
Coordinated Infrastructure for Fault Tolerant
Systems

Fault Tolerance Backplane (FTB) API

FTB-Enabled Software Developer’s Guide

Revision: FTB API Version 0.5 - Document Revison 0.2

FAULT TOLERANCE BACKPLANE: DEVELOPER’ S PROGRAMMING MANUAL. .. .

Contents

1 Who should use this guide? 3

2 Terms and Conventions 4

3 An Overview of CIFTS 6

3.1 The FTB Client Interface 6

4 Fault Tolerance Backplane (FTB) Client Interface 7

4.1 Connect to the FTB 7

4.2 Declare publishable events 9

4.3 Publish events 10

4.4 Subscribe to the FTB 12

4.5 Un-subscribe a subscription from the FTB network 15

4.6 Get an event from event queue using polling 16

4.7 Disconnect the client from FTB 17

4.8 Additional error codes 18

4.9 Associating events 18

4.9.1 Get the eventhandle . 20

4.9.2 Compare eventhandles . 20

. .. .

The CIFTS Group 1

FAULT TOLERANCE BACKPLANE: DEVELOPER’ S PROGRAMMING MANUAL. .. .

4.10 Progress in FTB 21

5 Dealing with Schema files 28

5.1 Rules for the schema files 28

6 Sample Software and Examples of the FTB API 30

6.1 Example 1: Periodic Watchdog 30

. .. .

The CIFTS Group 2

FAULT TOLERANCE BACKPLANE: DEVELOPER’ S PROGRAMMING MANUAL. .. .

Chapter 1
Who should use this guide?

This guide is intended for users who wish to develop Fault Tolerance Backplance(FTB)-Enabled softwares.

This developers guide mostly discusses the FTB API, using which FTB-enabled softwares can communicate (i.e

publish and subscribe) fault-related information to the FTB, as well as other FTB-enabled softwares

. .. .

The CIFTS Group 3

FAULT TOLERANCE BACKPLANE: DEVELOPER’ S PROGRAMMING MANUAL. .. .

Chapter 2
Terms and Conventions

This chapter explains some of the terms and conventions usedin this guide.

Terms Description

Component A component is broadly defined as a piece of software or a software package. Examples

include: MPICH2, Linux, PVFS, LAMMPS application, IB network library etc.

Component category Components are logically separated into component categories for a systematic represen-

tation in the FTB system. Examples of component categories and their associated compo-

nents include: MPI (with components like MPICH2, MVAPICH2,Open MPI), Applica-

tions (with components like NWCHEM, LAMPPS, SWIM) etc.

FTB Client FTB Client is an entity that uses the FTB framework to exchange fault-related information.

An example of an FTB client can be a FTB-enabled software piece in a process. For ex:

A single process can contain code which is a part of the operating system component, MPI

component and user application component. If all the 3 software pieces are FTB enabled,

then each of them will constitute an FTB client. Each FTB client can connect to the FTB

and send/receive fault information.

. .. .

The CIFTS Group 4

FAULT TOLERANCE BACKPLANE: DEVELOPER’ S PROGRAMMING MANUAL. .. .

Region A region is the first level of the FTB namespace. The region name ‘ftb’ is reserved by

the FTB system. All component categories and components andeventnames under the

‘ftb’ region name are also reserved by the CIFTS group. Semantics of event names (later

described) are pre-established and understood for all events names in all the components

and component categories in the ‘ftb’ region. For all other regions, the semantics are not

defined and no component and components categories are reserved.

Event Name An event name is a string that provides information about thefault. Within the ‘ftb’ region,

event names are semantically pre-defined and understood forall the components and com-

ponent categories. Event names are unique for a component and component category com-

bination within the ‘ftb’ region. Examples of event name string formats: MPICHABORT,

JOB KILLED. An event name string can be composed of case-insensitive alphanumeric

characters and underscores only.

Event severity Event severity provides additional information about an event. The event severity is associ-

ated with the event name. An event name can have only one eventseverity. Currently, event

severities are predefined by the FTB system.

Events In the FTB framework, an event is an set of information. In reserved regions like ‘ftb’, an

event can be uniquely identified by a combination of the component category, component

and the event name. Associated with every event name is the predefined severity of that

event. An FTB client can publish an event in an event namespace. Other FTB clients can

subscribe with the FTB system to receive this event. The FTB framework is responsible for

delivering the events between the different FTB clients.

Subscription String This is a string (composed of wild-card options and specific attribute values) using which

the FTB client specifies what events it wants to receive or subscribe to, as a part of its

subscription.

Event Namespace An Event namespace describes the space where a FTB client canthrow an event, such

that it is interpreted with the correct semantics by other FTB clients. The current FTB

framework defines the namespace as a string of three parameters: 1. regionname, 2.com-

ponentcategory name 3.componentname.

. .. .

The CIFTS Group 5

FAULT TOLERANCE BACKPLANE: DEVELOPER’ S PROGRAMMING MANUAL. .. .

Chapter 3
An Overview of CIFTS

The Coordinated Infrastructure for Fault Tolerant Systems (CIFTS) project aims to provide an environment and

infrastructure for sharing fault-related information, inorder to help enable faults to be handled in a co-ordinated

and holistic manner in the entire system. The Fault Tolerance Backplane (FTB) forms the back-bone of this

CIFTS environment. FTB provides an infrastructure which can be used by different software in the system to

exchange any fault-related information. The FTB also exposes an interface that can be used by different software

to communicate and tie to the FTB.

The software in a high-end system that can potentially utilize the capabilities of FTB span operating systems,

job schedulers, resource managers, middleware libraries,math libraries, file systems, applications, networking

software etc.

3.1 The FTB Client Interface

The FTB Software has a layered architecture. This guide willnot delve into the details of the internal FTB

layers. The uppermost layer of FTB called FTB Client Interface is the most important layer from the FTB end-

users perspective. This FTB Client Interface provides an API (Application Programming Interface) that should

be used by any software wishing to communicate fault-related information with other software on the system

using the FTB framework.

The rest of the guide gives details of the FTB Client Interface.

. .. .

The CIFTS Group 6

FAULT TOLERANCE BACKPLANE: DEVELOPER’ S PROGRAMMING MANUAL. .. .

