/JSsASCADE

/ TECHNOLOGY
Data Exchange

Extended Data Exchange (XDE)
User’s Guide

Version 6.3 / September 2008 $\/[OPENCASCADE

Copyright © 2008, by Open CASCADE S.A.S.

PROPRIETARY RIGHTS NOTICE: All rights reserved. No part of this material may be
reproduced or transmitted in any form or by any means, electronic, mechanical, or
otherwise, including photocopying and recording or in connection with any information
storage or retrieval system, without the permission in writing from Open CASCADE S.A.S.

The information in this document is subject to change without notice and should not be
construed as a commitment by Open CASCADE S.A.S. Open CASCADE S.A.S. assures
no responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or
copied only in accordance with the terms of such a license.

CAS.CADE and Open CASCADE are registered trademarks of Open CASCADE S.A.S.
Other brand or product names are trademarks or registered trademarks of their respective
holders.

NOTICE FOR USERS:

This User Guide is a general instruction for Open CASCADE study. It may be incomplete
and even contain occasional mistakes, particularly in examples, samples, etc.
Open CASCADE S.A.S. bears no responsibility for such mistakes. If you find any
mistakes or imperfections in this document, or if you have suggestions for improving this
document, please, contact us and contribute your share to the development of Open
CASCADE Technology: bugmaster@opencascade.com

'ﬁ—: OPENCASCADE

Tour Opus 12
77, Esplanade du Général de Gaulle
92914 PARIS LA DEFENSE
FRANCE

mailto:bugmaster@opencascade.com

1.

Contents

INTRODUCTION L.ttt sttt sb et et e eb e st et e e b et e teebe e et e ebe e eteabeseebeabeseebesbeseetesresenrens 1
1.1. OVERVIEW OF THE EXTENDED DATA EXCHANGE (XDE)ecviiiiiieirsisece e 1
1.1.1. PIEIEOUISITE. ... ettt bbbt b et b et b et et b et b ettt 1
1.1.2. ENVIFONMENT VATIADIEScviiiiiiiic et st te et e s be e be e beeteesteesteas 1
1.1.3. ST ol (=] LTSRS PROURPTP 1
104, XDE DALA TYPES .vviveeireitiieseatesiesestessesessessesessessessssessessssessessasessessssessessasessessasessessasessessasessensssessensans 1
115, XDE OFQANIZALIONcouiieiie ettt sttt sttt ae e bbbt b e e st e s e e st e besbesbesbesbeebe e e eneennen 2
1.1.6. F T o] LTS OSSPSR URUR PR 2
I A V- 1 1 To F= Vo] g I d (o] o =] TSP 3
1.1.8. INBIMIES. ..ttt etttk b e et h e e e b e Rt e Rt e R Rt e R e R e e R e e R e Rt R e Re e R e e Rt e R e e nnnenreenrean 4
I TR @01 [0 (3 L [0 =11 S PRSSSRS 4
BASIC CONCEPTS ..ottt bbbt b e e s bbbt s e bt s e et b ene bt ne e 6
2.1, OVERVIEW .. otiitiiteitceteet ettt ekttt bbbkt e 88 E 4Rk R £ e b e e oAbt AR e AR e Rt SRt e h e e e e b e e e Rt Rt bt b et nnen 6
2.1.0. GENEIAI CRECK ..ttt bttt et 6
2.1.2. Getting an Application or an Initialized DOCUMENTcccoiiiiiiiriiiineiee e 6
2.2, SHAPES AND ASSEMBLIES.uttitttiteesteesteesteaeeaseeaseesseesseesseassesssesseesteesteestessseasssaseesseesseesseensesssenssessesssesssens 6
2.2.1. Initializing @an XDE DOCUMENT (SNAPES) ...veveiterieeiieiieiee ettt s nne 6
2.2.2. Getting a Node considered as an ASSEMDIYcoi oo 7
2.2.3. Updating the Assembly after Filling or EQItiNgcccooiiiiiiiiii e 7
2.2.4. Adding or Setting TOp LEVEl SNAPESccviiiieiiie e 7
2.2.5. Setting a given Shape at a given Labelc.coiiiiiiiiie et 8
2.2.6. Getting a Shape from @ Labelcoveiiiiii e 8
2.2.7. Getting a Label from @ SNAPEcvcviieiiie e 8
2.2.8. Other QUENIES ON @ LADEL.......cviiviiieeceece ettt s be e sbe st sbe e ebeeebeebe e 9
2.2.9. Instances and References for COMPONENLS...........cocviiiiiiriiienie e e 10
2.3, EDITING SHAPESioitiitiitie ettt sttt s h ettt a et e st e bt e s be e be e ae e ehe e ehe e ebe et e e st e es b e nbee et e e nbeenbeenteaneeanes 11
2.4, MANAGEMENT OF SUB=SHAPESceitittittiteeittestteteastesseestessteesteaseessesasessaeesstessesssesssesssessesssesssessessessnes 11
T (o L=l = I [USSR 12
2.5.1. N 100U PO TR U PO TOPPTOPUPRTON 12
PR -1 311 o] [o OSSR 13
2.5.3. N =T T ST U TP UP TR TR 14
2.5.4. VOIUME .ttt b R R Rt R R R Rt b e b bt b e 14
P T O(0] Ko L TP PR PRSP 14
2.6.1. INTHAHZALION ...ttt ettt bbbttt n bt enn 15
P20 T Vo (o [T - o] o] SRS 15
2.6.3. (@ 0= g 1Yo g Of0] (o] ¢ TP PO 16
2.6.4. o[0T o O] (o] -SSR 17
N B N4 =1~ S PP S PRSP RTR 17
2.7.1. Reading and Writing STEP OF IGES...........ccoiiiiiiieee e 17
2.7.2. REAAING @ STEP fIlE .cuiiiiiiiii ittt sttt bt nb e ene 18
2.7.3. WIItING @ STEP fIlE 1..iviiviiiiicii et bbbttt ettt sb e ees 18
2.7.4. Reading @n IGES FlEcoviiiiiiieie ettt 19
275, WIItING @N IGES FilE ...ui ittt st a et r e be st saesre e e eneesrens 19
2.8, USING AN XDE DOCUMENT ...coitieitiettateaieesieesteesseese e sseesteesteesbeesnessessmessnesaneenneesneasresssenseesreenreenesnnssnes 19
2.8.1. XDE Data inside an Application DOCUMENLccccveiieiiiieiisise e eie ettt se e se e seens 19
PACKAGE XCAFDOC. ..ottt ittt sttt sbe st abe st eseebe st eseebesaeseebe st es e abe st esaesessessanentessanen 21
3.1, GENERAL DESCRIPTION ...cutitittitiateaseastestessessessesseaseassesseasessesstaseaseessessesesbeaseasesseasse s enseneeanenbeaneeseeneennenes 21
3.2. ENUMERATION XCAFDOC _COLORTYPE ...iiiiiiestieiiesiesiiesieesteesieeseessesssessssesssessesssessssssssssesssesssnsnsesnessnes 21

3.3, CLASS XCAFDOC_DOCUMENTTOOL ...cuiiriiiiuiaieaieesresitssesiesresiesieesse st sre st sessnesnesn e sne e 21

Introduction

TR 5 B € -1 o 1= = 1 o (=T Tod] [OSSR 21
3.3.2. Y111 o T LR PROSSPRR 22
34, CLASS XCAFDOC _LOCATION.....cctiiiutertiaristestesteaie et see st sre st se e sb e ar ettt se e e n e e an b bt ne e 23
341, GENEIAl UESCIIPLION ..ottt bbb et b bbbttt b et b et ne et 23
I /1113 To o OSSO 23
3.5, CLASS XCAFDOC COLOR ...ttiitiiiititiiiesitteateestaesteesbe s s tasssba e s e e ssbe e s beeaabe e s beeanbe e s beeanbeeabeeanbeeanbaennbeen 23
3510 GENEIAl AESCHIPLION ...ttt e bbbttt e b e bbbt b et ene e e neas 23
3.5.2. IMEENOAS ... ettt bbbttt bt e 23
3.6, CLASS XCAFDOC _VOLUMEcutiiiiiiiieiiteiiee st sieesiaesbesssbe s ssteessaasssbesssbessbeessbessbeessbeesbessnbesssteesnnens 24
IS5 B € -1 o 1= =1 o (- Tod o] [USSR 24
3.6.2. IMEENOUSttt bbbt b et 25
3.7, CLASS XCAFDOC _AREAoiiieiieieete et seeestteste e e as e sseesteesteesteesteaseeasesaseesseeteenseassenseeaseesseeseneneeanenanes 25
T A B -1 o 1= = | o (=Yoo [oSS 25
3.7.2. Y111 o T LR PROSSPRR 25
3.8, CLASS XCAFDOC_CENTROID.....ccutiutiurertiaristeaseaseaseassesstasesse st ssesseessesssas st areste s asse e enesnesnesbesneeseeneenne s 26
3.8. 1. GENEIAl UESCIIPLION ..ottt bbbt b ettt b ettt 26
TR I /1113 To o OSSO SR 26
3.9, CLASS XCAFDOC SHAPETOOL .ecuviiiiiieiiiteiieesieeiteesbessteesssessstesssaaesstaesssesstassnseessaasnsessteesnsessnsessnsens 26
3.9.1. GENEIAl AESCHIIPLION ...ttt ettt b et b et e e e b b be b et e st e e eas 26
3.9.2. IMEENOAS ... ettt bbbttt bt e 27
3.10. CLASS XCAFDOC_COLORTOOL ..vvvirieriateeeresteseesesteseesessessesessessesessessesessessesessesssssssessessssessessasessensanes 31
T80 0 R -1 o 1= = Y o (=T Tod] [S 31
3LL0.2. MEBLNOUS. ..ottt b et et bR bbbt bbbt 32
3.11. CLASS XCAFDOC_LAYERTOOL, t1uttittieeeseiiseestsesteeieassesseessaessessseesssesssssssssssssessssesseensesssesssessesssesssees 34
3111 GENEraAl AESCHIPLION ..ottt b bbbttt b ettt 34
T8 5 T /11 1 g To o LSS 35
3.12. CLASS XCAFDOC_GRAPHNODE;eiutiiitititiieesteeste et sitesteesteesteesteasteaneessessseesseesbeenbeensesssessessseeseens 38
312,10, GENEIAl AESCHIPLION ...ttt ettt bbbt bttt e e e e b b ebeebe et ene e e neas 38
TN /1= 13 To o SO SO U SR 38

3.13. PACKAGE METHODS ... utttiiiieiiiiittetiee e e s s it bttt e e s e et ses b bbb e e e s e e s s e sbbb b e e e seeesesabbbabesasesssabbbbaeesesssssbbbbaeesesssasbrbes 40

Introduction

1. Introduction

1.1. Overview of the Extended Data Exchange (XDE)

This manual explains how to use the Extended Data Exchange (XDE). It provides basic
documentation on setting up and using XDE. For advanced information on XDE and its
applications, see our offerings on our web site at
www.opencascade.com/support/training.html

Based on document architecture, XDE allows processing of various types of data to and
from external files.

