receive events. Progress may be achieved
by (1) Calling the FTBPoll_event routine or (2) By registering appropriate handlersugh the asynchronous

notification mechanism (specified along with the E®¥Bbscribe routine).

The CIFTS Group 21

FAULT TOLERANCE BACKPLANE: DEVELOPER S PROGRAMMING MANUAL

Table 4.1:Maximum values for FTB_MAX_*

Value
Field Name

8
FTB_.MAX _CLIENTSCHEMA.VER

64
FTB_.MAX _EVENTSPACE

16
FTB_MAX _CLIENT_NAME

16
FTB_MAX _CLIENT_JOBID

32
FTB_.MAX _EVENT_NAME

16
FTB_.MAX _SEVERITY

64
FTB_.MAX _HOSTNAME

32
FTB_.MAX _PID_STARTTIME

368
FTB_MAX _PAYLOAD _DATA

The CIFTS Group 22

FAULT TOLERANCE BACKPLANE: DEVELOPER S PROGRAMMING MANUAL

Table 4.2:Data Structure client_info

Field Name

Field Description

char clientschemaver
[FTB_LMAX _CLIENTSCHEMA.VER]

This is a string of length FTBMAX _CLIENTSCHEMA_VER, including the ter-
minating null character. This field i®served for now. In the future, it will be
used to specify the component schema version that the @ieainforming to, in
its implementation.

char evenispace
[FTB.MAX _EVENTSPACE]

The eventspace field identifies the namespace in which
will publish events in its lifetime. evergpace is a string of length
FTB_.MAX _EVENTSPACE (including the terminating null character) difet
format regionname.componentategory.componerntame. Details of the
eventspace string split-up are as follows.

1. regionname is a character sequence of alphanumeric and undecdwore
acters. ‘region’ is the first-level hierarchy of the FTB napace. The ret
gion.name of ‘ftb’ is considered as reserved for all CIFTS-redpgh com-
ponent categories and component names. A component pafliah event

in the‘ftb’ region of the namespace will have had the semantic behakipr o

its publishable events well-defined in the public domain.

2. componentategory is a character sequence of alphanumeric and goders
characters. It refers to the category a component belong&xamples in-
clude filesystems, os, mpi, applications etc. Componemgeaies in the
‘ftb’ region are assigned and provided by the CIFTS groupy.onl

3. componenname is a character sequence of alphanumeric and undetscor

characters. It refers to the name of the component. Examipteshe com-
ponentcategory= ‘mpi’ - components names may include MPICH2, MVA-
PICH2, Open MPI etc. Component names and component cagsdorithe
‘ftb’ region are assigned by the CIFTS group.

The eventspace string is a mandatory field provided by the user. TreiQ
DEFAULT value assigned to it. The regiorame, componentategory, com-
ponentname character sequences can consist of alphanumeric andntier-
score character(s) only. Each of these three sequencesmeatenated using
a '’ to form the evenispace string. The three fields reginame, compo
nentcategory and componem@ame can be of any lengths as long as the
tire eventspace string (including the terminating null character@sloot exceed
FTB_MAX _EVENTSPACE. The list of component categories and compovegnt
ues reserved in the ‘ftb’ region, by the CIFTS group, can henébin Table 4.4,

char clienthame
[FTB_LMAX _CLIENT_NAME]

This is a string of case insensitive alphanumeric and uocdegscharacters,
of length FTBMAX _CLIENT_NAME, including the terminating null characte
There is NO DEFAULT value.

-

char clientjobid
[FTB_.MAX _CLIENT_JOBID]

This field is set by the user to correspond to the Job id of thegss. It is of size
FTB_MAX _CLIENT_JOBID characters, including the terminating null characte
There is NO DEFAULT value. continued in Table 4.3

The CIFTS Group

the client

en-

FAULT TOLERANCE BACKPLANE: DEVELOPER S PROGRAMMING MANUAL

Table 4.3:Data Structure client_info ... continued

Field Name

Field Description

char clientsubscriptionstyle
[FTB.MAX _SUBSCRIPTIONSTYLE]

This field indicates what mechanisms will be supported by thient to get the
events that it will subscribe for during its lifetime. Thdlfaving string values are
available for this field. Internally, the FTRIAX _SUBSCRIPTIONSTYLE field
is set to 32 bytes currently.

1. “FTB_SUBSCRIPTIONPOLLING” - Client will make an explicit call
and get the event from its event queue. The event queue wifhdpe
ulated by the FTB system based on client’s subscriptiorertait The

“FTB_SUBSCRIPTIONPOLLING” option indicates that the client plans fo

receive events by the polling mechanism only. It will not eveed to used
notification mechanisms.