Chapter 4
Fault Tolerance Backplane (FTB) Client

Interface

This chapter describes routines that are a part of the FTB Client Interface. Note that the various string lengths for

arguments or their sub-fields can be found in Table 4.1

4.1 Connect to the FTB

int FTB Connect

(

IN const FTBclient t *client info

OUT FTB client handlet *client handle

)

ARGUMENTS:

client info: This structure provides information about the FTB client.Refer to Tables 4.2 and 4.3 for details of

this structure.

client handle: An opaque handle returned by the FTB system.

RETURNS:

FTB SUCCESS: Indicates that client has successfully registered with the FTB system
. .. .

The CIFTS Group 7

FAULT TOLERANCE BACKPLANE: DEVELOPER’ S PROGRAMMING MANUAL. .. .

FTB ERR EVENTSPACEFORMAT: Indicates that user specified eventspace field (part of the clientinfo struc-

ture) is not of required format

FTB ERR SUBSCRIPTIONSTYLE: Indicates that the subscription style string has a different value than the

ones permitted by FTB

FTB ERR INVALID VALUE: Indicates that one of the fields in the clientinfo structure is invalid

FTB ERR DUP CALL: Indicates that the client has already been registeredand FTBConnect is being called

again

FTB ERR NULL POINTER: Indicates that clienthandle is a NULL pointer. User needs to pass a pointer point-

ing to a valid location

FTB ERR NOT SUPPORTED: Indicates that the subscriptionstyle is not supported. This error code is returned

especially when an unsupported subscription style is used by a component on an architecture that cant support it.

For example: subscription style of “FTBsubscriptionnotify” is not supported on IBM Blue Gene machines

DESCRIPTION:

This routine is to be used by every FTB client to initialize itself and connect to the FTB system. This is the first

routine to be called by an FTB client and it can be called only once. The routine returns an opaque handle that

will be used by the client during subsequent calls to identify itself.

For multi-threaded clients, this routine should be called only once. Different threadsof the same process (i.e

having same pid) cannot individually call this routine. It is up to the user to ensure that the FTBConnect routine

is the first FTB routine to be called by the process. Ideally, the main process should call this routine before

threads get created.

It is possible, however, to trick the FTB system into believing that each thread is adifferent client if each thread

in a process identifies itself with a unique clientname and then calls the FTBConnect routine. This usefulness

of this option is debatable and it needs to be throughly tested.

NOTE:

This routine was called FTBInit in prior implementations.

. .. .

The CIFTS Group 8

FAULT TOLERANCE BACKPLANE: DEVELOPER’ S PROGRAMMING MANUAL. .. .

4.2 Declare publishable events

int FTB Declarepublishableevents

(

IN FTB client handlet client handle

IN const char *schemafile

IN const FTBeventinfo t *event info

IN int num events

)

ARGUMENTS:

client handle: This is a opaque handle that was returned by the FTB system during the FTBConnect call

schemafile: This is a string which indicates the absolute path and filename of the schema file. Setting the value

to NULL indicates that the events are specified in the FTB client code through the eventinfo structure array (the

third argument to this routine) and the numevents (the fourth argument to this routine). The working ofschema

files are indicated in Section 5.

event info: A data structure containing information about the publishable events. Refer to Table 4.5 for additional

details of this eventinfo data structure. This argument is ignored if a schema fileis used to declare events

num events: An integer specifying the number of events in the eventinfo array that the client wants to declare

to FTB. This argument is ignored if a schema file is used to declare events

RETURNS:

FTB SUCCESS: Indicates success

FTB ERR INVALID HANDLE: Indicates an invalid client handle

FTB ERR INVALID FIELD: Indicates that one of the fields (event name or severity) in the data structure

eventinfo or the schema file is invalid

FTB ERR DUP CALL: Indicates that this routine is being called more than once

FTB ERR DUP EVENT: Indicates that the schema file or eventinfo structure contains a duplicate event. Event

names within an event space should be unique

FTB ERR INVALID SCHEMA FILE: Indicates that the schema file may not be valid. This mayinclude issues

like: Schema file is not present, schema file does not have the correct read permissions, schema file does not

. .. .

The CIFTS Group 9

FAULT TOLERANCE BACKPLANE: DEVELOPER’ S PROGRAMMING MANUAL. .. .

contain the correct eventspace or the schema file is not of the right format

DESCRIPTION:

This routine will be called by the client to declare the events it plans to publish in its lifetime. This routine should

be called before the client tries to publish any event using the FTBPublish routine. This routine can be called

only once - which means that all the events should be declaredright in the beginning before the publishing can

take place.

If the schemafile argument is not NULL, then its value will be treated as an absolute path to the schema file

name. The routine will return an error code if the file is inaccessible or is of incorrect format. The eventinfo and

num events arguments are ignored in this case.

If the schemafile parameter is set to NULL, the eventinfo and numevents arguments will be considered. If

num events is set to 0, then no events will be registered (and event info thus ignored) but the routine will how-

ever return FTBSUCCESS.

For multi-threaded clients, the user should ensure that the routine gets called after FTB Connect and before

any FTBPublish routine. Ideally, the the main process should call this routine before threads get created.

4.3 Publish events

int FTB Publish

(

IN FTB client handlet client handle

IN const char *eventname

IN const FTBeventproperties *eventproperties

OUT FTB eventhandlet *event handle

)

ARGUMENTS:

client handle: This is the opaque handle that was returned by the FTB systemduring the FTBConnect call

. .. .

The CIFTS Group 10

FAULT TOLERANCE BACKPLANE: DEVELOPER’ S PROGRAMMING MANUAL. .. .

event name: A case-insensitive string of size FTBMAX EVENT NAME characters. The string can only con-

sist of case-insensitive alphanumeric characters and the underscore character. The eventname should have been

declared before this routine is called by calling the FTBDeclarepublishableevents routine

event properties: The eventproperties data structure is defined in Table 4.6

event handle: A opaque handle that uniquely identify this published event

RETURNS:

FTB SUCCESS: Indicates success

FTB ERR INVALID EVENT NAME: Indicates that the event name is invalid. It has eithernot been declared

using the FTBDeclarepublishableevents routine

FTB ERR INVALID EVENT TYPE: Indicates that the user entered an invalid eventtype in the eventproperties

data structure. The eventtype is ‘1’ for normal events (default if eventproperties is NULL) and ‘2’ for response

events. Any other value explicitly specified by the user willreturn this error code

FTB ERR INVALID HANDLE: Indicates an invalid client handle

FTB ERR NULL POINTER: Indicates that the event handle pointer is NULL. This pointer should point to a

valid memory location

DESCRIPTION:

This routine will be called by the client to publish events using eventname. The eventpayload field (part

of eventproperties structure) will not be interpreted by FTB. The sender and the receiver should be in sync

regarding the syntax and semantics of the payload.