XDE is available for users of Open CASCADE on all supported platforms (Linux, Sun
Solaris, Windows NT).

1.1.1. Prerequisite

The Extended Data Exchange (XDE) component requires Advanced Shape Healing for
operation.

1.1.2. Environment variables

To use XDE you have to set the environment variables properly. Make sure that two
important environment variables are set as follows:

e CSF_PluginDefaults points to sources of %CASROOT%/src/XCAFResources
($CASROOQT/src/XCAFResources).

e CSF _XCAFDefaults points to sources of %CASROOT%/src/XCAFResources
(SCASROOT/src/XCAFResources).

1.1.3. Basic terms
For better understanding of XDE, certain key terms are defined:

e Shape A (simple) shape is a standalone shape, which does not belong to the
assembly structure.

e Instance An instance (of a shape) is a replication of another shape with a
location that can be the same location or a different one.

Assembly An assembly defines a construction that is either a root or a sub-assembly.

1.1.4. XDE Data Types
The following types of data are currently supported:
e assemblies

e validation properties

e names
e colors
o layers

http://www.opencascade.com/support/training.html

Introduction

It is also possible to add new types of data by using tools as prototypes. This makes XDE
a basically extensible framework.

In addition, XDE provides reading and writing tools to read and write the data supported
by STEP and IGES files.

1.1.5. XDE Organization

The basis of XDE, called XCAF, is a framework based on OCAF (Open CASCADE
Application Framework) and is intended to be used with assemblies and with various
kinds of attached data (attributes). Attributes can be Individual attributes for a shape,
specifying some characteristics of a shape, or they can be Grouping attributes, specifying
that a shape belongs to a given group whose definition is specified apart from the shapes.

XDE works in an OCAF document with a specific organization defined in a dedicated
XCAF module. This organization is used by various functions of XDE to exchange
standardized data other than shapes and geometry.

The Assembly Structure and attributes assigned to shapes are stored in the OCAF tree. It
is possible to obtain TopoDS representation for each level of the assembly in the form of
TopoDS_Compound or TopoDS_Shape using the API.

Basic elements used by XDE are introduced in the XCAF sub-module by the package
XCAFDoc. These elements consist in descriptions of commonly used data structures
(apart from the shapes themselves) in normalized data exchanges. They are not attached
to specific applications and do not bring specific semantics, but are structured according
to the use and needs of data exchanges.

The Document used by XDE usually starts as a TDocStd_Document.

1.1.6. Assemblies

XDE supports assemblies by separating shape definitions and their locations. Shapes are
simple OCAF objects without a location definition. An assembly consists of several
components. Each of these components references one and the same specified shape
with different locations. All this provides an increased flexibility in working on multi-level
assemblies.

For example, a mechanical assembly can be defined as follows:

+1:1:3 L-BRACKET-ASSEMBLY_2
:1:1:4 ROD-ASSEMBLY_1

Introduction

Figure 1. Assembly Description and View

XDE defines the specific organization of the assembly content. Shapes are stored on sub-
labels of label 0:1:1. There can be one or more roots (called free shapes) whether they
are true trees or simple shapes. A shape can be considered to be an Assembly (such as
AS1 under 0:1:1:1 in Figurel) if it is defined with Components (sub-shapes, located or
not).

XCAFDoc_ShapeTool is a tool that allows you to manage the Shape section of the XCAF
document. This tool is implemented as an attribute and located at the root label of the
shape section.

1.1.7. Validation Properties

Validation properties are geometric characteristics of Shapes (volume, centroid, surface
area) written to STEP files by the sending system. These characteristics are read by the
receiving system to validate the quality of the translation. This is done by comparing the
values computed by the original system with the same values computed by the receiving
system on the resulting model.

Advanced Data Exchange supports both reading and writing of validation properties, and
provides a tool to check them.

Introduction

Figure 2. Validation Property Descriptions

Check logs contain deviations of computed values from the values stored in a STEP file. A
typical example appears as follows:

Label Area defect | Volume defect | dX dy DZ Name

0:1:1:1 | 312.6 (0%) | -181.7 (0%) 0.00 0.00 0.00 "S1"

0:1:1:2 -4.6 (0%) -191.2 (0%) -0.00 0.00 -0.00 "MAINBODY"

0:1:1:3 | -2.3(0%) | -52.5 (0%) -0.00 0.00 0.00 "MAIN_BODY_ BACK"

0:1:1:4 | -2.3(0%) | -51.6 (0%) 0.00 0.00 -0.00 "MAIN_BODY_ FRONT"

0:1:1:5 | 2.0 (0%) 10.0 (0%) -0.00 0.00 -0.00 "HEAD"

0:1:1:6 | 0.4 (0%) 0.0 (0%) 0.00 -0.00 -0.00 "HEAD FRONT"

0:1:1:7 0.4 (0%) 0.0 (0%) 0.00 -0.00 -0.00 "HEAD BACK"

0:1:1:8 | -320.6 (0%) | 10.9 (0%) -0.00 0.00 0.00 "TAIL"

0:1:1:9 | 0.0 (0%) 0.0 (0%) -0.00 -0.00 0.00 "TAIL_MIDDLE"

0:1:1:10 | -186.2 (0%) | 4.8 (0%) -0.00 0.00 -0.00 "TAIL_TURBINE"

0:1:1:11 | 0.3 (0%) -0.0 (0%) -0.00 -0.00 0.00 "FOOT"

0:1:1:12 | 0.0 (0%) -0.0 (0%) 0.00 -0.00 -0.00 "FOOT_FRONT"

0:1:1:13 | 0.0 (0%) 0.0 (0%) -0.00 0.00 0.00 "FOOT_BACK"
In our example, it can be seen that no errors were detected for either area, volume or
positioning data.

1.1.8. Names
XDE supports reading and writing the names of shapes to and from IGES and STEP file
formats. This functionality can be switched off if you do not need this type of data, thereby
reducing the size of the document.
1.1.9. Colors and Layers

XDE can read and write colors and layers assigned to shapes or their subparts (down to
the level of faces and edges) to and from both IGES and STEP formats. Three types of
colors are defined in the enumeration XCAFDoc_ColorType:

e generic color (XCAFDoc_ColorGen)
e surface color (XCAFDoc_ColorSurf)

e curve color (XCAFDoc_ColorCurv)

Introduction

Figure 3. Colors and Layers

Basic Concepts

2. Basic Concepts

2.1. Overview

As explained in the last chapter, XDE uses TDocStd_Documents as a starting point. The
general purpose of XDE is:

e Checking if an existing document is fit for XDE

Getting an application and initialized document
¢ |Initializing a document to fit it for XDE

e Adding, setting and finding data

¢ Querying and managing shapes

e Attaching properties to shapes

The Document used by XDE usually starts as a TDocStd_Document.

2.1.1. General Check

Before working with shapes, properties, and other types of information, the global
organization of an XDE Document can be queried or completed to determine if an existing
Document is actually structured for use with XDE.

To find out if an existing TDocStd_Document is suitable for XDE, use:
Handle(TDocStd_Document) doc...
if (XCAFDoc_DocumentTool: : IsXCAFDocument (doc)) { .. yes .. }

If the Document is suitable for XDE, you can perform operations and queries explained in
this guide. However, if a Document is not fully structured for XDE, it must be initialized.
See 2.2.1 Initializing an XDE Document (Shapes).

2.1.2. Getting an Application or an Initialized Document

If you want to retrieve an existing application or an existing document (known to be
correctly structured for XDE), use:

Handle(TDocStd_Document) aDoc;

Handle (XCAFApp_Application) anApp =
XCAFApp_Application: :GetApplication();
anApp->NewDocument(*"MDTV-XCAF" ,aDoc) ;

2.2. Shapes and Assemblies

2.2.1. Initializing an XDE Document (Shapes)

An XDE Document begins with a TDocStd Document. Assuming you have a
TDocStd_Document already created, you can ensure that it is correctly structured for XDE
by initializing the XDE structure as follows:

Handle(TDocStd_Document) doc...

Basic Concepts

Handle (XCAFDoc_ShapeTool) myAssembly =
XCAFDoc_DocumentTool : :ShapeTool (Doc->Main());
TDF_Label alLabel = myAssembly->NewShape()

NOTE The method XCAFDoc_DocumentTool::ShapeTool returns the
XCAFDoc_ShapeTool. The first time this method is used, it creates the
XCAFDoc_ShapeTool. In our example, a handle is used for the TDocStd_Document.

2.2.2. Getting a Node considered as an Assembly

To get a node considered as an Assembly from an XDE structure, you can use the Label
of the node. Assuming that you have a properly initialized TDocStd_Document, use:

Handle(TDocStd_Document) doc...
Handle(XCAFDoc_ShapeTool) myAssembly =
XCAFDoc_DocumentTool : :ShapeTool (aLabel);

In the previous example, you can also get the Main Item of an XDE document, which
records the root shape representation (as a Compound if it is an Assembly) by using
ShapeTool(Doc->Main()) instead of ShapeTool(aLabel).

You can then query or edit this Assembly node, the Main Item or another one
(<myAssembly> in our examples).

NOTE For the examples in the rest of this guide, <myAssembly> is always presumed to
be accessed this way, so this information will not be repeated.

2.2.3. Updating the Assembly after Filling or Editing

Some actions in this chapter affect the content of the document, considered as an
Assembly. As a result, you will sometimes need to update various representations
(including the compounds).

To update the representations, use:
myAssemb ly->UpdateAssembly(alLabel);

Since this call is always used by the editing functions, you need not apply it for such
functions. However, you will need this call if special edits, not using XCAF functions, are
used on the document.

2.2.4. Adding or Setting Top Level Shapes

Shapes can be added as top-level shapes. Top level means that they can be added to an
upper level assembly or added on their own at the highest level as a component or
referred by a located instance. Therefore two types of top-level shapes can be added:

e shapes with upper level references
o free shapes (that correspond to roots) without any upper reference
NOTE Several top-level shapes can be added to the same component.

A shape to be added can be defined as a compound (if required), with the following
interpretations:

e The Shape is a compound

According to the user choice, it may or may not be interpreted as representing an
Assembly. If it is an Assembly, each of its subshapes defines a sub-label.

e The Shape is not a compound

Basic Concepts

The Shape is taken as a whole, without breaking it down.
To break down a Compound in the assembly structure, use:
Standard_Boolean makeAssembly;
// True to interpret a Compound as an Assembly,
// False to take it as a whole
aLabel = myAssembly->AddShape(aShape, makeAssembly);
Each node of the assembly therefore refers to its sub-shapes.