2. "FTB_SUBSCRIPTIONNOTIFY” - Client will register a notification call-
back/handler function for its subscriptions. The callb&afction will be
called by the FTB library on a match between the incoming esead sub-
scription criteria. The “FTBSUBSCRIPTIONNOTIFY” option indicates
that the client plans to receive events by the notificatioghmaism only. It
wont be allowed to use polling mechanism.

3. “FTB_SUBSCRIPTIONNONE" - Client plans to not subscribe to any events

in its lifetime and plans to only publish events. This helgBFavoid un-
necessary resource allocation.

4. “FTB_.SUBSCRIPTIONBOTH” - Client plans to get events by using bath

polling and natification callback/handler mechanisms.

There is NO DEFAULT value automatically assigned to thisdfiel The er-
ror code FTBERR SUBSCRIPTIONSTYLE is returned if a different value
other than the ones discussed above is assigned to the_sliestriptionstyle
variable. For BGL systems, the “FTBUBSCRIPTIONNOTIFY” and the
“FTB_SUBSCRIPTIONBOTH” options are not supported on BGL and if the
values are specified, a error code of FERRNOT_SUPPORTED is returned.

unsigned int clienpolling_queuelen

The client can use this parameter to set the size of the potiimeue. Thig
parameter will only be considered if the FIBJBSCRIPTIONPOLLING
or FTB.SUBSCRIPTIONBOTH values are specified in th
client.subscriptionstyle field. The default value of this field is specified
the FTBDEFAULT_POLLING_Q_LEN (currently set to 64) parameter in FT
The default value is used if the value of the cligraling_queuelen is set ag
less than or equal to O by the user. The EDBFAULT_POLLING_Q_LEN wiill
become a tunable parameter in a future version of FTB.

The CIFTS Group

FAULT TOLERANCE BACKPLANE: DEVELOPER S PROGRAMMING MANUAL

Table 4.4:Known Components and Component Categories for the 'ftb’ region(will be changed in coming months)

| Component Category | Component Name

|
| mpich2, mvapich2, openmpi, lammpi

| mpi

filesystem	pvfs
0s	linux, bgl-cnk
applications	swim, nwchem, lammps
networks	ib
rmjs	cobalt
checkpointsw	blcr
["math b [Tt la	
testl	testl

Table 4.5:Data Structure: event_info

Field Name ‘

Field Description

char eveniname[FTBMAX _EVENT_NAME]

This is a case-insensitive string of alphanumeric and soee characters,
of FTB_LMAX _EVENT_NAME characters, including the terminating nu
character.

char severity[FTBMAX _SEVERITY]

1%

This is a case-insensitive string of FIBAX _SEVERITY characters. Th
severity needs to be one of the following values (as definettienFTB
system): ‘fatal’, ‘error’, ‘info’, ‘warning’

Table 4.6:Data Structure: event_properties

Field Name

Field Description

uint8_t eventtype

eventtype is an integer field which is reserved for now. It will hake fol-

lowing values: ‘1’ for Normal events ‘2’ for Response everiifie values
are pre-defined by the FTB system. If the evpriiperties data structun
was set to NULL, then FTB will treat the event as evge of ‘1.

char evenipayload[FTBMAX _PAYLOAD DATA]

This field contains the user-defined payload. The contenthisffield
cannot be interpreted by the FTB. The payload is currenthitéid to
FTB_MAX _PAYLOAD_DATA bytes. If the eventype is ‘2', it is expected
that the first entry in this field will be the evehtindle of the event that th
client in responding to. If the everype is ‘1’, the entry interpretation i

D

D

12}

left to the clients.

The CIFTS Group

FAULT TOLERANCE BACKPLANE: DEVELOPER S PROGRAMMING MANUAL

Table 4.7:Supported Attributes and Values

for Criteria Strings

Attribute Name

Possible Values

Typel/Size of Value

severity ‘all’, ‘fatal’, ‘info’, ‘error’, ‘warning’ Predefined in the FTB system. Any other val
will return the FTBERR FILTER VALUE error
code.
eventspace Format: regionname.componentategory.componerrtame.
‘all is an acceptable value of all the 3 sub-
fields. The three sub fields of evespace field
are composed of alphanumeric and undersgore
characters. The total length of evesgace is
defined by FTBMAX _EVENTSPACE, -currently
set to 64 characters. An error in the format |of
the eventspace will cause FTB to return the
FTB.LERREVENTSPACEFORMAT error code.
In later FTB versions, the componecategory and
componeniname will be cross-checked against pre-
defined values for regianame, componentategory
and component. for the ‘ftb’ regianame.
jobid ‘all’, any string String with maximum length FTBAAX _JOBID
(16 characters).
hostname ‘all’, any string String with maximum length
FTB.MAX HOSTNAME (64 characters
eventname ‘all’, any string String with maximum length
FTB.MAX _EVENT_NAME (32 characters)
Event name is a string of case-insensit
alphanumeric characters and the undersq
character.
Empty string - Subscribe to all events ‘