For multi-threading clients , any thread can call this routine. The user needs to ensure that the event has been

declared using the FTBDeclarepublishableevents routine before this FTBPublish routine is called.

. .. .

The CIFTS Group 11

FAULT TOLERANCE BACKPLANE: DEVELOPER’ S PROGRAMMING MANUAL. .. .

4.4 Subscribe to the FTB

int FTB Subscribe

(

OUT FTB subscribehandlet *subscribehandle

IN FTB client handlet client handle

IN const char *subscriptionstr

IN int (*callback)(OUT FTBreceiveeventt *, OUT void*)

IN void *arg

)

ARGUMENTS:

subscribehandle: This is a opaque handle returned by the FTB system, that uniquely identifies this subscription

client handle: This is the opaque handle that was returned to the client during the FTBConnect call

subscription str: A string that specifies the options that a client can base itssubscriptions on. Currently, the

subscriptionstr is of the format“attribute1=value1, attribute2=value2, attribute3=value3”. The supported

attributes and values are defined in Table 4.7. The subscription str is case-insensitive. If an attribute is not

present in the subscription string, it will default to the value ‘all’, unless faced with constraints arising due to

sub-dependencies with other fields. The subscriptionstr can be set to “” to subscribe to all events.Examples of

subscriptionstr : To subscribe to all events of severity fatal: subscription str=“severity=fatal”, To subscribe to

events of severity fatal and jobid=1234: subscriptionstr=“severity=fatal, jobid=1234”.

Specifying the correct subscription string is the users responsibility. For ex: If the user specifies an “eventname

= MPICH ABORT, eventspace=ftb.os.all”, it may never obtain that event since thepublisher, in the ‘ftb’ region,

may throw the event in the ftb.mpi.mpich2 eventspace only. However, the FTB system in this casewill not re-

turn any error during FTBSubscribe. Another example of a subscriptionstr of “eventname = MPICHABORT,

severity=info” might not result in the subscriber getting any events if eventname = MPICHABORT is of sever-

ity=fatal. In particular, while specifying eventname in subscriptionstr, it is best not to mention the severity field,

and if mentioned then set it to ‘all’ or to the correct value ofthat eventname.

int (*callback)() : This is the notification callback/handler function that the client wishes to register to handle

events matching the above subscription string. This argument is set to NULL, if the client wants to get events

using the polling mechanism instead of the notification mechanism.
. .. .

The CIFTS Group 12

FAULT TOLERANCE BACKPLANE: DEVELOPER’ S PROGRAMMING MANUAL. .. .

void *arg : These are the arguments that the client can pass to the callback function (third argument), if it wants.

This argument is set to NULL if the client is using the pollingmechanism.

RETURNS:

FTB SUCCESS: Indicates that the subscription was posted successfully

FTB ERR NULL POINTER: Indicates that subscribehandle is NULL

FTB ERR INVALID HANDLE: Indicates that the clienthandle is invalid

FTB ERR FILTER ATTR: Indicates that the attribute name used in the subscription str is not a valid name

FTB ERR FILTER VALUE: Indicates that a value for the attribute used in the subscriptionstr is not valid

FTB ERR EVENTSPACEFORMAT: Indicates that value for the eventspace field is of incorrect format

FTB ERR SUBSCRIPTIONSTR: Indicates that the subscription string is of an invalidformat. This error code is

also returned if the same attribute is specified twice in the subscription string (ex: subscriptionstr=“severity=info,

severity=info”

FTB ERR NOT SUPPORTED: Indicates that the subscription method (polling, notification, both, neither) being

used was not specified by the client during the FTBConnect routine

DESCRIPTION:

This routine is used by the client to subscribe for events. The client specifies two things while subscribing to the

FTB network.

1. The subscription criteria - which it specifies in the subscription string.

2. The mechanism (polling or notification) to be used to receive the events matching the above subscription

criteria in the subscription string.

During the FTBConnect call, if the client has specified “FTBSUBSCRIPTIONNOTIFY” as the value for the

client subscriptionstyle (part of the clientinfo data structure), then it needs to specify the callback function

details in this current routine.

During the FTBConnect call, if the client has specified “FTBSUBSCRIPTIONPOLLING” as the value for the

client subscriptionstyle (part of the clientinfo data structure), then it needs to specify NULL in the third and

fourth arguments of the routine call.

During the FTBConnect call, if the client has specified “FTBSUBSCRIPTIONNONE” as the value for the

client subscriptionstyle (part of the clientinfo data structure), then this routine should not be calledat all.
. .. .

The CIFTS Group 13

FAULT TOLERANCE BACKPLANE: DEVELOPER’ S PROGRAMMING MANUAL. .. .

If the client specified “FTBSUBSCRIPTIONBOTH” during the FTBConnect call, then either notification or

polling mechanism can be used, as described above.

An event will be reported only once. An event may match many subscription strings. It may thus have options

wherein it can be obtained by the client using polling or notification mechanisms. There may be multiple valid

callback/handler functions that can be trigerred in the case of a match. If an event matches both polling and noti-

fication, the notification mechanism(s) will have precedence over polling. If multiple callback/handler functions

can be called - then the callback function for the first matching subscription string will be trigerred.

An example of this is as follows: Consider the three FTBSubscribe calls made by a client, in the below order,

with the following options-

1. subscriptionstr=“severity=fatal,jobid=1234 ” and subscriptionstyle=“FTB SUBSCRIPTIONPOLLING”

2. subscriptionstr=“severity=fatal ” and subscriptionstyle=“FTB SUBSCRIPTIONNOTIFY” with callback

function as funccallback1.

3. subscriptionstr=“” and subscriptionstyle=“FTB SUBSCRIPTIONNOTIFY” with callback function as

func callback2.