Concerning located instances of sub-shapes, the corresponding shapes, (without location)
appear at distinct sub-labels. They are referred to by a shape instance, which associates
a location

2.2.5. Setting a given Shape at a given Label

A top-level shape can be changed. In this example, no interpretation of compound is
performed:

Standard_CString LabelString ...;

// identifies the Label (form "0O:i:j...")
TDF_Label alLabel...;

// A label must be present
myAssembly->SetShape(aLabel, aShape);

2.2.6. Getting a Shape from a Label
To get a shape from its Label from the top-level, use:
TDF_Label alLabel...
// A label must be present
if (aLabel.IsNull()) {
// no such label : abandon
}
TopoDS_Shape aShape;
aShape = myAssembly->GetShape(alLabel);
if (aShape.IsNull()) {
// this label is not for a Shape
}

NOTE: If the label corresponds to an assembly, then the result is a compound.

2.2.7. Getting a Label from a Shape

To get a Label which is attached to a Shape from the top-level, use:
Standard_Boolean findlnstance = Standard_False;
// (this is default value)
alLabel = myAssembly->FindShape(aShape [,findlInstance]);
it (aLabel_ IsNull()) {

// no label found for this shape

Basic Concepts

}

If <findInstance> is True, a search is made for the shape with the same location. If False
(default value), a search is made among original, non-located shapes.

2.2.8. Other Queries on a Label

Various other queries can be made from a Label within the Main Item of XDE:

Main Shapes
To determine if a Shape is recorded (or not), use:
it (myAssembly->IsShape(aLabel)) { .. yes .. }

To determine if the shape is "top-level" (was added by the AddShape method), use:
if (myAssembly->IsTopLevel(aLabel)) { .. yes .. }

To get a list of top-level shapes (added by the AddShape method), use:
TDF_LabelSequence frshapes;
myAssemb ly->GetShapes(frshapes);

To get all free shapes at once if the list above has only one item, use:
TopoDS_Shape result = myAssembly->GetShape(frshapes.Value(1));

If there is more than one item, you must create and fill a compound, use:

TopoDS_Compound C;

BRep_Builder B;

B .MakeCompound(C);

for(Standard_Integer i=1; i<=frshapes.Length(); i++) {
TopoDS_Shape S = myAssembly->GetShape(frshapes.Value(i));
B.Add(C,S);

}

In our example, the result is the compound C.
To determine if a shape is a free shape (no reference or super-assembly), use:
if (myAssembly->IsFree(aLabel)) { .. yes .. }

To get a list of Free Shapes (roots), use:
TDF_LabelSequence frshapes;
myAssemb ly->GetFreeShapes(frshapes);

To get the shapes, which use a given shape as a component, use:

Basic Concepts

TDF_LabelSequence users;
Standard_Integer nbusers = myAssembly->GetUsers(aLabel ,users);

The count of users is contained with nbusers. It contains 0 if there are no users.

Assembly and Components

To determine if a label is attached to the main part or to a sub-part (component), use:
if (nyAssembly->IsComponent(aLabel)) { .. yes .. }

To determine whether a label is a node of a (sub-) assembly or a simple shape, use:
if (myAssembly->1sAssembly(alLabel)) { .. yes .. }

If the label is a node of a (sub-) assembly, you can get the count of components, use:
Standard_Boolean subchilds = Standard_False; //default
Standard_Integer nbc = myAssembly->NbComponents (alLabel
[,subchilds]);

If <subchilds> is True, commands also consider sub-levels. By default, only level one is
checked.

To get component Labels themselves, use:

Standard_Boolean subchilds = Standard_False; //default
TDF_LabelSequence comps;

Standard_Boolean isassembly = myAssembly->GetComponents
(aLabel ,comps[,subchilds]);

2.2.9. Instances and References for Components

To determine if a label is a simple shape, use:
it (myAssembly->IsSimpleShape(aLabel)) { .. yes .. }

To determine if a label is a located reference to another one, use:
if (myAssembly->IsReference(aLabel)) { .. yes .. }

If the label is a located reference, you can get the location, use:
TopLoc_Location loc = myAssembly->GetLocation (aLabel);

To get the label of a referenced original shape (also tests if it is a reference), use:
Standard_Boolean isref = myAssembly->GetReferredShape
(aLabel, reflLabel);

NOTE <isref> returns False if <alLabel> is not for a reference.

10

Basic Concepts

2.3. Editing Shapes

In addition to the previously described AddShape and SetShape, several shape edits are
possible.

To remove a Shape, and all its sub-labels, use:
Standard_Boolean remsh = myAssembly->RemoveShape(aLabel);
// remsh is returned True if done

NOTE: This operation will fail if the shape is neither free nor top level.

To add a Component to the Assembly, from a new shape, use:
Standard_Boolean expand = Standard_False; //default
TDF_Label alLabel = myAssembly->AddComponent (aShape
[.expand]);

If <expand> is True and if <aShape> is a Compound, it is broken down to produce sub-
components, one for each of its sub-shapes.

To add a component to the assembly, from a previously recorded shape (the new
component is defined by the label of the reference shape, and its location), use:

TDF_Label refLabel ...; // the label of reference shape
TopLoc_Location loc ...; // the desired location
TDF_Label alLabel = myAssembly->AddComponent (refLabel, loc);

To remove a component from the assembly, use:
myAssembly->RemoveComponent (aLabel);

2.4. Management of Sub-Shapes

In addition to components of a (sub-)assembly, it is possible to have individual
identification of some sub-shapes inside any shape. Therefore, you can attach specific
attributes such as Colors. Some additional actions can be performed on sub-shapes that
are neither top-level, nor components:

To add a sub-shape to a given Label, use:
TDF_Label subLabel = myAssembly->AddSubShape (alLabel,
subShape);

To find the Label attached to a given sub-shape, use:

TDF_Label sublLabel; // new label to be computed
it (myAssembly-> FindSubShape (aLabel, subShape,
subLabel)) { -. yes .. }

If the sub-shape is found (yes), <subLabel> is filled by the correct value.

11

Basic Concepts

To find the top-level simple shape (not a compound whether free or not), which contains a
given sub-shape, use:

TDF_Label mainLabel = myAssembly->FindMainShape(subShape);

NOTE: There should be only one shape for a valid model. In any case, the search stops
on the first one found.

To get the sub-shapes of a shape, which are recorded under a label, use:
TDF_LabelSequence subs;

Standard_Boolean hassubs = myAssembly->GetSubShapes
(aLabel ,subs);

2.5. Properties
Some properties can be attached directly to shapes. These properties are:
e Name (standard definition from OCAF)
e Centroid (for validation of transfer)
e Volume (for validation of transfer)
o Area (for validation of transfer)

Some other properties can also be attached, and are also managed by distinct tools for
Colors and Layers. Colors and Layers are managed as an alternative way of organizing
data (by providing a way of identifying groups of shapes).

Colors are put into a table of colors while shapes refer to this table. There are two ways of
attaching a color to a shape:

e By attaching an item from the table.
¢ Adding the color directly.

When the color is added directly, a search is performed in the table of contents to
determine if it contains the requested color. Once this search and initialize operation is
done, the first way of attaching a color to a shape is used.

2.5.1. Name

Name is implemented and used as a TDataStd _Name, which can be attached to any
label. Before proceeding, consider that:

e In IGES, every entity can have a name with an optional numeric part called a
Subscript Label. For example, "MYCURVE" is a name, and "MYCURVE(60)" is a
name with a Subscript Label.

e In STEP, there are two levels: Part Names and Entity Names:

Part Names are attached to "main shapes" such as parts and assemblies. These Part
Names are specifically supported by XDE.

Entity Names can be attached to every Geometric Entity. This option is rarely used, as it
tends to overload the exploitation of the data structure. Only some specific cases justify
using this option: for example, when the sending system can really ensure the stability of

12

Basic Concepts

an entity name after each STEP writing. If such stability is ensured, you can use this
option to send an Identifier for external applications using a database.

NOTE: Both IGES or STEP files handle names as pure ASCII strings.

These considerations are not specific to XDE. What is specific to data exchange is the
way names are attached to entities.

To get the name attached to a label (as a reminder using OCAF), use:

Handle(TDataStd_Name) N;

if ('aLabel .FindAttribute(TDataStd_Name::GetID(Q),N)) {
// no name is attached

}
TCollection_ExtendedString name = N->Get();

Don't forget to consider Extended String as ASCII, for the exchange file.

To set a name to a label (as a reminder using OCAF), use:
TCollection_ExtendedString aName ...;

// contains the desired name for this Label (ASCII)
TDataStd _Name::Set (aLabel, aName);

2.5.2. Centroid

A Centroid is defined by a Point to fix its position. It is handled as a property, item of the
class XCAFDoc_Centroid, sub-class of TDF_Attribute. However, global methods give
access to the position itself.

This notion has been introduced in STEP, together with that of Volume, and Area, as
defining the "Validation Properties": this feature allows exchanging the geometries and
some basic attached values, in order to perform a synthetic checking on how they are
maintained after reading and converting the exchange file. This exchange depends on
reliable exchanges of Geometry and Topology. Otherwise, these values can be
considered irrelevant.

Along with Volume (see 2.5.4), it can be determined at any level of an assembly, thereby
allowing a check of both individual simple shapes and their combinations including
locations.

To get a Centroid attached to a Shape, use:

gp_Pnt pos;

Handle(XCAFDoc_Centroid) C;

alabel _.FindAttribute (XCAFDoc_Centroid::GetID(), C);
if (IC.IsNull()) pos = C->Get();

To set a Centroid to a Shape, use:

gp_Pnt pos (X,Y,Z);

// the position previously computed for the centroid
XCAFDoc_Centroid::Set (aLabel, pos);

13

Basic Concepts

25.3. Area

An Area is defined by a Real, it corresponds to the computed Area of a Shape, provided
that it contains surfaces. It is handled as a property, item of the class XCAFDoc_Area,
sub-class of TDF_Attribute.

This notion has been introduced in STEP but it is usually disregarded for a Solid, as
Volume is used instead. In addition, it is attached to simple shapes, not to assemblies.

To get an area attached to a Shape, use:

Standard_Real area;

Handle(XCAFDoc_Area) A;

L.FindAttribute (XCAFDoc_Area::GetID(), A);
if (TALIsNull()) area = A->Get();

To set an area value to a Shape, use:

Standard_Real area ...;

// value previously computed for the area
XCAFDoc_Area::Set (alLabel, area);

2.5.4. Volume

A Volume is defined by a Real and corresponds to the computed volume of a Shape,
provided that it contains solids. It is handled as a property, an item of the class
XCAFDoc_Volume, sub-class of TDF_Attribute.

This notion has been introduced in STEP. It may be attached to simple shapes or their
assemblies for computing cumulated volumes and centers of gravity (see also 2.5.2
Centroid).

To get a Volume attached to a Shape, use:

Standard _Real volume;

Handle(XCAFDoc_Volume) V;

L.FindAttribute (XCAFDoc_Volume::GetID(), V);
if (WWV.IsNull()) volume = V->Get();

To set a volume value to a Shape, use:

Standard_Real volume ..._;

// value previously computed for the volume
XCAFDoc_Volume::Set (alLabel, volume);

2.6. Colors

In an XDE document, colors are managed by the class XCAFDoc_ColorTool. This is done
with the same principles as for ShapeTool with Shapes, and with the same capability of
having a tool on the Main Label, or on any sub-label. The Property itself is defined as an
XCAFDoc_Color, sub-class of TDF_Attribute.