The CIFTS Group

ore

FAULT TOLERANCE BACKPLANE: DEVELOPER S PROGRAMMING MANUAL

Table 4.8:Data Structure receive_event

Field Name

Field Description

char evenispace[FTBMAX _EVENTSPACE]

The evenispace is a string of format re
gion_.name.componentategory.componermame and length

A

FTB_MAX _EVENTSPACE (which includes the terminating null charac-

ter)

char eveniname[FTBMAX _EVENT_NAME]

The eventname string is of length FTBIAX _EVENT_NAME (including
the terminating null character)

char severity[FTBMAX _SEVERITY]

This string specifies the severity of the event and is of len
FTB_MAX _SEVERITY(including the terminating null character)

char clientjobid[FTB_LMAX _JOBID]

This string specifies the Jobid and is of length EWMBX _JOBID (includ-
ing the terminating null character)

char clienthame[FTBMAX _CLIENT_NAME]

This string of length FTBMAX _CLIENT_NAME characters (including
the terminating null character) is one of the fields that iéentify a FTB
client

uint8_t client.extension

This is a field which identifies whether the sender FTB clienailBM
Blue Gene machine or not. This would not be required by the usgally,
but would be required internally by FTB if the user wants tgamerate the
event handle using the FT8eteventhandle() routine.

uintl6.t segnum

The sequence number for this event from the sender side. ‘

FTB_location.id_t incoming.src

This data structure gives details of the src of the messalye.d&ta strucH
ture contains the following fields

1. char hostname[FTBIAX _HOST.NAME] - A string of size
FTB_MAX _HOST_.NAME for the hostname

ot

2. procesdd_t processid - The PID of the client process as obtained

by FTB

3. char pidstarttimet pid_starttime[FTBMAX _PID_STARTTIME] -
This start time of the process with process id PID

uint8_t eventtype

This indicates the type of event. A value of ‘1’ indicates thent is a
normal event and the interpretation of the payload is lefth® user. A
value of ‘2" indicates that the user is a response event aatdltle payload
should contain an event handle.

The CIFTS Group

FAULT TOLERANCE BACKPLANE: DEVELOPER S PROGRAMMING MANUAL

Chapter

Dealing with Schema files

Publishing events is an important aspect of the FTB. The FEfBires that an FTB-enabled software pre-declare
the events (and attributes of these events) to the FTB mripublishing them. Within the FTB framework, there

are two ways to do it.

1. Compile time event declaration: Describe the eventsimttie code of the software. These events are then
passed as a parameter to the EDBclarepublishableevents routine. More information on this can be

found in Chapter 4.

2. Run-time event declaration: Use the schema files, to tea@vents at run-time. The absolute path (in-
cluding the filename) to the file needs to be passed as an anjtorithe FTBDeclarepublishableevents

routine. For more information on the FTBeclarepublishableevents routine, refer to Chapter 4.

This chapter deals with the format of the schema file.

5.1 Rules for the schema files

The schema file follows the below rules and guidelines.

1. Every client has its own specific schema file, at a locatibithvis available during run-time
2. This location is indicated in the FTBeclarepublishableevents routine call.

3. Comments in this file are preceded by # character

4. Blank lines are acceptable

The CIFTS Group 28

FAULT TOLERANCE BACKPLANE: DEVELOPER S PROGRAMMING MANUAL

5. The FTB library will being reading the data after the “Std&eyword and stop reading once it encounters
the “end” keyword

6. Following the “start” keyword, the evespace of the component is expected. Please read the prgcedin

chapters to understand the compostion and semantics of¢hespace.
7. Following the evenspace, the event names and severity if the foenahtname, severitare expected

8. FTB._Declarepublishableevents routine will return errors in the above rules are alhbdved

An example of the schema file is as follows:

start

region name.componentategory.componentame #This is the everspace
eventl name, severity

event2 name, severity

end

The CIFTS Group 29

FAULT TOLERANCE BACKPLANE: DEVELOPER S PROGRAMMING MANUAL

Chapter

Sample Software and Examples of the FTB API

This chapter explains a few example software to demonstiat€é TB API. Most of these examples are a part

of the FTB source code, and can be found ircasponents directory.

6.1 Example 1: Periodic Watchdog

The watchdog software is used to check the availability efRiiB backplane. It publishes events and waits to

receive those events.

The software demonstrates the following

1. Declaring publishable events within the code
2. Subscribing to events using the polling mechanism
3. Declaring publishable events in a schema file

4. Subscribing to events using the callback mechanism

A simplified version of the FTB watchdog example code is pmese in Listing 6.1. Step 2 of the below
code shows how to declare the publishable events, in theitsmlf using the FTBDeclarePublishableevents

routine.

Step 3 and Step 5 in Listing 6.1 also shows how to obtain siltestwr events using the polling mechanism. In

particular, Step 5 shows how to use the EPBIl_event routine to pull the event from the event queue.

The CIFTS Group 30

FAULT TOLERANCE BACKPLANE: DEVELOPER S PROGRAMMING MANUAL

Listing 6.1: FTB Watchdog pseudocode

#include <stdio .h>
#include <stdlib .h>
#include <signal .h>
#include <string .h>
#include "libftb .h”

int main(int argc, char xargv[])

{
FTB_client_.t cinfo;
FTB_client_handle.t handle;
FTB_subscribehandlet shandle;

int ret = 0; iter = 0;

[+ xxx STEPR-1 sxx x/
ret = FTB.Connect(&cinfo , &handle);
if (ret != FTB.SUCCESS) {

printf ("FTB_Connectis_.not_.successful”); exitE1);

[%sxx STEP-2 sxx %/

FTB_eventinfo_t eventinfo[1l] = { {"WATCHDOGEVENT”, "INFO”} };

ret = FTB_Declarepublishableevents (handle, 0, eveninfo, 1);

if (ret != FTBSUCCESS) {
printf("FTB_Declare.Publishableevents.failed”); exit(—-1);

[+ xxx STEPR-3 sxx x/

char * subscriptionstr = "eventspace=ftb. all.watchdog”;

ret = FTB_Subscribe(&shandle, handle, subscriptionr , NULL, NULL);
if (ret != FTBSUCCESS) {

The CIFTS Group 31

FAULT TOLERANCE BACKPLANE: DEVELOPER S PROGRAMMING MANUAL

printf ("FTB_Subscribe.failed”); exit(—1);

while (iter != 10) {
FTB_receiveeventt caughtevent;

FTB_eventhandlet ehandle;

[+ xxx STEPR-4 sxxx/
ret = FTB_Publish(handle, "WATCHDOGEVENT”, NULL, &ehandle);
if (ret != FTBSUCCESS) {
printf ("FTB_Publish.failed”); exit(—1);

sleep (1);

[%xxx STEP-5 s x/
ret = FTB_Poll_event(shandle, &caughevent);
if (ret != FTBSUCCESS) {
printf("No_event.caught”); break;

iter ++;

[**xx%x STEP-6 *xx*x/
FTB_Disconnect (handle);

return O;

The CIFTS Group 32

FAULT TOLERANCE BACKPLANE: DEVELOPER S PROGRAMMING MANUAL
Listing 6.2 shows how to specify a schema file in the code uing-TB DeclarePublishableevents routine.
In code Listing 6.1, one can replace Step 2 by Listing 6.2 heae the same effect with the schema file. Please

note that the schema file needs to be available at run-time

Listing 6.2: Specifying schema files in a code
[* xxx STEP-2 sxx% x/
ret = FTB_Declarepublishableevents (handle, "watchdagchema. ftb”, NULL, 0);

if (ret != FTB.SUCCESS) {
printf("FTB_Declare.Publishableevents.failed.”); exit(—-1);

Listing 6.3 shows the format of the schema file for the FTB \Wdtg code.

Listing 6.3: Schema File for FTB Watchdog

start
ftb . ftb_examples .watchdog
watch.dog_event info

end

Lastly, Listing 6.4 shows how to replace Step 3 and Step 5sting 6.1 by Step3 in Listing 6.4 to subscribe to
events using the natification function. Of course, the @hewotification function will also need to be provided,

an example of which is given in Lsiting 6.5.

Listing 6.4: Subscribe to events using notification

[xxxx STER-3 xxx x/
char x subscriptionstr = "eventspace=ftb. all.watchdog”;
ret = FTB_Subscribe(&shandle, handle, subscriptionir , watchdogreceiverfunc,
if (ret != FTBSUCCESS) {
printf ("FTB_Subscribe.failed.”); exit(-1);

The CIFTS Group 33

FAULT TOLERANCE BACKPLANE: DEVELOPER S PROGRAMMING MANUAL

Listing 6.5: Example notification callback handler

void watchdogreceiverfunc(FTB.receiveeventt xcaughtevent)
{
printf ("Received.event.details ._Event_.space=%s.Severity=%s,
uuuuuuuuuuuuuuuu Event.name=%s ., Client_.name=%s ,
uuuuuuuuuuuuuuuu Hostname=%s.,Seqnum=%dn”,caughtevent—>eventspace ,
caughtevent—>severity , caughtevent—eventname ,
caughtevent—>client_name , caughtevent—>incoming.src.hostname,

caughtevent—>seqnum);

return ;

Further examples can be found in the FTB source code. Pletesda the README in the source code for more

information.

The CIFTS Group 34