An event with “severity=fatal” and “jobid=1234” should actually be a match against all the three subscription

strings. However, on the event arrival, the event will be matched against the subscription strings in the notifi-

cation subscribestyle list, in the order in which they were subscribed. In this case, the event matches against

subscriptionstr=“severity=fatal” and the funccallback1 callback function will be called.

The FTBSubscribe routine returns the subscribehandle that can be used by the client at later stages to un-

subscribe the subscription string from the FTB system.

For multi-threading clients , the FTBSubscribe routine can be called by any thread.

. .. .

The CIFTS Group 14

FAULT TOLERANCE BACKPLANE: DEVELOPER’ S PROGRAMMING MANUAL. .. .

4.5 Un-subscribe a subscription from the FTB network

int FTB Unsubscribe

(

INOUT FTB subscribehandlet *subscribehandle

)

ARGUMENTS:

subscribehandle: This is a opaque handle that was returned by the FTB system during the FTBSubscribe call.

In the FTBUnsubscribe routine, FTB updates the handle to make it invalid for use in subsequent calls

RETURNS:

FTB SUCCESS: Indicates that the subscription was un-subscribed successfully

FTB ERR INVALID HANDLE: Indicates that the subscribehandle is invalid

DESCRIPTION:

This routine is used by the client to un-subscribe subscriptions from the FTB system. Once an subscription

is un-subscribed, the client will no longer receive events matching that subscription string. The thread for the

notification callback handler will be terminated.

For multi-threading clients , any thread can call the FTBUnsubscribe routine. Since the FTBUnsubscribe

message may take some time to propagate in the FTB framework,the FTB agents may still forward some events

matching the subscription string to the FTB client. Such events may be silently dropped by the FTB client library

linked to the FTB client.

The user also needs to ensure that certain FTB routines like FTB Connect, FTBSubscribe, FTBDisconnect etc.

are called appropriately before or after FTBUnsubscribe. If threads changes the sequence in which theserou-

tines are called, it may result in un-predictable behavior.

. .. .

The CIFTS Group 15

FAULT TOLERANCE BACKPLANE: DEVELOPER’ S PROGRAMMING MANUAL. .. .

4.6 Get an event from event queue using polling

int FTB Poll event

(

IN FTB subscribehandlet subscribehandle

OUT FTB receiveeventt *receive event

)

ARGUMENTS:

subscribehandle: This is the opaque handle that was returned by the FTB systemduring the FTBSubscribe

call. The subscribehandle internally also indicates to the FTB the subscription string, matching which the event

needs to be returned.

receive event: This is a data structure containing information about the received event. Refer to Table 4.8 for

details on the receiveevent data structure.

RETURNS:

FTB SUCCESS: Indicates an event was successfully obtained fromqueue

FTB ERR NULL POINTER: Indicates that receiveevent is a NULL pointer. This pointer should point to a valid

memory location

FTB ERR INVALID HANDLE: Indicates that the subscribehandle is invalid

FTB ERR NOT SUPPORTED: Indicates that the polling mechanism is not a supported mechanism for this client

and the provided subscribehandle

FTB GOT NO EVENT: Indicates no event was present in the queue

DESCRIPTION:

This routine is used by the client to check if there is any event matching aparticular subscription string present

in the queue. The client needs to provide the subscribehandle obtained from the FTBSubscribe routine (that

was called to subscribe that particular subscription string). If an event is successfully obtained from the queue, it

will be returned in the receiveevent data structure.

Subscribers receiving events through the polling mechanism need the ensure that this routine is called frequently

enough in order to ensure progress of FTB. If this routine is not called frequently enough, the FTB library will
. .. .

The CIFTS Group 16

FAULT TOLERANCE BACKPLANE: DEVELOPER’ S PROGRAMMING MANUAL. .. .

drop events for this subscriber once it runs of buffer resources. In other words, progress of FTB in upto the end

user when polling is used as a subscription method.

The receiveevent data structure contains a field named eventtype. This field is important from the Event asso-

ciation (refer to section 4.9) point-of-view. If eventtype is ‘1’, the received event is considered anormal event

and the interpretation of the eventpayload field is left to the client. If eventtype is ‘2’, the received event is

considered aresponse or follow-upto a prior published or received event. In this case, it is expected that the

received event payloadshould have theevent handleof the prior event as the first field.

If a client wants to generate the eventhandle for any received event, it can do so by calling the FTBGet eventhandle

routine described in the later sections of the guide. Pleaserefer to Section 4.9 on ‘Event association’ to get a

better understanding of eventtypes and eventhandles.

For multi-threading clients , any thread can call this routine.

4.7 Disconnect the client from FTB

int FTB Disconnect

(

IN FTB client handlet client handle

)

ARGUMENTS:

client handle: This is a opaque handle that was returned by the FTB system during the FTBConnect call.

RETURNS:

FTB SUCCESS: Indicates success

FTB ERR INVALID HANDLE: Indicates invalid client handle

DESCRIPTION:

This routine will be used to disconnect the client from FTB. It will terminate all FTB-related existing connections

and free-up all resources.

. .. .

The CIFTS Group 17

FAULT TOLERANCE BACKPLANE: DEVELOPER’ S PROGRAMMING MANUAL. .. .

For multi-threaded clients, only one thread can call FTB Disconnect. It is ideally recommended that the main

thread call FTBDisconnect after all threads have terminated. It it up to theuser to ensure that FTBDisconnect

is the last routine to be called for FTB.

4.8 Additional error codes

All the above routines may return some additional error codes, as follows. These error codes may reflect the

internal state of FTB

1. FTB ERR NETWORK GENERAL - An internal general network error

2. FTB ERR NETWORK NO ROUTE - The FTB system could not find a route to send the message

3. FTB ERR INVALID PARAMETER - FTB unexpectedly failed on a require parameter

4.9 Associating events

In the FTB framework, on receiving an event, the FTB clients may frequently find a need to publish aresponse

event. An FTB client may also find a need to publish afollow-upevent to its prior published event.

‘Event association’ takes place when an event in published as a follow-up to a prior published event or as a

response to a received event. Consider the below examples for usage scenarios when this may take place

1. A component may publish an “potential failure” event (event 1). After some time, it may want to publish a

“recovered from failure” follow-up event (event 2). It willbe useful if it can associate event 2 and indicate

it as a follow-up event to event 1.

2. MPI publishes “cannot communicate with node 1” event (event 1). The InfiniBand network library, then,

publishes “communication re-established” event (event 2)and indicates that this is a response event to

event 1.

3. OS publishes “process x has 100% cpu usage”. The scheduler, then, publishes a response event “process

x: priority lowered”.

Event association will provide a mechanism to exchange somelevel of event-response information among differ-

ent clients.

The current FTB implementation implements event association through the use of event handles. At the sender

FTB client end, FTBPublish() routine returns a unique event handle for every event it publishes. At the receiver
. .. .

The CIFTS Group 18

FAULT TOLERANCE BACKPLANE: DEVELOPER’ S PROGRAMMING MANUAL. .. .

FTB client end, the client can request for this event handle to be generated from the received message (see Table

4.8 for the received message data structure) using the FTBGet eventhandle routine.

When the receiver FTB client wants to publish a response event (named event2) in response to a received event

(named event1), it does the following

1. Obtain and keep track of the eventhandle for event1. The eventhandle for event1 can be obtained using the

FTB Get eventhandle routine (described in next section). The FTBGet eventhandle routine re-generates

the eventhandle for event1 from the FTBreceiveeventt structure, which contains the received event1

2. Create theevent propertiesstructure to be passed to FTBPublish routine for event2. In this eventproperties

structure, set the eventtype to ‘2’ and copy the eventhandle for event1 in the eventpayload section

3. Publish the event using FTBPublish

When an FTB client wants to publish an event (named event2) asa follow-up to its prior published event (named

event1), it does the following

1. Keep track of the eventhandle provided to it on the return of the FTBPublish routine for event1

2. Create theevent propertiesstructure to be passed to FTBPublish routine for event2. In this eventproperties

structure, set the eventtype to ‘2’ and copy the eventhandle for event1 in the eventpayload section

When the new receivers receive the response/follow-up event, they should check the eventtype field. If the field

indicates that the event is a follow-up event, the new receiver client can read the original event’s eventhandle

from the received event’s payload section.

The Event association feature currently works with the following assumptions

1. Event handles are opaque to the FTB client

2. The FTB system does not maintain a record of published or received events. It is the client’s respon-

sibility to keep track of the published event handles and thereceived events. The client can use the

FTB Compareeventhandle routine to compare event handles to determine a match.

3. From the FTB systems point-of-view, the eventtype and eventpayload are transparent fields. The FTB

system makes no decisions based on these fields. Thus, event association is transparent to FTB. The FTB

system will not attempt to send the response/follow-up events to any specific destination

4. The subscriptionstring does not contain any specific criteria for subscribing to follow-up events. A FTB

client can only realize that an event is a follow-up event after examining the eventtype field in the received

event
. .. .

The CIFTS Group 19

FAULT TOLERANCE BACKPLANE: DEVELOPER’ S PROGRAMMING MANUAL. .. .

4.9.1 Get the eventhandle

int FTB Get eventhandle

(

IN const FTBreceiveeventt receiveevent

OUT FTB eventhandlet * event handle

)

ARGUMENTS:

event handle: This is a opaque handle that identifies the event that was published by the FTB client

RETURNS:

FTB SUCCESS: Indicates that event handle was successfully returned

FTB FAILURE: Indicates that event handle could not be generatedfor some reason

DESCRIPTION:

This routine will return an event handle from a receiveevent structure. The event handle will be an opaque

handle.

For multi-threaded clients, any thread can call this routine

4.9.2 Compare eventhandles

int FTB Compareeventhandles

(

IN const FTBeventhandlet eventhandle1

IN const FTBeventhandlet eventhandle2

)

ARGUMENTS:

event handle: This is a opaque handle that identifies the event that was published by the FTB client

. .. .

The CIFTS Group 20

FAULT TOLERANCE BACKPLANE: DEVELOPER’ S PROGRAMMING MANUAL. .. .

RETURNS:

FTB SUCCESS: Indicates that handles match

FTB FAILURE: Indicates that handles do not match

FTB ERR INVALID HANDLE: Indicates invalid event handle

DESCRIPTION:

This routine can be used by the FTB client to compare two eventhandles. This would most likely be useful when

the received event has an eventtype of ‘2’, whose payload contains an eventhandle of the original event.

For multi-threaded clients, any thread can call this routine

4.10 Progress in FTB

The FTB provides an infrastructure for communication of events between publishers and subscribers. Subscribers

may subscribe to receive any event that matches the subscription criteria. To ensure that events do not get lost or

dropped, the subscribers need to ensure frequent progress at their end to receive events. Progress may be achieved

by (1) Calling the FTBPoll event routine or (2) By registering appropriate handlers through the asynchronous

notification mechanism (specified along with the FTBSubscribe routine).

. .. .

The CIFTS Group 21

FAULT TOLERANCE BACKPLANE: DEVELOPER’ S PROGRAMMING MANUAL. .. .

Table 4.1:Maximum values for FTB MAX *

Field Name
Value

FTB MAX CLIENTSCHEMA VER
8

FTB MAX EVENTSPACE
64

FTB MAX CLIENT NAME
16

FTB MAX CLIENT JOBID
16

FTB MAX EVENT NAME
32

FTB MAX SEVERITY
16

FTB MAX HOST NAME
64

FTB MAX PID STARTTIME
32

FTB MAX PAYLOAD DATA
368

. .. .

The CIFTS Group 22

FAULT TOLERANCE BACKPLANE: DEVELOPER’ S PROGRAMMING MANUAL. .. .

Table 4.2:Data Structure client info

Field Name
Field Description

char clientschemaver
[FTB MAX CLIENTSCHEMA VER]

This is a string of length FTBMAX CLIENTSCHEMA VER, including the ter-
minating null character. This field isreserved for now. In the future, it will be
used to specify the component schema version that the clientis conforming to, in
its implementation.

char eventspace
[FTB MAX EVENTSPACE]

The eventspace field identifies the namespace in which the client
will publish events in its lifetime. eventspace is a string of length
FTB MAX EVENTSPACE (including the terminating null character) of the
format regionname.componentcategory.componentname. Details of the
eventspace string split-up are as follows.

1. regionname is a character sequence of alphanumeric and underscorechar-
acters. ‘region’ is the first-level hierarchy of the FTB namespace. The re-
gion name of ‘ftb’ is considered as reserved for all CIFTS-recognized com-
ponent categories and component names. A component publishing an event
in the ‘ftb’ region of the namespace will have had the semantic behavior of
its publishable events well-defined in the public domain.

2. componentcategory is a character sequence of alphanumeric and underscore
characters. It refers to the category a component belongs to. Examples in-
clude filesystems, os, mpi, applications etc. Component categories in the
‘ftb’ region are assigned and provided by the CIFTS group only.

3. componentname is a character sequence of alphanumeric and underscore
characters. It refers to the name of the component. Examples: For the com-
ponentcategory= ‘mpi’ - components names may include MPICH2, MVA-
PICH2, Open MPI etc. Component names and component categories for the
‘ftb’ region are assigned by the CIFTS group.

The eventspace string is a mandatory field provided by the user. There is NO
DEFAULT value assigned to it. The regionname, componentcategory, com-
ponentname character sequences can consist of alphanumeric and the under-
score character(s) only. Each of these three sequences are concatenated using
a ‘.’ to form the eventspace string. The three fields regionname, compo-
nent category and componentname can be of any lengths as long as the en-
tire eventspace string (including the terminating null character) does not exceed
FTB MAX EVENTSPACE. The list of component categories and componentval-
ues reserved in the ‘ftb’ region, by the CIFTS group, can be found in Table 4.4.

char clientname
[FTB MAX CLIENT NAME]

This is a string of case insensitive alphanumeric and underscore characters,
of length FTBMAX CLIENT NAME, including the terminating null character.
There is NO DEFAULT value.

char clientjobid
[FTB MAX CLIENT JOBID]

This field is set by the user to correspond to the Job id of the process. It is of size
FTB MAX CLIENT JOBID characters, including the terminating null character.
There is NO DEFAULT value.continued in Table 4.3

. .. .

The CIFTS Group 23

FAULT TOLERANCE BACKPLANE: DEVELOPER’ S PROGRAMMING MANUAL. .. .

Table 4.3:Data Structure client info ... continued

Field Name
Field Description

char clientsubscriptionstyle
[FTB MAX SUBSCRIPTIONSTYLE]

This field indicates what mechanisms will be supported by this client to get the
events that it will subscribe for during its lifetime. The following string values are
available for this field. Internally, the FTBMAX SUBSCRIPTIONSTYLE field
is set to 32 bytes currently.

1. “FTB SUBSCRIPTIONPOLLING” - Client will make an explicit call
and get the event from its event queue. The event queue will bepop-
ulated by the FTB system based on client’s subscription criteria. The
“FTB SUBSCRIPTIONPOLLING” option indicates that the client plans to
receive events by the polling mechanism only. It will not be allowed to used
notification mechanisms.

2. “FTB SUBSCRIPTIONNOTIFY” - Client will register a notification call-
back/handler function for its subscriptions. The callbackfunction will be
called by the FTB library on a match between the incoming event and sub-
scription criteria. The “FTBSUBSCRIPTIONNOTIFY” option indicates
that the client plans to receive events by the notification mechanism only. It
wont be allowed to use polling mechanism.

3. “FTB SUBSCRIPTIONNONE” - Client plans to not subscribe to any events
in its lifetime and plans to only publish events. This helps FTB avoid un-
necessary resource allocation.

4. “FTB SUBSCRIPTIONBOTH” - Client plans to get events by using both
polling and notification callback/handler mechanisms.

There is NO DEFAULT value automatically assigned to this field. The er-
ror code FTBERR SUBSCRIPTIONSTYLE is returned if a different value,
other than the ones discussed above is assigned to the clientsubscriptionstyle
variable. For BGL systems, the “FTBSUBSCRIPTIONNOTIFY” and the
“FTB SUBSCRIPTIONBOTH” options are not supported on BGL and if these
values are specified, a error code of FTBERR NOT SUPPORTED is returned.

unsigned int clientpolling queuelen
The client can use this parameter to set the size of the polling queue. This
parameter will only be considered if the FTBSUBSCRIPTIONPOLLING
or FTB SUBSCRIPTIONBOTH values are specified in the
client subscriptionstyle field. The default value of this field is specified by
the FTBDEFAULT POLLING Q LEN (currently set to 64) parameter in FTB.
The default value is used if the value of the clientpolling queuelen is set as
less than or equal to 0 by the user. The FTBDEFAULT POLLING Q LEN will
become a tunable parameter in a future version of FTB.

. .. .

The CIFTS Group 24

FAULT TOLERANCE BACKPLANE: DEVELOPER’ S PROGRAMMING MANUAL. .. .

Table 4.4:Known Components and Component Categories for the ’ftb’ region(will be changed in coming months)

Component Category Component Name

mpi mpich2, mvapich2, openmpi, lammpi

filesystem pvfs

os linux, bgl-cnk

applications swim, nwchem, lammps

networks ib

rm js cobalt

checkpointsw blcr

math lib ft la

test1 test1

Table 4.5:Data Structure: event info

Field Name Field Description

char eventname[FTBMAX EVENT NAME] This is a case-insensitive string of alphanumeric and underscore characters,
of FTB MAX EVENT NAME characters, including the terminating null
character.

char severity[FTBMAX SEVERITY] This is a case-insensitive string of FTBMAX SEVERITY characters. The
severity needs to be one of the following values (as defined inthe FTB
system): ‘fatal’, ‘error’, ‘info’, ‘warning’

Table 4.6:Data Structure: event properties

Field Name Field Description

uint8 t eventtype eventtype is an integer field which is reserved for now. It will havethe fol-
lowing values: ‘1’ for Normal events ‘2’ for Response events. The values
are pre-defined by the FTB system. If the eventproperties data structure
was set to NULL, then FTB will treat the event as eventtype of ‘1’.

char eventpayload[FTBMAX PAYLOAD DATA] This field contains the user-defined payload. The contents ofthis field
cannot be interpreted by the FTB. The payload is currently limited to
FTB MAX PAYLOAD DATA bytes. If the eventtype is ‘2’, it is expected
that the first entry in this field will be the eventhandle of the event that the
client in responding to. If the eventtype is ‘1’, the entry interpretation is
left to the clients.

. .. .

The CIFTS Group 25

FAULT TOLERANCE BACKPLANE: DEVELOPER’ S PROGRAMMING MANUAL. .. .

Table 4.7:Supported Attributes and Values for Criteria Strings

Attribute Name Possible Values Type/Size of Value

severity ‘all’, ‘fatal’, ‘info’, ‘error’, ‘warning’ Predefined in the FTB system. Any other value
will return the FTBERR FILTER VALUE error
code.

eventspace Format: regionname.componentcategory.componentname.
‘all’ is an acceptable value of all the 3 sub-
fields. The three sub fields of eventspace field
are composed of alphanumeric and underscore
characters. The total length of eventspace is
defined by FTBMAX EVENTSPACE, currently
set to 64 characters. An error in the format of
the eventspace will cause FTB to return the
FTB ERR EVENTSPACEFORMAT error code.
In later FTB versions, the componentcategory and
componentname will be cross-checked against pre-
defined values for regionname, componentcategory
and component. for the ‘ftb’ regionname.

jobid ‘all’, any string String with maximum length FTBMAX JOBID
(16 characters).

host name ‘all’, any string String with maximum length
FTB MAX HOST NAME (64 characters)

eventname ‘all’, any string String with maximum length
FTB MAX EVENT NAME (32 characters).
Event name is a string of case-insensitive
alphanumeric characters and the underscore
character.

Empty string - Subscribe to all events

. .. .

The CIFTS Group 26

FAULT TOLERANCE BACKPLANE: DEVELOPER’ S PROGRAMMING MANUAL. .. .

Table 4.8:Data Structure receive event

Field Name Field Description

char eventspace[FTBMAX EVENTSPACE] The eventspace is a string of format re-
gion name.componentcategory.componentname and length
FTB MAX EVENTSPACE (which includes the terminating null charac-
ter)

char eventname[FTBMAX EVENT NAME] The eventname string is of length FTBMAX EVENT NAME (including
the terminating null character)

char severity[FTBMAX SEVERITY] This string specifies the severity of the event and is of length
FTB MAX SEVERITY(including the terminating null character)

char clientjobid[FTB MAX JOBID] This string specifies the Jobid and is of length FTBMAX JOBID (includ-
ing the terminating null character)

char clientname[FTBMAX CLIENT NAME] This string of length FTBMAX CLIENT NAME characters (including
the terminating null character) is one of the fields that helps identify a FTB
client

uint8 t client extension This is a field which identifies whether the sender FTB client is a IBM
Blue Gene machine or not. This would not be required by the user usually,
but would be required internally by FTB if the user wants to regenerate the
event handle using the FTBGet eventhandle() routine.

uint16 t seqnum The sequence number for this event from the sender side.

FTB location id t incoming src This data structure gives details of the src of the message. The data struc-
ture contains the following fields

1. char hostname[FTBMAX HOST NAME] - A string of size
FTB MAX HOST NAME for the hostname

2. processid t processid - The PID of the client process as obtained
by FTB

3. char pidstarttimet pid starttime[FTBMAX PID STARTTIME] -
This start time of the process with process id PID

uint8 t eventtype This indicates the type of event. A value of ‘1’ indicates theevent is a
normal event and the interpretation of the payload is left tothe user. A
value of ‘2’ indicates that the user is a response event and that the payload
should contain an event handle.

. .. .

The CIFTS Group 27

FAULT TOLERANCE BACKPLANE: DEVELOPER’ S PROGRAMMING MANUAL. .. .

Chapter 5
Dealing with Schema files

Publishing events is an important aspect of the FTB. The FTB requires that an FTB-enabled software pre-declare

the events (and attributes of these events) to the FTB prior to publishing them. Within the FTB framework, there

are two ways to do it.

1. Compile time event declaration: Describe the events within the code of the software. These events are then

passed as a parameter to the FTBDeclarepublishableevents routine. More information on this can be

found in Chapter 4.

2. Run-time event declaration: Use the schema files, to read the events at run-time. The absolute path (in-

cluding the filename) to the file needs to be passed as an argument to the FTBDeclarepublishableevents

routine. For more information on the FTBDeclarepublishableevents routine, refer to Chapter 4.

This chapter deals with the format of the schema file.

5.1 Rules for the schema files

The schema file follows the below rules and guidelines.

1. Every client has its own specific schema file, at a location which is available during run-time

2. This location is indicated in the FTBDeclarepublishableevents routine call.

3. Comments in this file are preceded by # character

4. Blank lines are acceptable

. .. .

The CIFTS Group 28

FAULT TOLERANCE BACKPLANE: DEVELOPER’ S PROGRAMMING MANUAL. .. .

5. The FTB library will being reading the data after the “start” keyword and stop reading once it encounters

the “end” keyword

6. Following the “start” keyword, the eventspace of the component is expected. Please read the preceding

chapters to understand the compostion and semantics of the event space.

7. Following the eventspace, the event names and severity if the formateventname, severityare expected

8. FTB Declarepublishableevents routine will return errors in the above rules are not followed

An example of the schema file is as follows:

start

region name.componentcategory.componentname #This is the eventspace

event1 name, severity

event2 name, severity

end

. .. .

The CIFTS Group 29

FAULT TOLERANCE BACKPLANE: DEVELOPER’ S PROGRAMMING MANUAL. .. .

Chapter 6
Sample Software and Examples of the FTB API

This chapter explains a few example software to demonstrate the FTB API. Most of these examples are a part

of the FTB source code, and can be found in itscomponents directory.

6.1 Example 1: Periodic Watchdog

The watchdog software is used to check the availability of the FTB backplane. It publishes events and waits to

receive those events.

The software demonstrates the following

1. Declaring publishable events within the code

2. Subscribing to events using the polling mechanism

3. Declaring publishable events in a schema file

4. Subscribing to events using the callback mechanism

A simplified version of the FTB watchdog example code is presented in Listing 6.1. Step 2 of the below

code shows how to declare the publishable events, in the codeitself, using the FTBDeclarePublishableevents

routine.

Step 3 and Step 5 in Listing 6.1 also shows how to obtain subscribe for events using the polling mechanism. In

particular, Step 5 shows how to use the FTBPoll event routine to pull the event from the event queue.

. .. .

The CIFTS Group 30

FAULT TOLERANCE BACKPLANE: DEVELOPER’ S PROGRAMMING MANUAL. .. .

Listing 6.1: FTB Watchdog pseudocode

inc lude <s t d i o . h>

inc lude <s t d l i b . h>

inc lude <s i g n a l . h>

inc lude <s t r i n g . h>

inc lude ” l i b f t b . h ”

i n t main (i n t argc , char ∗ argv [])

{

F T B c l i e n t t c i n f o ;

F T B c l i e n t h a n d l e t hand le ;

F T B s u b s c r i b e h a n d l e t s ha nd l e ;

i n t r e t = 0 ; i t e r = 0 ;

/∗ ∗∗∗ STEP−1 ∗∗∗ ∗ /

r e t = FTB Connect (& c in fo , &hand le) ;

i f (r e t != FTB SUCCESS) {

p r i n t f (” FTB Connect i s no t s u c c e s s f u l ”) ; e x i t (−1);

}

/∗ ∗∗∗ STEP−2 ∗∗∗ ∗ /

F T B e v e n t i n f o t e v e n t i n f o [1] = { { ”WATCH DOG EVENT” , ”INFO” } } ;

r e t = F T B D e c l a r e p u b l i s h a b l e e v e n t s (hand le , 0 , e v e n ti n f o , 1) ;

i f (r e t != FTB SUCCESS) {

p r i n t f (” F T B D e c l a r e P u b l i s h a b l e e v e n t s f a i l e d ”) ; e x i t (−1);

}

/∗ ∗∗∗ STEP−3 ∗∗∗ ∗ /

char ∗ s u b s c r i p t i o n s t r = ” e v e n t s p a c e = f t b . a l l . watchdog ” ;

r e t = FTB Subscr ibe (& shand le , hand le , s u b s c r i p t i o ns t r , NULL, NULL) ;

i f (r e t != FTB SUCCESS) {

. .. .

The CIFTS Group 31

FAULT TOLERANCE BACKPLANE: DEVELOPER’ S PROGRAMMING MANUAL. .. .

p r i n t f (” FTB Subscr ibe f a i l e d ”) ; e x i t (−1);

}

whi le (i t e r != 10) {

F T B r e c e i v e e v e n t t c a u g h t e v e n t ;

F T B e ve n t ha nd l e t ehand le ;

/∗ ∗∗∗ STEP−4 ∗∗∗ ∗ /

r e t = FTB Publ ish (hand le , ”WATCHDOG EVENT” , NULL, &ehand le) ;

i f (r e t != FTB SUCCESS) {

p r i n t f (” FTB Publ ish f a i l e d ”) ; e x i t (−1);

}

s l e e p (1) ;

/∗ ∗∗∗ STEP−5 ∗∗∗ ∗ /

r e t = F T B P o l l e ve n t (shand le , &c a u g h te v e n t) ;

i f (r e t != FTB SUCCESS) {

p r i n t f (”No e ve n t caugh t ”) ; break ;

}

i t e r ++;

}

/∗ ∗∗∗ STEP−6 ∗∗∗ ∗ /

FTB Disconnect (hand le) ;

re tu rn 0 ;

}

. .. .

The CIFTS Group 32

FAULT TOLERANCE BACKPLANE: DEVELOPER’ S PROGRAMMING MANUAL. .. .

Listing 6.2 shows how to specify a schema file in the code usingthe FTBDeclarePublishableevents routine.

In code Listing 6.1, one can replace Step 2 by Listing 6.2 to achieve the same effect with the schema file. Please

note that the schema file needs to be available at run-time

Listing 6.2: Specifying schema files in a code

/∗ ∗∗∗ STEP−2 ∗∗∗ ∗ /

r e t = F T B D e c l a r e p u b l i s h a b l e e v e n t s (hand le , ” watchdogschema . f t b ” , NULL, 0) ;

i f (r e t != FTB SUCCESS) {

p r i n t f (” F T B D e c l a r e P u b l i s h a b l e e v e n t s f a i l e d ”) ; e x i t (−1);

}

Listing 6.3 shows the format of the schema file for the FTB Watchdog code.

Listing 6.3: Schema File for FTB Watchdog

s t a r t

f t b . f t b e x a m p l e s . watchdog

w a t c h dog e ve n t i n f o

end

Lastly, Listing 6.4 shows how to replace Step 3 and Step 5 in Listing 6.1 by Step3 in Listing 6.4 to subscribe to

events using the notification function. Of course, the relevant notification function will also need to be provided,

an example of which is given in Lsiting 6.5.

Listing 6.4: Subscribe to events using notification

/∗ ∗∗∗ STEP−3 ∗∗∗ ∗ /

char ∗ s u b s c r i p t i o n s t r = ” e v e n t s p a c e = f t b . a l l . watchdog ” ;

r e t = FTB Subscr ibe (& shand le , hand le , s u b s c r i p t i o ns t r , w a t c h d o gr e c e i v e r f u n c , N

i f (r e t != FTB SUCCESS) {

p r i n t f (” FTB Subscr ibe f a i l e d ”) ; e x i t (−1);
. .. .

The CIFTS Group 33

FAULT TOLERANCE BACKPLANE: DEVELOPER’ S PROGRAMMING MANUAL. .. .

}

Listing 6.5: Example notification callback handler

void w a t c h d o g r e c e i v e r f u n c (F T B r e c e i v e e v e n t t ∗ c a u g h t e v e n t)

{

p r i n t f (” Rece ived e ve n t d e t a i l s : Event space=%s , S e v e r i t y=%s ,

Event name=%s , C l i e n t name=%s ,

Hostname=%s ,Seqnum=%d\n” , c a ugh t e ve n t−>e ve n t s pa c e ,

c a ugh t e ve n t−>s e v e r i t y , c a ugh te ve n t−>event name ,

c a ugh t e ve n t−>c l i e n t na m e , c a ugh te ve n t−>i n c om i ng s r c . hostname ,

c a ugh t e ve n t−>seqnum) ;

re tu rn ;

}

Further examples can be found in the FTB source code. Please refer to the README in the source code for more

information.

. .. .

The CIFTS Group 34