14

Basic Concepts

Colors are stored in a child of the starting document label: it is the second level (0.1.2),
while Shapes are at the first level. Each color then corresponds to a dedicated label, the
property itself is a Quantity Color, which has a name and value for Red, Green, Blue. A
Color may be attached to Surfaces (flat colors) or to Curves (wireframe colors), or to both.
A Color may be attached to a sub-shape. In such a case, the sub-shape (and its own sub-
shapes) takes its own Color as a priority.

Colors and Shapes are related to by Tree Nodes.

These definitions are common to various exchange formats, at least for STEP and IGES.

2.6.1. Initialization

To query, edit, or initialize a Document to handle Colors of XCAF, use:
Handle(XCAFDoc_ColorTool) myColors =
XCAFDoc_DocumentTool : :ColorTool (Doc->Main ());

This call can be used at any time. The first time it is used, a relevant structure is added to
the document. This definition is used for all the following color calls and will not be
repeated for these.

2.6.2. Adding a Color
There are two ways to add a color. You can:

e add a new Color defined as Quantity Color and then directly set it to a Shape
(anonymous Color)

o define a new Property Color, add it to the list of Colors, and then set it to various
shapes.

When the Color is added by its value Quantity Color, it is added only if it has not yet been
recorded (same RGB values) in the Document.

To set a Color to a Shape using a label, use:
Quantity_Color Col (red,green,blue);
XCAFDoc_ColorType ctype ..;

// can take one of these values :

// XCAFDoc_ColorGen : all types of geometries
// XCAFDoc_ColorSurf : surfaces only

// XCAFDoc_ColorCurv : curves only
myColors->SetColor (alLabel, Col, ctype);

Alternately, the Shape can be designated directly, without using its label, use:
myColors->SetColor (aShape, Col, ctype);

// Creating and Adding a Color, explicitly
Quantity_Color Col (red,green,blue);

TDF_Label ColLabel = myColors->AddColor (Col);

NOTE: this Color can then be named, allowing later retrieval by its Name instead of its
Value.

15

Basic Concepts

To set a Color, identified by its Label and already recorded, to a Shape, use:
XCAFDoc_ColorType ctype ..; // see above

if (myColors->SetColors (aLabel, ColLabel, ctype)) {
.. It is done .. }

In this example, <aLabel> can be replaced by <aShape> directly.

2.6.3. Queries on Colors

Various queries can be performed on colors. However, only specific queries are included
in this section, not general queries using names.

To determine if a Color is attached to a Shape, for a given color type (<ctype>), use:
if (myColors->IsSet (aLabel , ctype)) {
// yes, there is one ..

¥

In this example, <aLabel> can be replaced by <aShape> directly.

To get the Color attached to a Shape (for any color type), use:
Quantity_Color col;

// will receive the recorded value (if there is some)
if ('myColors->GetColor(aLabel, col)) {

// sorry, no color ..

}

// color name can also be queried from : col.StringName
// or col_Name

In this example, <alLabel> can be replaced by <aShape> directly.

To get the Color attached to a Shape, with a specific color type, use:
XCAFDoc_ColorType ctype ..;

// the desired color type

Quantity_Color col;

// will receive the recorded value (if there iIs some)
if ('myColors->GetColor(aLabel, ctype, col)) {

// sorry, no color ..

}

To get all the Colors recorded in the Document, use:
Quantity_Color col; // to receive the values
TDF_LabelSequence ColLabels;
myColors->GetColors(ColLabels);
Standard_Integer i, nbc = ColLabels.Length(Q);

16

Basic Concepts

for (i = 1; i <= nbc; i ++) {
alLabel = Labels.Value(i);
if ('myColors->GetColor(aLabel, col)) continue;
// <col> receives the color nO 1 ..

To find a Color from its Value, use:

Quantity_Color Col (red,green,blue);

TDF_Label ColLabel = myColors->FindColor (Col);
if ('ColLabel IsNull()) { .. found .. }

2.6.4. Editing Colors

Besides adding colors, the following attribute edits can be made:

To unset a Color on a Shape, use:

XCAFDoc_ColorType ctype ...;

// desired type (XCAFDoc_ColorGen for all)
myColors->UnSetColor (alLabel,ctype);

To remove a Color and all the references to it (so that the related shapes will become
colorless), use:

myColors->RemoveColor(ColLabel);

2.7. Layers

Layers are handled using the same principles as for Colors (see 2.6 Colors). Simply
replace "Color" with "Layer" when dealing with Layers. Layers are supported by the class
XCAFDoc_LayerTool.

The class of the property is XCAFDoc_Layer, sub-class of TDF_Attribute while its
definition is a TCollection_ExtendedString. Integers are generally used when dealing with
Layers. The general cases are:

e |IGES has LevelList as a list of Layer Numbers (not often used)

e STEP identifies a Layer (not by a Number, but by a String), to be more general.

2.7.1. Reading and Writing STEP or IGES

Note that saving and restoring the document itself are standard OCAF operations. As the
various previously described definitions enter into this frame, they will not be explained
any further.

The same can be said for Viewing: presentations can be defined from Shapes and Colors.

There are several important points to consider:

17

Basic Concepts

e Previously defined Readers and Writers for dealing with Shapes only, whether
Standard or Advanced, remain unchanged in their form and in their dependencies.
In addition, functions other than mapping are also unchanged.

o XDE provides mapping with data other than Shapes. Names, Colors, Layers,
Validation Properties (Centroid, Volume, Area), and Assembly Structure are
hierarchic with rigid motion.

e XDE mapping is relevant for use within the Advanced level of Data Exchanges,
rather than Standard ones, because a higher level of information is better suited to
a higher quality of shapes. In addition, this allows to avoid the multiplicity of
combinations between various options. Note that this choice is not one of
architecture but of practical usage and packaging.

o Reader and Writer classes for XDE are generally used like those for Shapes.
However, their use is adapted to manage a Document rather than a Shape.

The packages to manage this are IGESCAFControl for IGES, and STEPCAFControl for
STEP.

2.7.2. Reading a STEP file

To read a STEP file by itself, use:
STEPCAFControl_Reader reader;
IFSelect_ReturnStatus readstat = reader.ReadFile(filename);
// The various ways of reading a file are available here too :
// to read it by the reader, to take it from a WorkSession ...
Handle(TDocStd_Document) doc...
// the document referred to is already defined and
// properly initialized.
// Now, the transfer itself
if ('reader.Transfer (doc)) {
cout<<"Cannot read any relevant data from the STEP file'<<endl;
// abandon ..
}
// Here, the Document has been Ffilled from a STEP file,
// it is ready to use

In addition, the reader provides methods that are applicable to document transfers and for
directly querying of the data produced.

2.7.3. Writing a STEP file

To write a STEP file by itself, use:

STEPControl_StepModelType mode =

STEPControl_Asls;

// Asis is the recommended value, others are available

// Firstly, perform the conversion to STEP entities
STEPCAFControl _Writer writer;

//(the user can work with an already prepared WorkSession or
create a //new one)

18

Basic Concepts

Standard Boolean scratch = Standard_False;
STEPCAFControl_Writer writer (WS, scratch);
// Translating document (conversion) to STEP
if (! writer.Transfer (Doc, mode)) {

cout<<"The document cannot be translated or gives no
result''<<endl;

// abandon ..

}

// Writing the File
IFSelect_ReturnStatus stat = writer._Write(file-name);

2.7.4. Reading an IGES File

Use the same procedure as for a STEP file but with IGESCAFControl instead of
STEPCAFControl.

2.7.5. Writing an IGES File

Use the same procedure as for a STEP file but with IGESCAFControl instead of
STEPCAFControl.

2.8. Using an XDE Document

There are several ways of exploiting XDE data from an application, you can:

1.

Get the data relevant for the application by mapping XDE/Appli, then discard the
XDE data once it has been used.

Create a reference from the Application Document to the XDE Document, to have
its data available as external data.

Embed XDE data inside the Application Document (see the following section for
details).

Directly exploit XDE data such as when using file checkers.

2.8.1. XDE Data inside an Application Document

To have XCAF data elsewhere than under label 0.1, you use the DocLabel of XDE. The
method DoclLabel from XCAFDoc DocumentTool determines the relevant Label for
XCAF. However, note that the default is 0.1.

In addition, as XDE data is defined and managed in a modular way, you can consider
exclusively Assembly Structure, only Colors, and so on.

As XDE provides an extension of the data structure, for relevant data in standardized
exchanges, note the following:

This data structure is fitted for data exchange, rather than for use by the final
application.

The provided definitions are general, for common use and therefore do not bring
strongly specific semantics.

As a result, if an application works on Assemblies, on Colors or Layers, on Validation
Properties (as defined in STEP), it can rely on all or a part of the XDE definitions, and

19

Basic Concepts

include them in its own data structure.

In addition, if an application has a data structure far from these notions, it can get data
(such as Colors and Names on Shapes) according to its needs, but without having to
consider the whole.

20

Package XCAFDoc

3. Package XCAFDoc

3.1. General description

This package is intended for definition of general structure of an XDE document and tools
to work with it.

The document is composed of sections, each section storing its own kind of data and
managing by a corresponding tool.

The APl enumeration is

e XCAFDoc_ColorType.
The API classes are the following:

e XCAFDoc_DocumentTool

e XCAFDoc_Location

e XCAFDoc_Color

e XCAFDoc_Volume

e XCAFDoc_ Area

e XCAFDoc_ Centroid

e XCAFDoc_ ShapeTool

e XCAFDoc_ ColorTool

e XCAFDoc_ LayerTool

e XCAFDoc_ GraphNode

3.2. Enumeration XCAFDoc_ColorType
Definition:
enumeration ColorType is

ColorGen, -- simple color
ColorSurf, -- color of surfaces
ColorCurv -- color of curves

end ColorType;

Purpose: Defines types of color assignments.

3.3. Class XCAFDoc_DocumentTool

3.3.1. General description
Purpose: Attribute marking an OCAF document as being an XDE document.

Creates the sections structure of the document.

21

Package XCAFDoc

3.3.2. Methods
The methods are the following:
Constructors
XCAFDoc_DocumentTool ()
Purpose: Empty constructor
Methods:
e XCAFDoc_DocumentTool::Init
void XCAFDoc_DocumentTool::Init() const
Purpose: To be called when reading this attribute from a file.
e XCAFDoc_DocumentTool::Set
Handle(XCAFDoc_DocumentTool) XCAFDoc_DocumentTool: :Set(
const TDF_Label& L, const Standard_Boolean IsAcces)

e Purpose: Creates (if does not exist) a DocumentTool attribute on 0.1 label if
<IsAcces> is true, else on <L> label. This label will be returned by DocLabel(); If
the attribute is already set it will not be reset on <L> even if <IsAcces> is false.
ColorTool and ShapeTool attributes are also set by this method. Returns
DocumentTool from XCAFDoc;

e XCAFDoc_DocumentTool::DocLabel
TDF_Label XCAFDoc_ DocumentTool: :DoclLabel(
const TDF_Label& acces)

e Purpose: Returns the label where the DocumentTool attribute is or “0.1” if
DocumentTool is not yet set.

e XCAFDoc_DocumentTool::ShapesLabel
TDF_Label XCAFDoc_ DocumentTool: :ShapesLabel (
const TDF_Label& acces)

Purpose: Returns the shapes sub-label of DocLabel().

e XCAFDoc_DocumentTool::ColorsLabel
TDF_Label XCAFDoc_ DocumentTool::ColorsLabel(
const TDF_Label& acces)

Purpose: Returns the colors sub-label of DocLabel().

e XCAFDoc_DocumentTool::LayersLabel
TDF_Label XCAFDoc DocumentTool::LayersLabel(
const TDF_Label& acces)

Purpose: Returns the layers sub-label of DocLabel().

e XCAFDoc_DocumentTool::ShapeTool
Handle(XCAFDoc_ShapeTool) XCAFDoc DocumentTool : :ShapeTool (
const TDF_Label& acces)

Purpose: Creates (if does not exist) a ShapeTool attribute on ShapesLabel().

e XCAFDoc_DocumentTool::ColorTool

Handle(XCAFDoc_ColorTool) XCAFDoc_ DocumentTool::ColorTool (

22

Package XCAFDoc

const TDF_Label& acces)
Purpose: Creates (if does not exist) a ColorTool attribute on ColorsLabel().
e XCAFDoc_DocumentTool::LayerTool

Handle(XCAFDoc_LayerTool) XCAFDoc DocumentTool::LayerTool (
const TDF_Label& acces)

Purpose: Creates (if does not exist) a LayerTool attribute on LayersLabel().

3.4. Class XCAFDoc_ Location

3.4.1. General description
Purpose: Attribute to store TopLoc_Location.
Inherits Attribute from TDF

3.4.2. Methods
The methods are the following:
Constructors
XCAFDoc_Location()
Purpose: Empty constructor.
Methods:
e XCAFDoc_Location::Set
void XCAFDoc_Location: :Set(const TopLoc Location& Loc)
Purpose: Sets a Location attribute.
Handle(XCAFDoc_Location) XCAFDoc Location::Set(
const TDF_Label& L,const TopLoc_Location& Loc)

e Purpose: Finds or creates a Location attribute and sets its value. The Location
attribute is returned.

e XCAFDoc_Location::Get
TopLoc_Location XCAFDoc Location::Get() const

Purpose: Returns Location from TopLoc.

3.5. Class XCAFDoc_Color

3.5.1. General description
Purpose: Attribute to store color.
Inherits Attribute from TDF

3.5.2. Methods

The methods are the following:

23

Package XCAFDoc

Constructors
XCAFDoc_Color()
Purpose: Empty constructor.
Methods:

e XCAFDoc_Color::Set
void XCAFDoc_Color::Set(const Quantity Coloré& C)
void XCAFDoc_Color::Set(const Quantity NameOfColor C)
void XCAFDoc Color::Set(const Standard Real R,
const Standard_Real G, const Standard_Real B)
Purpose: Sets a Color attribute.
Handle(XCAFDoc_Color) XCAFDoc_Color: :Set(
const TDF_Label& L, const Quantity Coloré& C)
Handle(XCAFDoc_Color) XCAFDoc_Color: :Set(
const TDF_Label& L, const Quantity NameOfColor C)
Handle(XCAFDoc_Color) XCAFDoc Color: :Set(
const TDF_Label& L, const Standard_Real R,
const Standard_Real G, const Standard_Real B)

Purpose: Finds or creates a Color attribute and sets its value. The Color attribute is
returned.

e XCAFDoc_Color::GetColor
Quantity_Color XCAFDoc Color::GetColor() const
Purpose: Returns a Color attribute.

e XCAFDoc_Color::GetNOC
Quantity_NameOfColor XCAFDoc Color::GetNOC() const
Purpose: Returns a Name of Color.

e XCAFDoc_Color::GetRGB
void XCAFDoc Color::GetRGB(Standard Real& R,
Standard_Real& G, Standard_Real& B) const
Purpose: Returns RGB.

3.6. Class XCAFDoc_Volume

3.6.1. General description
Purpose: Attribute to store volume.
Inherits Attribute from TDF

24

Package XCAFDoc

3.6.2. Methods
The methods are the following:
Constructors
XCAFDoc_Volume()
Purpose: Empty constructor.
Methods:
e XCAFDoc_ Volume::Set
void XCAFDoc_Volume::Set (const Standard_Real V)

Purpose: Sets a value of Volume.
Handle(XCAFDoc_Volume) XCAFDoc Volume::Set (
const TDF_Label& L,const Standard_Real V)

Purpose: Finds or creates a Volume attribute and sets its value.

e XCAFDoc_Volume::Get
Standard_Real XCAFDoc Volume::Get() const
Purpose: Returns a value of Volume
Standard_Boolean XCAFDoc Volume::Get(
const TDF_Label& label,Standard_Real& vol)

Purpose: Returns Volume as argument. Returns false if there is no such attribute at the
<label>.

3.7. Class XCAFDoc_Area

3.7.1. General description
Purpose: Attribute to store area.
Inherits Attribute from TDF

3.7.2. Methods
The methods are the following:
Constructors
XCAFDoc_Area()
Purpose: Empty constructor.
Methods:
o XCAFDoc_Area::Set
void XCAFDoc_Area::Set (const Standard_Real V)
Purpose: Sets a value of area.
Handle(XCAFDoc_Area) XCAFDoc_Area::Set (
const TDF_Label& L,const Standard Real V)

Purpose: Finds or creates an Area attribute and sets its value.

25

Package XCAFDoc

o XCAFDoc_Area::Get
Standard_Real XCAFDoc_ Area::Get() const
Purpose: Returns a value of area.
Standard_Boolean XCAFDoc Area::Get(
const TDF_Label& label, Standard_Real& area)

Purpose: Returns the volume of area as an argument and success status returns false if
there is no such attribute at the <label>.

3.8. Class XCAFDoc_ Centroid

3.8.1. General description
Purpose: Attribute to store Centroid.
Inherits Attribute from TDF

3.8.2. Methods
The methods are the following:
Constructors
XCAFDoc_Centroid()
Purpose: Empty constructor.
Methods:
e XCAFDoc_Centroid::Set
void XCAFDoc_Centroid: :Set(const gp_Pnt& pnt)
Purpose: Sets a Centroid attribute.

Handle(XCAFDoc_Centroid) XCAFDoc_Centroid::Set(
const TDF_Label& L, const gp_Pnt& pnt)

Purpose: Finds or creates a Centroid attribute and sets its value. The Centroid attribute is
returned.

o XCAFDoc_Area:.Get
gp_Pnt XCAFDoc_Centroid::Get() const
Purpose: Returns a Centroid attribute.
Standard_Boolean XCAFDoc Centroid::Get(
const TDF_Label& label,gp Pnt& pnt)

Purpose: Returns a point as an argument. Returns false if there is no such attribute at the
<label>.

3.9. Class XCAFDoc_ShapeTool

3.9.1. General description

Purpose: attribute containing the Shapes section of an XDE document.

26

Package XCAFDoc

Provides tools for management of the Shapes section.

3.9.2. Methods
The methods are the following:
Constructors
XCAFDoc_ShapeTool)
Purpose: Empty constructor.
Method Set

e XCAFDoc_ShapeTool::Set

Handle (XCAFDoc_ShapeTool) XCAFDoc_ShapeTool::Set(const TDF_Label&
L)

Purpose: Creates (if does not exist) ShapeTool from XCAFDoc on <L>.
Methods for work with top-level structure of shapes
e XCAFDoc_ShapeTool::Search
Standard_Boolean XCAFDoc_ShapeTool::Search (
const TopoDS_Shape &S, TDF_Label &L,
const Standard Boolean findInstance,

const Standard Boolean findComponent,
const Standard_Boolean findSubShape) const
Purpose: General tool to find a (sub) shape in the document

- If <findInstance> is True, and <S> has a non-null location, first tries to find the shape
among the top-level shapes with this location

- If not found, and <findComponent> is True, tries to find the shape among the
components of assemblies

- If not found, tries to find the shape without location among top-level shapes

- If not found and <findSubshape> is True, tries to find a shape as a subshape of top-level
simple shapes

Returns False if nothing is found.

e XCAFDoc_ShapeTool::FindShape
Standard_Boolean XCAFDoc_ShapeTool: :FindShape (
const TopoDS Shape& S, TDF _Label& L,
const Standard_Boolean findInstance) const

Purpose. Returns the label corresponding to shape <S> (searches among top-level
shapes, not including subcomponents of assemblies). If <findInstance> is False (default),
searches for the non-located shape (i.e. among original shapes). If <findinstance> is True,
searches for the shape with the same location, including shape instances. Returns True if
<S> is found.

TDF_Label XCAFDoc_ ShapeTool::FindShape (const TopoDS_ Shape& S,
const Standard_Boolean findInstance) const
Purpose: Does the same as the previous method. Returns the Null label if not found.

e XCAFDoc_ShapeTool::GetShape

27

Package XCAFDoc

Standard_Boolean XCAFDoc_ShapeTool: :GetShape (
const TDF_Label& L, TopoDS_Shape& S)

Purpose: To get TopoDS_Shape from the shape's label. For component, returns a new
shape with a correct location. Returns False if the label does not contain a shape.

TopoDS_Shape XCAFDoc_ShapeTool : :GetShape(const TDF_Label& L)

Purpose: To get TopoDS_Shape from the shape's label. For component, returns a new
shape with a correct location. Returns a Null shape if the label does not contain a shape.

e XCAFDoc_ShapeTool::NewShape
TDF_Label XCAFDoc_ShapeTool: :NewShape() const

Purpose: Creates a new (empty) top-level shape. Initially it holds an empty
TopoDS_Compound.

e XCAFDoc_ShapeTool::SetShape
void XCAFDoc_ShapeTool::SetShape (const TDF Label& L,
const TopoDS_Shape& S) const
Purpose: Sets representation (TopoDS_Shape) for the top-level shape.
e XCAFDoc_ShapeTool::AddShape
TDF_Label XCAFDoc_ ShapeTool: :AddShape (const TopoDS Shapeé& S,
const Standard_Boolean makeAssembly) const

Purpose: Adds a new top-level (creates and returns a new label). If <makeAssembly> is
True, treats TopAbs COMPOUND shapes as assemblies (creates assembly structure).

e XCAFDoc_ShapeTool::RemoveShape
Standard_Boolean XCAFDoc_ShapeTool: :RemoveShape (
const TDF_Label& L) const

Purpose: Removes a shape (whole label and all its sublabels). Returns False (and does
nothing) if the shape is not free or is not a top-level shape.

e XCAFDoc_ShapeTool::GetShapes

void XCAFDoc_ShapeTool: :GetShapes (TDF_LabelSequence& Labels)
const

Purpose: Returns a sequence of all top-level shapes.
e XCAFDoc_ShapeTool::GetFreeShapes

void XCAFDoc_ShapeTool : :GetFreeShapes (

TDF_LabelSequence& FreelLabels) const

Purpose: Returns a sequence of all top-level shapes, which are free (i.e. not referred by
any other shape).

e XCAFDoc_ShapeTool::GetUsers
Standard_Integer XCAFDoc_ShapeTool::GetUsers (const TDF_Label& L,
TDF_LabelSequence& Labels,
const Standard_Boolean getsubchilds)

Purpose: Returns a list of labels, which refer to shape <L> as a component. Returns the
number of users (0 if the shape is free).

e XCAFDoc_ShapeTool::GetLocation

28

Package XCAFDoc

TopLoc_Location XCAFDoc_ShapeTool::GetLocation (const TDF_Label&
L

Purpose: Returns the location of instance.

e XCAFDoc_ShapeTool::GetReferredShape
Standard_Boolean XCAFDoc_ShapeTool: :GetReferredShape (
const TDF_Label& L, TDF_Label& Label)

Purpose: Returns the label, which corresponds to a shape referred by <L>. Returns False
if the label is not a reference.

Methods for analysis

e XCAFDoc_ShapeTool::IsTopLevel

Standard_Boolean XCAFDoc_ShapeTool::1sTopLevel (const TDF Label&
L) const

Purpose: Returns True if the label is a label of a top-level shape, as opposed to a
component of an assembly or a subshape.

e XCAFDoc_ShapeTool::IsShape
Standard_Boolean XCAFDoc_ShapeTool::1sShape (const TDF Label& L)

Purpose: Returns True if the label represents a shape (simple shape, assembly or
reference).

e XCAFDoc_ShapeTool::IsSimpleShape

Standard_Boolean XCAFDoc_ShapeTool: :IsSimpleShape (const
TDF_Labelé& L)

Purpose: Returns True if the label is a label of a simple shape.

e XCAFDoc_ShapeTool::IsReference

Standard_Boolean XCAFDoc_ShapeTool: :IsReference (const TDF Label&
L

Purpose: Returns true if <L> is a located instance of another shape i.e. a reference.
XCAFDoc_ShapeTool::IsAssembly

Standard_Boolean XCAFDoc_ ShapeTool::1sAssembly (const TDF Label&
L

Purpose: Returns True if the label is a label of assembly, i.e. contains sublabels which are
assembly components. This is relevant only if IsShape() is True.

e XCAFDoc_ShapeTool::IsComponent

Standard_Boolean XCAFDoc_ShapeTool: :IsComponent (const TDF Label&
L

Purpose: Returns true if <L> is a reference serving as a component of an assembly.

e XCAFDoc_ShapeTool::IsSubShape

Standard_Boolean XCAFDoc_ShapeTool: :1sSubShape (const TDF_ Label&
L

Purpose: Returns true if <L> is a subshape of a top-level shape.
Standard_Boolean XCAFDoc_ShapeTool: : IsSubShape (
const TDF_Label &shapel,

const TopoDS_Shape &sub) const

29

Package XCAFDoc

Purpose: Checks whether shape <sub> is a subshape of a shape stored on label
<shapel>.

e XCAFDoc_ShapeTool::IsFree
Standard_Boolean XCAFDoc_ShapeTool::IsFree (const TDF Label& L)

Purpose: Returns True if the label is not used by any assembly, i.e. contains sublabels
which are assembly components. This is relevant only if IsShape() is True (There is no
Father TreeNode on this <L>).

Methods for work with assembly structure

e XCAFDoc_ShapeTool::NbComponents

Standard_Integer XCAFDoc_ ShapeTool: :NbComponents (const TDF_Label&
L!

const Standard _Boolean getsubchilds)

Purpose: Returns the number of Assembles components.

e XCAFDoc_ShapeTool::GetComponents

Standard_Boolean XCAFDoc_ShapeTool: :GetComponents (const
TDF_Label& L,

TDF_LabelSequenceé& Labels,
const Standard_Boolean getsubchilds)

Purpose: Returns a list of components of an assembly. Returns False if the label is not an
assembly.

e XCAFDoc_ShapeTool::AddComponent

TDF_Label XCAFDoc_ShapeTool: :AddComponent (const TDF_Label&
assembly,

const TDF_Label& compL, const TopLoc Location &Loc) const

Purpose: Adds a component given by its label and location to the assembly. Note: the
assembly must be IsAssembly() or IsSimpleShape().

e XCAFDoc_ShapeTool::AddComponent

TDF_Label XCAFDoc_ ShapeTool: :AddComponent (const TDF Label&
assembly,

const TopoDS_Shape& comp,
const Standard _Boolean expand) const

Purpose: Adds a shape (located) as a component to the assembly. If necessary, creates
an additional top-level shape for the component and returns the Label of component. If
<expand> is True and the component is Compound, it will be created as an assembly
also. Note: the assembly must be IsAssembly() or IsSimpleShape().

e XCAFDoc_ShapeTool::RemoveComponent

void XCAFDoc_ShapeTool : :RemoveComponent (const TDF Label& comp)
const

Purpose: Removes a component from its assembly.

e XCAFDoc_ShapeTool::UpdateAssembly
void XCAFDoc_ShapeTool: :UpdateAssembly (const TDF_Label& L) const

Purpose: Updates an assembly at label <L>.

30

Package XCAFDoc

Methods for work with sub-shapes of shape

e XCAFDoc_ShapeTool::FindSubShape
Standard_Boolean XCAFDoc_ShapeTool: :FindSubShape (
const TDF_Label &shapelL, const TopoDS_Shape &sub,
TDF_Label &L) const

Purpose: Finds a label for subshape <sub> of the shape stored on label <shapel>.
Returns a Null label if it is not found.

e XCAFDoc_ShapeTool::AddSubShape
TDF_Label XCAFDoc_ShapeTool : :AddSubShape (const TDF_Label &shapelL,
const TopoDS_Shape &sub) const

Purpose: Adds a label for subshape <sub> of the shape stored on label <shapel>.
Returns a Null label if it is not a subshape.

e XCAFDoc_ShapeTool::FindMainShape
TDF_Label XCAFDoc_ShapeTool: :FindMainShape (
const TopoDS_Shape &sub) const

Purpose: Performs a search among top-level shapes to find the shape containing <sub>
as a subshape. Checks only simple shapes, and returns the first found label (which should
be the only one for valid model).

e XCAFDoc_ShapeTool::GetSubShapes
Standard_Boolean XCAFDoc_ShapeTool: :GetSubShapes (
const TDF_Label &L, TDF_LabelSequence& Labels)

Purpose: Returns the list of labels identifying subshapes of the given shape. Returns
False if no subshapes are placed on that label.

Auxiliary methods

e XCAFDoc_ShapeTool::MakeReference
void XCAFDoc_ShapeTool: :MakeReference (const TDF_Label &L,
const TDF_Label &refL, const TopLoc Location &loc)

Purpose: Makes a shape on label <L> to be a reference to shape <refL> with location
<loc>.

e XCAFDoc_ShapeTool::BaselLabel
TDF_Label XCAFDoc_ShapeTool::BaselLabel () const

Purpose: returns the label under which shapes are stored.

3.10.Class XCAFDoc_ColorTool

3.10.1. General description
Purpose: Attribute containing Colors section of an XDE document.

Provides tools for management of the Colors section of a document.

31

Package XCAFDoc

3.10.2. Methods
The methods are the following:
Constructors
XCAFDoc_ShapeTool ()
Purpose: Empty constructor.
Method Set

e XCAFDoc_ColorTool::Set

Handle(XCAFDoc_ColorTool) XCAFDoc_ColorTool::Set(const TDF_Label&
L)

Purpose: Creates (if does not exist) a ColorTool.
Methods for general structure

e XCAFDoc_ColorTool::BaseLabel
TDF_Label XCAFDoc ColorTool::BaselLabel() const
Purpose: Returns the label under which colors are stored

e XCAFDoc_ColorTool::ShapeTool
const Handle(XCAFDoc_ShapeTool)& XCAFDoc_ColorTool : :ShapeTool)

Purpose: Returns the internal XCAFDoc_ShapeTool tool

Methods for color table management

e XCAFDoc_ColorTool:IsColor

Standard_Boolean XCAFDoc_ColorTool::1sColor (const TDF_Label& lab)
const

Purpose: Returns True if the label belongs to a colortable and is a color definition

e XCAFDoc_ColorTool::GetColor

Standard_Boolean XCAFDoc_ColorTool::GetColor (const TDF_Label&
lab,

Quantity_Color& col) const

Purpose: Returns a color defined by label lab. Returns False if the label is not in the
colortable or does not define a color.

e XCAFDoc_ColorTool::FindColor
Standard_Boolean XCAFDoc ColorTool: :FindColor (
const Quantity Color& col,
TDF_Label& lab) const

Purpose: Finds a color definition in the colortable and returns its label if found. Returns
False if the color is not found in the colortable.

e XCAFDoc_ColorTool::FindColor

TDF_Label XCAFDoc_ColorTool::FindColor (const Quantity Coloré& col)
const

Purpose: Finds a color definition in the colortable and returns its label if found (or Null
label otherwise)

e XCAFDoc_ColorTool::AddColor

32

Package XCAFDoc

TDF_Label XCAFDoc_ColorTool::AddColor (const Quantity Coloré& col)
const

Purpose: Adds a color definition to the colortable and returns its label (returns the existing
label if the same color is already defined).

e XCAFDoc_ColorTool::RemoveColor
void XCAFDoc_ColorTool: :RemoveColor (const TDF_Label& lab) const
Purpose: Removes color from the colortable.

e XCAFDoc_ColorTool::GetColors

void XCAFDoc_ColorTool::GetColors (TDF_LabelSequence& Labels)
const

Purpose: Returns a sequence of colors currently stored in the colortable.
Methods for assignment of colors to labels
e XCAFDoc_ColorTool::SetColor
void XCAFDoc ColorTool::SetColor (const TDF Label& L,
const TDF_Label& colorL, const XCAFDoc ColorType type) const

Purpose: Sets a link with a GUID defined by <type> (see XCAFDoc::ColorRefGUID())
from label <L> to a color defined by <colorL>.

void XCAFDoc_ColorTool::SetColor (const TDF_Label& L,
const Quantity Color& Color,

const XCAFDoc_ColorType type) const

Purpose: Sets a link with a GUID defined by <type> (see XCAFDoc::ColorRefGUID())
from label <L> to color <Color> in the colortable. Adds a color as necessary.

e XCAFDoc_ColorTool::UnSetColor
void XCAFDoc_ColorTool::UnSetColor (const TDF Label& L,
const XCAFDoc_ColorType type) const

Purpose: Removes a link with a GUID defined by <type> (see
XCAFDoc::ColorRefGUID()) from label <L> to color <Color>.

e XCAFDoc_ColorTool:IsSet
Standard_Boolean XCAFDoc ColorTool::1sSet (const TDF_Label& L,
const XCAFDoc_ColorType type) const
Purpose: Returns True if label <L> has a color assignment of the type <type>.

e XCAFDoc_ColorTool::GetColor
Standard_Boolean XCAFDoc_ColorTool::GetColor (const TDF Label& L,
const XCAFDoc_ColorType type, TDF_Label& colorlL)

Purpose: Returns a label with a color assigned to <L> as <type>. Returns False if no such
color is assigned.

Standard_Boolean XCAFDoc ColorTool::GetColor (const TDF_Label& L,
const XCAFDoc_ColorType type, Quantity Color& color)

Purpose: Returns a color assigned to <L> as <type>. Returns False if no such color is
assigned.

33

Package XCAFDoc

Methods for assignment of colors to shapes in the Shapes section

e XCAFDoc_ColorTool::SetColor

Standard_Boolean XCAFDoc ColorTool: :SetColor (const TopoDS_ Shape&
S!

const TDF_Label& colorL, const XCAFDoc ColorType type)

Purpose: Sets a link with a GUID defined by <type> (see XCAFDoc::ColorRefGUID())
from label <L> to the color defined by <colorL>. Returns False if cannot find a label for
shape S.

Standard_Boolean XCAFDoc_ColorTool: :SetColor (const TopoDS_Shape&
S,

const Quantity Color& Color, const XCAFDoc ColorType type)

Purpose: Sets a link with a GUID defined by <type> (see XCAFDoc::ColorRefGUID())
from label <L> to color <Color> in the colortable. Adds a color as necessary. Returns
False if cannot find a label for shape S.

e XCAFDoc_ColorTool::UnSetColor

Standard_Boolean XCAFDoc ColorTool: :UnSetColor (const
TopoDS_Shape& S,

const XCAFDoc_ColorType type)

Purpose: Removes a link with a GUID defined by <type> (see
XCAFDoc::ColorRefGUID()) from label <L> to color <Color>. Returns True if such link
existed.

e XCAFDoc_ColorTool::IsSet
Standard_Boolean XCAFDoc_ColorTool::1sSet (const TopoDS_Shape& S,
const XCAFDoc ColorType type)
Purpose: Returns True if label <L> has a color assignment of the type <type>.

e XCAFDoc_ColorTool::GetColor

Standard_Boolean XCAFDoc_ColorTool: :GetColor (const TopoDS_Shape&
S,

const XCAFDoc_ColorType type, TDF_Label& colorlL)

Purpose: Returns label with a color assigned to <L> as <type>. Returns False if no such
color is assigned.

Standard_Boolean XCAFDoc ColorTool: :GetColor (const TopoDS_ Shape&
Ss

const XCAFDoc_ColorType type, Quantity Coloré& color)

Purpose: Returns a color assigned to <L> as <type>. Returns False if no such color is
assigned.

3.11. Class XCAFDoc_LayerTool;

3.11.1. General description
Purpose: Attribute containing Layers section of an XDE document.

Provides tools for management of the Layers section of a document.

34

Package XCAFDoc

3.11.2. Methods
The methods are the following:
Constructors
XCAFDoc_LayerTool)
Purpose: Empty constructor.
Method Set
e XCAFDoc_LayerTool::Set
Handle(XCAFDoc_LayerTool) XCAFDoc_LayerTool::Set(const TDF_Label& L)
Method of general structure
e XCAFDoc_LayerTool::BaseLabel
TDF_Label XCAFDoc_LayerTool: :BaseLabel () const
Purpose: Returns the label under which Layers are stored.
e XCAFDoc_LayerTool::ShapeTool
const Handle(XCAFDoc_ ShapeTool)& XCAFDoc LayerTool: :ShapeTool ()

Purpose: Returns the internal XCAFDoc_ShapeTool tool.

Methods for Layer table management

e XCAFDoc_LayerTool::IsLayer

Standard_Boolean XCAFDoc LayerTool::IsLayer(const TDF Label& lab)
const

Purpose: Returns True if a label belongs to the Layertable and is a Layer definition.

e XCAFDoc_LayerTool::GetLayer

Standard_Boolean XCAFDoc LayerTool: :GetLayer (const TDF_Labelé&
lab,

TCollection_ExtendedString& alayer) const

Purpose: Returns a Layer defined by label <lab>. Returns False if the label is not in
Layertable or does not define <alLayer>.

e XCAFDoc_lLayerTool::FindLayer
Standard_Boolean XCAFDoc LayerTool: :FindLayer (
const TCollection_ExtendedString& alayer,
TDF_Label& lab) const

Purpose: Finds a Layer definition in theLayertable and returns its label if found. Returns
False if the Layer is not found in the Layertable.

TDF_Label XCAFDoc_ LayerTool: :FindLayer(
const TCollection_ ExtendedString& alayer) const

Purpose: Finds a Layer definition in the Layertable and returns its label if found (or the
Null label otherwise).

e XCAFDoc_LayerTool::AddLayer
TDF_Label XCAFDoc_ LayerTool: :AddLayer(
const TCollection_ExtendedString& alayer) const

35

Package XCAFDoc

Purpose: Adds a Layer definition to the Layertable and returns its label (returns the
existing label if the same Layer is already defined).

e XCAFDoc_LayerTool::RemoveLayer
void XCAFDoc_ LayerTool: :RemovelLayer(const TDF Label& lab) const
Purpose: Removes a Layer from the Layertable.

e XCAFDoc_ LayerTool::GetLayerLabels

void XCAFDoc_ LayerTool: :GetLayerLabels(TDF_LabelSequenceé& Labels)
const

Purpose: Returns a sequence of Layers currently stored in the Layertable.

e XCAFDoc_LayerTool::SetLayer
void XCAFDoc LayerTool::SetLayer(const TDF Label& L,
const TDF_Label& LayerlL,
const Standard_Boolean shapelnOnelLayer) const

Purpose: Sets a link from label <L> to a Layer defined by <LayerL>, an optional
parameter <shapelnOnelLayer> shows whether a shape could be in a number of layers or
only in one.

void XCAFDoc_ LayerTool::SetLayer(const TDF Label& L,
const TCollection_ExtendedString& alayer,
const Standard_Boolean shapelnOnelLayer) const

Purpose: Sets a link from label <L> to Layer <alLayer> in the Layertable. Adds <alayer>
as necessary; an optional parameter <shapelnOnelLayer> shows whether a shape could
be in a number of layers or only in one.

e XCAFDoc_LayerTool::UnSetLayers
void XCAFDoc_lLayerTool::UnSetLayers(const TDF Labelé& L) const
Purpose: Removes a link from label <L> to all layers.
e XCAFDoc_LayerTool::UnSetOneLayer
Standard_Boolean XCAFDoc LayerTool: :UnSetOneLayer (
const TDF Label& L,
const TCollection_ExtendedString& alayer) const

Purpose: Removes a link from label <L> and Layer <alayer>. Returns FALSE if no such
layer exists.

e XCAFDoc_LayerTool:lsSet
Standard_Boolean XCAFDoc LayerTool::1sSet(const TDF Label& L,
const TCollection_ExtendedString& alayer) const
Purpose: Returns True if label <L> has a Layer associated with the <alLayer>.

e XCAFDoc_LayerTool::GetLayers
Standard_Boolean XCAFDoc LayerTool: :GetLayers(const TDF_Label& L,
Handle(TColStd_HSequenceOfExtendedString)& alLayerS)
Purpose: Returns a sequence of strings <alLayerS> that are associated with label <L>.

Handle(TColStd_HSequenceOfExtendedString)
XCAFDoc_LayerTool: :GetLayers(

const TDF_Label& L)

36

Package XCAFDoc

Purpose: Returns a sequence of strings that are associated with label <L>.

e XCAFDoc_LayerTool::GetShapesOfLayer
void XCAFDoc_ LayerTool: :GetShapesOfLayer(const TDF Labelé& layerL,
TDF_LabelSequence& ShLabels) const

Purpose: Returns a sequence of shape labels that are assigned with layers to
<ShLabels>.

e XCAFDoc_LayerTool:IsVisible
Standard_Boolean XCAFDoc LayerTool::IsVisible (
const TDF_Label& layerL) const
Purpose: Return TRUE if a layer is visible, FALSE if it is invisible.
e XCAFDoc_LayerTool::SetVisibility
void XCAFDoc_ LayerTool::SetVisibility (const TDF_Label& layerlL,
const Standard_Boolean isvisible) const

Purpose: Set the visibility of a layer. If a layer is invisible when on its layer will set
UAttribute with a corresponding GUID.

Methods for assignment of Layers to shapes in the Shapes section

e XCAFDoc_LayerTool::SetLayer

Standard_Boolean XCAFDoc_LayerTool: :SetLayer(const TopoDS_Shape&
Sh,

const TDF_Label& LayerlL,
const Standard_Boolean shapelnOnelLayer)

Purpose: Sets a link from a label containing shape <Sh> with a layer situated at label
<LayerL>. An optional parameter <shapelnOneLayer> shows whether a shape could be in
a number of layers or only in one. Returns FALSE if no such shape <Sh> or label
<LayerL> exists.

Standard_Boolean XCAFDoc LayerTool: :SetLayer(const TopoDS_ Shapeé&
Sh,

const TCollection_ExtendedString& alayer,
const Standard_Boolean shapelnOneLayer)

Purpose: Sets a link from a label containing shape <Sh> with layer <alLayer>. Adds
<alLayer> to LayerTable if necessary. An optional parameter <shapelnOnelLayer> shows
whether a shape could be in a number of layers or only in one. Returns FALSE if no such
shape <Sh> exists.

e XCAFDoc_LayerTool::UnSetLayers

Standard_Boolean XCAFDoc LayerTool: :UnSetLayers(const
TopoDS_Shape& Sh)

Purpose: Removes a link between shape <Sh> and all Layers at the LayerTable. Returns
FALSE if no such shape <Sh> exists in XCAF Document.

e XCAFDoc_LayerTool::UnSetOneLayer
Standard_Boolean XCAFDoc LayerTool: :UnSetOneLayer (
const TopoDS_Shape& Sh,
const TCollection_ExtendedString& alLayer)

37

Package XCAFDoc

Purpose: Removes a link between shape <Sh> and layer <aLayer>. Returns FALSE if no
such layer <alLayer> or shape <Sh> exists.

e XCAFDoc_LayerTool::IsSet
Standard_Boolean XCAFDoc LayerTool::1sSet(const TopoDS Shapeé& Sh,
Purpose: Returns True if shape <Sh> has a Layer associated with the <alLayer>.

e XCAFDoc_LayerTool::GetLayers

Standard_Boolean XCAFDoc LayerTool: :GetLayers(const TopoDS_ Shape&
Sh,

Handle(TColStd_HSequenceOfExtendedString)& alLayerS)
Purpose: Returns a sequence of strings <alLayerS> associated with shape <Sh>.

Handle(TColStd_HSequenceOfExtendedString)
XCAFDoc_LayerTool: :GetLayers(

const TopoDS_Shape& Sh)

Purpose: Returns a sequence of strings associated with shape <Sh>.

3.12. Class XCAFDoc_GraphNode;

3.12.1. General description
Purpose: Attribute containing a sequence of father and child labels.

Creates and allows to work with Graph in XCAFDocument.

3.12.2. Methods
The methods are the following:
Constructors
XCAFDoc_GraphNode()
Purpose: Empty constructor.
Class methods working on the node
e XCAFDoc_GraphNode::Find
Standard_Boolean XCAFDoc_ GraphNode: :Find(const TDF_Label& L,
Handle(XCAFDoc_GraphNode)& G)

Purpose: Shortcut to search a Graph node attribute with a default GraphlD. Returns true
if found.

e XCAFDoc_GraphNode::GetDefaultGraphlD
const Standard _GUID& XCAFDoc GraphNode: :GetDefaultGraphID()

Purpose: Returns a default Graph ID. This ID is used by the <Set> method without an
explicit tree ID.

e XCAFDoc_GraphNode::Set

Handle(XCAFDoc_GraphNode) XCAFDoc GraphNode: :Set(const TDF_ Label&
L

38

Package XCAFDoc

Purpose: Finds or Creates a GraphNode attribute on the label <L> with a default Graph
ID, returned by the method GetDefaultGraphlD(). Returns the created/found GraphNode
attribute.

Handle(XCAFDoc_GraphNode) XCAFDoc GraphNode::Set (const TDF Label&
L1

const Standard_GUID& explicitlID)

Purpose: Finds or Creates a GraphNode attribute on the label <L>, with an explicit tree ID.
<ExplicitGraphID> is the ID returned by the TDF_Attribute::ID() method. Returns the
found/created GraphNode attribute.

Instance methods

e XCAFDoc_GraphNode::SetFather
Standard_Integer XCAFDoc_ GraphNode: :SetFather(
const Handle(XCAFDoc_GraphNode)é& F)

Purpose: Sets GraphNode <F> as the father of this attribute and returns an index of <F>
in a sequence containing Father GraphNodes. Returns an index of <F> from
GraphNodeSequnece.

e XCAFDoc_GraphNode::SetChild
Standard_Integer XCAFDoc GraphNode: :SetChild(
const Handle(XCAFDoc_GraphNode)& Ch)

Purpose: Sets GraphNode <Ch> as a child of this attribute and returns an index of <Ch>
in a sequence containing Children GraphNodes. Returns an index of <Ch> from
GraphNodeSequnece.

e XCAFDoc_GraphNode::UnSetFather

void XCAFDoc_GraphNode: :UnSetFather(const
Handle(XCAFDoc_GraphNode)& F)

Purpose: Removes <F> from Fathers GraphNodeSequence and removes the link
between the father and the child.

void XCAFDoc_GraphNode: :UnSetFather(const Standard_Integer Findex)

Purpose: Removes Father GraphNode by index from Fathers GraphNodeSequence and
removes the link between the father and the child.

e XCAFDoc_GraphNode::UnSetFatherlink
void XCAFDoc_GraphNode: :UnSetFatherlink(
const Handle(XCAFDoc_GraphNode)é& F)
Purpose: Removes the link between the father and the child.
e XCAFDoc_GraphNode::UnSetChild

void XCAFDoc_GraphNode: :UnSetChild(const
Handle (XCAFDoc_GraphNode)& Ch)

Purpose: Removes <Ch> from GraphNodeSequence and removes the link between the
father and the child.

void XCAFDoc_GraphNode: :UnSetChild(const Standard_Integer Chindex)

Purpose: Removes Child GraphNode by index from Children GraphNodeSequence and
removes the link between the father and the child.

e XCAFDoc_GraphNode::UnSetChildlink
void XCAFDoc_GraphNode: :UnSetChildlink(

39

Package XCAFDoc

const Handle(XCAFDoc_GraphNode)é& Ch)
Purpose: Removes the link between the father and the child.

e XCAFDoc_GraphNode::GetFather
Handle(XCAFDoc_GraphNode) XCAFDoc_GraphNode: :GetFather(
const Standard_Integer Findex) const
Purpose: Returns GraphNode by index from GraphNodeSequence.

e XCAFDoc_GraphNode::GetChild
Handle(XCAFDoc_GraphNode) XCAFDoc_GraphNode: :GetChild(
const Standard_Integer Chindex) const
Purpose: Returns GraphNode by index from GraphNodeSequence.

e XCAFDoc_GraphNode::Fatherindex
Standard_Integer XCAFDoc_GraphNode: :FatherIndex(
const Handle(XCAFDoc_GraphNode)& F) const
Purpose: Returns the index of <F>, or zero if there is no such Graphnode.

e XCAFDoc_GraphNode::Childindex
Standard_Integer XCAFDoc_GraphNode: :ChildIndex(
const Handle(XCAFDoc GraphNode)& Ch) const
Purpose: Returns the index of <Ch>, or zero if there is no such Graphnode.

e XCAFDoc_GraphNode::IsFather
Standard_Boolean XCAFDoc_GraphNode: : IsFather(
const Handle(XCAFDoc GraphNode)& Ch) const
Purpose: Returns True if this attribute is the father of <Ch>.

e XCAFDoc_GraphNode::IsChild
Standard_Boolean XCAFDoc_GraphNode: :1sChild(
const Handle(XCAFDoc_ GraphNode)& F) const
Purpose: Returns True if this attribute is a child of <F>.

e XCAFDoc_GraphNode::NbFathers
Standard_Integer XCAFDoc_GraphNode: :NbFathers() const
Purpose: Returns the Number of Father GraphNodes.

e XCAFDoc_GraphNode::NbChildren
Standard_Integer XCAFDoc_ GraphNode: :NbChildren() const

Purpose: Returns the Number of Children GraphNodes.

3.13. Package methods

Purpose: Definition of GUIDs
Methods:

e XCAFDoc::AssemblyGUID
Standard_GUID XCAFDoc: :AssemblyGUID ()

40

Package XCAFDoc

Purpose: Returns a GUID for UAttribute identifying the assembly
e XCAFDoc::ShapeRefGUID
Standard_GUID XCAFDoc: :ShapeRefGUID ()
Purpose: Returns a GUID for TreeNode representing an assembly link.
e XCAFDoc::ColorRefGUID
Standard_GUID XCAFDoc::ColorRefGUID (const XCAFDoc_ColorType type)
Purpose: Returns a GUID for TreeNode representing specified types of colors.
e XCAFDoc::LayerRefGUID
Standard_GUID XCAFDoc: :LayerRefGUID
Purpose: Returns a GUID from Standard.
o XCAFDoc::InvisibleGUID
Standard_GUID XCAFDoc::InvisibleGUID
Purpose: Returns a GUID from Standard,;
e XCAFDoc::ExternRefGUID
Standard_GUID XCAFDoc: :ExternRefGUID ()

Purpose: Returns a GUID for UAttribute identifying an external reference.

41

	Version 6.3 / September 2008
	1.
	1. Introduction
	1.1. Overview of the Extended Data Exchange (XDE)
	1.1.1. Prerequisite
	1.1.2. Environment variables
	1.1.3. Basic terms
	1.1.4. XDE Data Types
	1.1.5. XDE Organization
	1.1.6. Assemblies
	1.1.7. Validation Properties
	1.1.8. Names
	1.1.9. Colors and Layers

	2. Basic Concepts
	2.1. Overview
	2.1.1. General Check
	2.1.2. Getting an Application or an Initialized Document

	2.2. Shapes and Assemblies
	2.2.1. Initializing an XDE Document (Shapes)
	2.2.2. Getting a Node considered as an Assembly
	2.2.3. Updating the Assembly after Filling or Editing
	2.2.4. Adding or Setting Top Level Shapes
	2.2.5. Setting a given Shape at a given Label
	2.2.6. Getting a Shape from a Label
	2.2.7. Getting a Label from a Shape
	2.2.8. Other Queries on a Label
	
	Main Shapes
	
	Assembly and Components

	2.2.9. Instances and References for Components

	2.3. Editing Shapes
	2.4. Management of Sub-Shapes
	2.5. Properties
	2.5.1. Name
	2.5.2. Centroid
	2.5.3. Area
	2.5.4. Volume

	2.6. Colors
	2.6.1. Initialization
	2.6.2. Adding a Color
	2.6.3. Queries on Colors
	2.6.4. Editing Colors

	2.7. Layers
	2.7.1. Reading and Writing STEP or IGES
	2.7.2. Reading a STEP file
	2.7.3. Writing a STEP file
	2.7.4. Reading an IGES File
	2.7.5. Writing an IGES File

	2.8. Using an XDE Document
	2.8.1. XDE Data inside an Application Document

	3. Package XCAFDoc
	3.1. General description
	3.2. Enumeration XCAFDoc_ColorType
	3.3. Class XCAFDoc_DocumentTool
	3.3.1. General description
	3.3.2. Methods
	Constructors
	Methods:

	3.4. Class XCAFDoc_Location
	3.4.1. General description
	3.4.2. Methods
	Constructors
	Methods:

	3.5. Class XCAFDoc_Color
	3.5.1. General description
	3.5.2. Methods
	
	Constructors
	Methods:

	3.6. Class XCAFDoc_Volume
	3.6.1. General description
	3.6.2. Methods
	Constructors
	Methods:

	3.7. Class XCAFDoc_Area
	3.7.1. General description
	3.7.2. Methods
	Constructors
	Methods:

	3.8. Class XCAFDoc_Centroid
	3.8.1. General description
	3.8.2. Methods
	Constructors
	Methods:

	3.9. Class XCAFDoc_ShapeTool
	3.9.1. General description
	3.9.2. Methods
	Constructors
	Method Set
	Methods for work with top-level structure of shapes
	Methods for analysis
	Methods for work with assembly structure
	Methods for work with sub-shapes of shape
	Auxiliary methods

	3.10. Class XCAFDoc_ColorTool
	3.10.1. General description
	3.10.2. Methods
	Constructors
	Method Set
	Methods for general structure
	Methods for color table management
	Methods for assignment of colors to labels
	Methods for assignment of colors to shapes in the Shapes section

	3.11. Class XCAFDoc_LayerTool;
	3.11.1. General description
	3.11.2. Methods
	Constructors
	Method Set
	Method of general structure
	Methods for Layer table management
	Methods for assignment of Layers to shapes in the Shapes section

	3.12. Class XCAFDoc_GraphNode;
	3.12.1. General description
	3.12.2. Methods
	Constructors
	Class methods working on the node
	Instance methods

	3.13. Package methods
	Methods:

