TECHNOLOGY

//kI;ASCADE

Version 6.3/ September 2008

Object Libraries

Test Harness
User's Guide

"w OPENCASCADE

Introduction

Copyright © 2008, by Open CASCADE S.A.S.

PROPRIETARY RIGHTS NOTICE: All rights reserved. No part of this material may be
reproduced or transmitted in any form or by any means, electronic, mechanical, or otherwise,
including photocopying and recording or in connection with any information storage or retrieval
system, without the permission in writing from Open CASCADE S.A.S.

The information in this document is subject to change without notice and should not be construed
as a commitment by Open CASCADE S.A.S. Open CASCADE S.A.S. assures no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or copied
only in accordance with the terms of such a license.

CAS.CADE and Open CASCADE are registered trademarks of Open CASCADE S.A.S. Other
brand or product names are trademarks or registered trademarks of their respective holders.

NOTICE FOR USERS:

This User Guide is a general instruction for Open CASCADE study. It may be incomplete and
even contain occasional mistakes, particularly in examples, samples, etc.
Open CASCADE S.A.S. bears no responsibility for such mistakes. If you find any mistakes or
imperfections in this document, or if you have suggestions for improving this document, please,
contact us and contribute your share to the development of Open CASCADE Technology:
bugmaster@opencascade.com

"E—: OPENCASCADE

Tour Opus 12
77, Esplanade du Général de Gaulle
92914 PARIS LA DEFENSE
FRANCE

mailto:bugmaster@opencascade.com

Introduction
Table of Contents

L. INTRODUCTION ..ottt e et e s et e e s sttt e s st et e e s aaaaeessabeeesaateesesbeeeessbbeeesasreesssrens 13
1.1 OVERVIEW L..uttttiiiie et iiiittiiee e et s ettt s e e st e iabb e e e s e e s s e bba b aee s e e e s e ab e b ee e s e e e s e sab b b aaeseessesab b b e eeeeeesssabbbbaaseeenaaes 13
1.2 CONTENTS OF THIS DOCUMENTATION ...vviieiiteeeeitteeesetteeeeeseesssssbeeessseessssssessssssessssssessssnssssssssenenns 14
1.3 (1= TSR X 2 3 1= o J 14
131 Launching DRAW TSt HAINESSciriiiiirieiiiiirieiesie sttt 15
13.2 PIUG-IN FESOUICE IR ... e 15
133 Activation of commands implemented in the plug-iN ... 15
134 Mapping between former separate Test Harness executables and the new plug-ins............ 16

2. THE COMMAND LANGUAGE.........oo oottt e et e e et e s s etee e s sbaee e s erbeeeenes 19
1.4 (@AY= =V | =YY TSP 19
15 SYNTAX OF TCL wttiiiiiiiiiiitiiii ettt et e e e s et e e e e s e e s bbb e a e e e s e e s st bbb e e e e e s s sabbbbaeeeas 19
1.6 ACCESSING VARIABLES IN TCL AND DRAWuttiiiiiiiiiiiiiiiiee ettt seiirre e s ssibbvae s nnananes 22
16.1 LY T 1ST=] SRR 23
1.6.2 [0 ST A0 17 1 23
1.7 IS 5 24
1.7.1 (000011 0] IS 0 011U 24
3.11 [TP 25
3.1.2 AL (TR (o g (0] (=T Uo] PR 25
3.1.3 L] ET O ol) (] T =R 25
3.2 PROCEDURES ..ottt ettt ettt e s s e bbbt e e e e s s e s b bbb e e e s e e s s bbb bbb e e s e s s sa s bbb b b e e s e s ssebbbbaaeseeeseaes 26
3.21 81 (0o T TP U TPV U U UUTUPTPPTUPRTIO 26
3.2.2 o] To] o= T o 1V7: U OSSO UR SRR 27
3. BASIC COMMANDSttt et e e et e e sttt e e s et e e s e bae s e sebateesssbeeessbbeeesareeeessrbeneeas 28
3.1 GENERAL COMMANDS ..1tttiiieiiiiititteetse et seistbeessesssaitstbasssesssasastbassseessasbtbasssesssasbbbasesesssssasbbassseeessins 28
311 TSR 28
3.1.2 Y011 (= R 29
3.1.3])OSR 29
3.14 CPUBIMIT ..t bbbttt b et b ettt et 29
3.15 1122 YL TR 30
3.1.6 (6] 01 (0] 21 ST 30
3.2 VARIABLE MANAGEMENT COMMANDS ..viiiiiiiiittieiiieeeesiibbttieesesssabbassessesssssbbssssssesssssbssasssesssassnsnns 30
321 ISATAW, QIFECTOTY ... eviitieieiiei ettt ettt e e bbbt bbbt e s e e e e e nnas 30
3.2.2 WHALES, QUMD ..ttt et bbbt e et e s b e b e b e sbe bt et eeaean e e e ennas 31
3.2.3 [T AE L0 LT oo o) PP U TR OSSP 32
3.24 [0 =T [T Y LY T 1) (0] (=TRSO 32
3.3 USER DEFINED COMMANDSutttiiiiieiiiiititteeeeesssaistbesssesssssisssssssssessissssssssssessssssssssssesssasssssssssesssnins 33
3.3.1 1< SRR 33
3.3.2 = OSSPSR 34

4, GRAPHIC COMMANDSttt et e e s et e e e st e e s s sr b e e e s st ae s e sbansessabaeeaas 35
41 AXONOMETRIC VIEWERuuttiiiieeiiiitttiitieessesistbettsasssssistbasatasesssabbasttesesssasbbabasasesssassbbbenesesssassrnes 35
41.1 ALV Ao (=] =) (PR 35
41.2 oY (O 01T ST (0] T T O TP O PR PP PPR PR 36
41.3 mu, md, 2dmu, 2dmd, ZOOM, 20Z00Mcueieeiiiiee ettt e s e s sebra e e eaees 36
414 pu, pd, pl, pr, 2dpu, 2dpd, 2dpl, 20Pr ..o 37
415 (L0 |) AR 37
4.1.6 LU TR0 R TR TR 38
4.1.7 {01071 IR0 (VTR (o [T 38

4.1.8 [o10] [0 38

Introduction
4.1.9 (0112 AR TR 39
4.1.10 hardcopy, NCOIOK, XWOcoiiiiiiieiie ettt sb e e 39
Nt R ol TR o] [S 40
e 111 (o 1o [1) o] =SSR 41
e T o 1) o =Y/ (o]] SRS 42
O ST - Ty T o (<Y o (o] =T T 42
4.1.15 repaint, dfIUSH ...cocoece e ————— 43
4.2 AlS VIEWER — VIEW COMMANDSttttiiiieesieiitttetteeeesssitbesieesessssssbasssesesssassbssesssesssssssssesssesssassssnes 43
421 (1L TR 43
4272 VI bbbttt 44
423 1706 o T TP U PO UUUP PR PP 44
424 (T2 Vo IRt 44
4.25 Y= 1o o SO SUSRP 44
4.2.6 (0] [T R 44
4.2.7 AT =T o= V1) OSSR 45
4.2.8 AL 45
429 (07411 45
4.3 AIS VIEWER — DISPLAY COMMANDSveiiiitteieeitieeeeetteeesibeeesssseessssssesssssbesesssssesesssssssssssssesssssesssnses 45
4.3.1 Y0 1Y o] - 2SS 45
432 170 (o] 01 TSP PP PT TP PO PRPRPPTON 45
4.3.3 VAISPIAYAIL ... s 46
434 (V] = T 46
435 VEEASEAIL ...ttt e e e e et e e e e e e e s e e e e e e b be e e e e raesibaneaas 46
4.3.6 VSEEAISPIMOME. ...t bbbt b e bbbttt be e 47
4.3.7 VAISPIAYLYPE ..ttt ettt bbbt bt e et e s e e e b e bbb e bt en e e e 47
4.3.8 A= LT A oL PP P R OPPOPRPN 47
439 AT 0= P PP PPRUPPOPRPIN 47
T T V=01 o0] o 47
T 5 R V1 7=1 (070 (o) 50
4.3.12 VSEHFANSPAIEICYeiveeieeieeieeieseeseesteeste e teesteaseesseesteesseestees e sseessessseesaeesseaneesneesseenseenseensenns 50
4.3.13 VUNSELEFANSPAIEINCYcvviurirteirierisieetieieee ettt sttt ne e b ar et b s e e e sr bbb 50
I R V= {1 1 (1 A = | RO 50
4.3.15 VUNSEIMALETTAL ...veeeiiiiie ettt ettt e e ettt e e sttt e e s et e e e s et et e e st e e e s ssbbesesssbaesesareeas 51
I8 KT V<7< VT o 1 o RO 51
TN A 1 U1 4 FY=Y A1 1o L1 [T 51
4.3.18 VSEESNAAING ...ttt bbbt e bbbt 51
L N T VU [1T=1) = o L] Vo [USSR 51
B O B V< - 1 PPN 52
B R VU [17 =1 = o OO 52
L 7 o [V 11« TS 52
T2 T Y o | | 52
B S V-V | o 52
A T V7- 1 (o RS 53
T T V71 =Y - PR 53
TR A V1= 0 1o [1T 53
T B V1< =T - RPN 53
I A B Y/ 1Y o OSSR 53
T 1O R VL TSR 54
T R V! 7 1 (= PP PPN 54
4.4 AlS VIEWER — OBIECT COMMANDSuttiiiieeiiiiittireieesessiitbsseessessissssssessessissssssssssesssnssssssssesssasssnnes 54
441 A LT TS0 [0 54
4.4.2 177] = gL 1 SR 54
443 (£ 55
444 Az VLTS 55
445 VAKISPAT vttt ettt ekttt stk bbbkt b bbbt s b b s bbbttt b bbbt 55

Introduction
4.4.6 A2 VI 0] 1 [0 TR 55
4.4.7 A7/ 1o Lo SO SUSRP 55
448 177 o] F= T3-SR 56
449 (Vo] =T g =T o =T USSR 56
T Y/ o] - U T=To] o 1 o SR 56
o R V1oV 56
o Y ot 1 (o] - T 56
o R T V. § o 12 o IO TR TR TR 57
45 AlS VIEWER — MESH VISUALIZATION SERVICE ..vvviiiiiiiitieiiie e e e setittiee s e s s seibtrese s e s s sssbssanesesssssannnes 57
451 LATT a1 0T 1] | PR TP 57
45.2 MESNAISPIMOUE. ...ttt e b e bbbt e st e e et e b sbenbesbeebe e e eneeee 57
45.3 MESNSEIMOUE ...t e e s bt e e s et e e e s st b e e s st b e e s sbaeeessbbaeesasbaesesabanas 57
45.4 [ATTS TS g (o (o0 (o] SRR 58
455 0L A 1101 (70] (o] TR 58
45.6 AL AL | TSR 58
457 0L 0] A o0 1Y [T 59
458 LSS 115 1 7 59
459 LA 11 LT 60
Y0 T 111 1o U= 60
4511 MESNSNOWSEL ...ttt ettt e ettt e e ettt e e s bt e e e et b e e e s st aeeesbaeeessrbeeessbaesesreeas 60
4512 MESNSNOWANL ...ttt ettt r e e s st e e e sttt e e s et e e e s sbe e e e saraeeesareeas 60
T B T 1 1T [0 (] U= (TSR 60
4.6 AIlS VIEWER — 2D VIEWER — VIEW COMMANDS ..vvviiiiiiiiitiriiiiee e s iiiberiessessssssssasssessssssssssssesssssssnnns 60
46.1 (220 1o TR 60
4.6.2 (V220 L 1 oo TSSOSO 61
4.6.3 ATZZ 0 | 61
4.6.4 (V220] o=V) SRS 61
46.5 (220 [[T 61
46.6 (22012 61
46.7 (220 L1123 4 (o1 [61
4.6.8 V2APICK. .ttt bbb bbbt nn 62
4.6.9 (V224 [0 T PO TP T RO PSOTPRPRPPTON 62
A.6.10 V2IMOEIU ..ottt bttt bbbt b et bbbttt 62
N R V72 o[o] o3 (o | o o USRS 62
N A 7 o[111U | USROS 62
T R T o o || TSRO RTR 63
4.7 AIS VIEWER — 2D VIEWER — DISPLAY COMMANDSoiiiitttiiieieiiiiitiarieesessisisnsseessessssissssesssessssssnnes 63
4.7.1 (V2220 o 11 o] - SRS 63
472 V2220 o [0} 1] OSSR 63
4.7.3 (V2220 o113 o] = - | S 63
474 (220 1= T 64
475 (220 [T =TT | 64
4.7.6 (220 E1=1 (oo] (o] SRR 64
477 (220 [N g TSY] (o0 [0 TR 65
4.7.8 V20SEEDGCOION. ...t 65
479 A2 Y T o 1 o OO RR TR 65
A O TR Vo (8 1Y) Y/ T | (o R 66
OCAF COMMANDS ...ttt e s st s st e s st e s st e e sabe s s bessabesabessabessbessabessbessnrenas 67
51 APPLICATION COMMANDS ...utttiiiieeiiiitibeeteeesssiiatbrsteesesssasbbssseesesssabbasaeesesssasbbsbasesesssassbbbaessesssassrrres 67
511 NEWD OCUMENT. ...ttt e e e e e s e bbb e e e e e s s e ab bbb e e e e e ssssbbbbeeeeessassnrres 67
5.1.2 S IS Lo o R 67
5.1.3 (I (D LT[1=Y o 67
514 L 0T o SR RSSTR 67
5.15 (O [0TSR 68

Introduction
5.1.6 T 1YL= TR UTRTTRTR 68
5.1.7 SAVEAS. ... ettt ettt ettt ettt et ettt e et et e e e e —eeeh—eeeh—e et teeah—e e b te e e treeheeeareeeiraeeareeeibaeearenearaeearerens 68
5.2 BASIC COMMANDS. .. utttiiiiieii ittt ee e e e e e st et r e e e e s s e sa b b e et e e s e et s bbb bbb e e sesssabbabaeesesssassbbbaeeeeeseases 68
5.2.1 [1o <] ST 68
5.2.2 NN LY 411 69
5.2.3 (O 01 [0 =] o T 69
524 [0 0 72 | S 69
5.3 APPLICATION COMMANDS .. .uvtiiiieesieitttttteee et e sestbetteasssssasbbatteesesssabbasteesesssasbbebaeasesssassbrbenesesssassrnes 69
5.3.1 VLN . . ettt ettt e et et e et e e e e et e e e et et e e et ee et e ae e e st e e e e rteaeraenaaeraees 69
5.3.2 L1010 [0 1 TP 70
5.3.3 L8130 (o T TR 70
5.34 2 (<o [0 TSRO 70
5.35 OPENCOMMEANT ...ttt ettt bttt ettt et et ek sb e b e s be bt e s e e e e sbesbesbesbeebesbeeneanes 70
5.3.6 (0011011011010 1444 F=TaTo [T 70
5.3.7 NN LT OT o] 141 = 2 T 71
5.3.8 PAY o] g (@0 1 1T 1 =T o IR 71
5.3.9 L0 0)ROSR 71
oI T8 0 T U T oo - =] TGS 71
5.3.11 COPYWITNLINK ceveiviiieeicie et r e e e s b et ne e eneen e nnennas 72
5.3.12 UPUALEXLINKS ..ottt bbbt bbb 72
5.3.13 DUMPDOCUMENT.....cciiiiiiiiiiriie ittt ne s 72
5.4 DATA FRAMEWORK COMMANDScoiiittttiiiieeiieiittettsesssesstbesssesssssessbssssesesssassbssesssesssassssrsssseessains 72
54.1 IMIAKEDIF ...ttt ettt e ettt e s h e e eae e e sb e e e bt e e sa e e e ebe e e sheeebe e e sbaeebeessbaeeraeas 72
5.4.2 (01 [T 1] TSRO 73
54.3 (01070177 0 SRS 73
5.4.4 LO00] o)/ =1 o1 PSSR 73
5.45 MINIDUMPDF ...ttt e e et e e et e besbestesneeneeseenes 73
5.4.6 Da I U 44105 SO 73
55 GENERAL ATTRIBUTES COMMANDSvttieiiteeesitreeesesteseseaessssseessssseessssssssssssessssssessessssssssssesenns 74
55.1 03 T=1 I (=T 1< OSSPSR 74
55.2 GBEINTEORT . 74
5.5.3 LY (R L= TP 74
554 (1= (R =T | TP 74
5.5.5 SEUNEATTAY ..ottt sttt b e et e e be e et e et e seetesbe st e tesbeseetesbeseetesbesenrens 75
5.5.6 GBLINEATTAY ...ttt ettt sttt ettt at e e bt ekt e bt es e s b b e sbe e sbe e nbe e besnnesbeeabeenbeanbeans 75
55.7 SEEREAIATTAY ...ttt bt e et b et b e bt bt e st e b et e sbesbesbeebeeb e et annennen 75
5.5.8 LCT= 1T 1 4 - USSR 75
55.9 T (000101 101 L OO 75
LRI KO €11 (@40 1111 (=T | RSOOSR 76
TSI B S {4] 10 Y -SSP 76
TSI A 1 o 3] £ [T T - | 76
LT T00 T =1 1\ = = 76
LI S 111\ F=1 111N 77
L T T T= (2 (=T (=] (] 1oL ISR 77
L T T €1 2L (=] (=] [0 IO 77
B.5.17 SEHUALIIIDULE ...ttt ettt ettt e et et e e st e s st e e st e s s sa e e st e s s bessabessbaesnbanas 77
B.5.18 GRIUAMIIDULE ...ttt ettt ettt e et e e et e et e s et e st e s s et e e st e s s bassabessbaesnbanas 77
L T L BT { U] o1 o] o TR 78
LI I € 1= | (U3 Tox { T T 78
5.5.21 NEBWSHAPE ...ei ettt et b et e e nr bt reeteeaeere e enrs 78
5.5.22 SBESNAPE 1.viiviciiie ettt renr e n e e e entn 78
TSI T 11 3] - 1oL 79
5.6 GEOMETRIC ATTRIBUTES COMMANDSeiiiitteieiiitteeesetteeeeeaesesssbeessssseessssssessssssessssssessssssessssssenenns 79
56.1 STy oo [| TP 79
5.6.2 [CT=1{ a0 1| TR 79

Introduction
5.6.3 SBEAXIS .ttt ettt e et et e ettt e et e e et e e et e e e —eeeateeeabeeehaeeehbeeeateeehaeeaateeshaeeateeeihbeeatenearaeenranens 79
5.6.4 GBLAXIS ..ottt ettt ettt ettt e et e bt e e e bt e e et e e e e be e e bt s et e e ebe s e beeeabe e e reeeabeeabeeaabeeereeeateeeraeenats 80
5.6.5 1= 1 d F= T TR 80
5.6.6 (111 o F- T o TR 80
5.6.7 1= (C1=T0] 101 O PSPPSR UPPTPR 80
5.6.8 LC T (CT=To] 1] 1V Y OSSR 81
5.6.9 1= (@0 g1 1 = [A 81
L T8 O €1 (O T 13 £ =113 AT TR 81
LT Y= AN = T T 1 o] [T SRR 81
ST €11 A V2= T g F=1 o] [T SRR 82
5.7 TREE ATTRIBUTES COMMANDSutttiiiieiiiiiitteiteeesseiitbasssesssessbbasssesssssistbasssesesssssbbssssssesssssbssaeesas 82
5.7.1 ({010 11\ o o [T PR 82
5.7.2 L1\ oo (=TSRRI 82
573 F Yo 1=T 0T 1NN oo - OSSR 82
5.7.4 =T o TcT a0 NN o o [OOSR 83
5.7.5 T [0 (<] <] (] RN 83
5.7.6 TS N[00 [N (Y 83
5.7.7 (D151 7 103 01NN [o o [83
5.7.8 (O 110NN oo L= L =T = 83
5.7.9 TR TL (O g1 [0 |\ ToTo (=Y =T = 1) TR 84
L% O I O o 11 [0 [\ [1o (1Y (o (TSR 85
LI % T O o 11 (o N[00 [AN L= TSR 85
B.7.12 ChilANOGEVAIUE........ooeieeiiei ettt e et et e e e s st b e e s s b b e e s sebbea e s sabaeeeas 85
5.7.13 ChildNOGENEXIBIOTNEL ...ttt e s st sbte e e s st e e s s snbaeeeens 85
5.8 STANDARD PRESENTATION COMMANDSuvttiiiiieeiiiiitriiieesssesitbssssesssssistbssssesssssssssssssssssssssssssseesas 85
5.8.1 F 1 LT AV AT TR 85
5.8.2 F Y EY 2 (=T o= o | PSSRSO 85
5.8.3 F Y 1S I 1] - 2SS 86
5.8.4 Y S T - (-SSR 86
5.8.5 F Y] = = - 86
5.8.6 F N] R (= 1[0 V=TS 86
5.8.7 AAISSE et et ere e e et e re e e r et e s e e r e e reeereeraees 87
5.8.8 F Y 1B VL] TR 87
5.8.9 P 1510 1= TSR 87
5.8.10 AISTIANSPAIENCY ...ueiiuiitietietieiieetie st ee bt e bttt ettt sbe ettt eesb e eseesbeesbeebeesbesseesbeesbeesbeenaeenneenes 87
5.8.11 AISHASOWNTIANSPAIENCY ...ccuvirtiiiiieiiieiteaeesieesieesteesteasesisesseesbeebessbesssesteesbeesbeasnesseessnesaeennes 88
R I Y 1511 =1 (< AT AT 88
5.8.13 AISHASOWNMALEITALccveiiviiiiiiiieii ettt ettt sb e s s sbe e st a s s sbasebee s 88
LSR5 S Y 15100] [R 88
R I T Y 151 o T 110 17774 [0 [88
GEOMETRY COMMANDS ...ttt ettt st e st e e st e s s ta s st e s st e e sabessbassabessbaesabanas 90
6.1 L@ A= A Y 90
6.2 CURVE CREATION ... iittttiitteesieitttttttseessesssttettsesssassbtbaessasssasabsbaessaessessbebaessesssesabbbasesasssssbbbesesaeessins 91
6.2.1 01011 SO OO TS TP T SOTRTTSO PR U SO UR PR 91
6.2.2 T LT 92
6.2.3 (o] (o] LR TRR 92
6.2.4 L] 1T o= SOUPS TP URTURPRURRRN 93
6.2.5 RYPEIDONA ... e 93
6.2.6 OF= L= Lo o] - USSR 94
6.2.7 DEZIEICUIVE, 20DBZIEICUIVE ...ttt ettt st e s s e s st e e st e s saaeesaes 95
6.2.8 bsplinecurve, 2dbsplinecurve, pbsplinecurve, 2dpbsplinecurve.........c.ccccccevevivieevviivcreene, 95
6.2.9 OIS0 TR T 96
LT T (Y220 R0 (0 1< o 97
B.2. 11 PIOJECE .ttt b bbbt 97

Introduction
6.3 SURFACE CREATION L..utiiiiiitiie e ittt e e eittee e s ettt e e esateeeeateeesastbeeesasteeeesbaeaesssbeeeaasteseesnssseesasbseasasseeeesanenns 97
6.3.1 PIANE .ttt bbbt E et bbbt b b e nr et e et e 98
6.3.2 (03 LT T USSR 98
6.3.3 (o0} o< PP 99
6.3.4 R 0L (SRR 99
6.3.5 (0 1RSSR 99
6.3.6 Lo1=YA 1=] S0 o OO 100
6.3.7 bsplinesurf, upbsplinesurf, vpbsplinesurf, uvpbsplinesurf...........cccccccoiiiiniiiniiiee, 100
6.3.8 EFIM, EFIMU, TEIMV ettt e e sbe e e ebe e s sbaeeebee e sbaeenree s 101
6.3.9 (0] 1571 A OURRRTROt 102
LT T T 111V | E OO ROTSRRTRP 102
(TR 0 I - (1 | PSPPSR 103
Lo T0 N o101 11V o OO POUPRS PR 103
6.4 CURVE AND SURFACE MODIFICATIONSeeeiititeeiiuteeesitteeessineeessseeesssseesssssnsessnsssssssssessssnsnsessnnens 104
6.4.1 FEVEISE, UFBVEISE, VIBVEISEivieeeiiieeeeitteee s itteeesatteeessataaeestaeaeastbeeesassseeesnnaeeeatbeeesnnneeesnnnes 104
6.4.2 L2 (el 41U TP 105
6.4.3 =0 1] 0 =T 0] S 105
6.4.4 [T oT 0o [=To TR T 030 Lo PSSR 106
6.4.5 CMOoVep, MOVERP, MOVECOID, MOVEIOWDeivvieieerieeeiesiesiesiesiesteseeseeseeseeaesaesre e sresresneenens 106
6.4.6 insertpole, rempole, remcolpole, rEMroWPOIE ..o 107
6.4.7 insertknot, iNSErtuKNOt, INSEITVKNOL...........coouiiiiei ettt 107
6.4.8 remknot, remuUKNOL, FEMVKNOTcoiiiiii ettt ettt ere e e reeenbe e aens 108
6.4.9 setperiodic, setnotperiodic, setuperiodic, setunotperiodic, setvperiodic, setvnotperiodic.. 108
6.4.10 setorigin, SELUOKIQIN, SELVOTIQIN ...c.ceviiiieiie ettt bbb 109
6.5 TRANSFORMATIONSviiiiittieeeiitteeeeetteeeestteeeeatteeeaaaseeessabeeaeataeeeaassseesssbaeaeataeeeaassaeessabeeasasbeeenase 109
6.5.1 translate, 2adtranSIAte........c.covviiiiii i 109
6.5.2 L0 E=Y (I [0] - L= TSRS PR 109
6.5.3 pmirror, Imirror, smirror, 2dpmirror, 2dIMIrrorcccocvviviieeieeieeeeree s 110
6.5.4 PSCAIE, 2APSCAIE.......cuiie e et nes 110
6.6 CURVE AND SURFACE ANALYSIS 1.vtiiteeitreiiteeiteeareesteesisessssesssessssessssssssessssessssessnsessnsessnsessnseeas 111
6.6.1 (01010] (o 1RSSR SPRRRTROt 111
6.6.2 CVAIUE, 20CVAIUE ...ttt ettt ettt e s e e st e e sbe e e st e e sree e sbaeeereeases 111
6.6.3 LYYz 11U 112
6.6.4 localprop, minMaxCUrandin.............cooiiiiiii e e 112
6.6.5 PBIAIMETETS ...ttt ettt sttt ettt h e bt e et e et e e b e e ae e ehe e ebe e bt e abees b e eb b e nb e e nb e e nbeenbeenneeanesnes 113
6.6.6 [S1 (] I [o] o U UUTURUR USSP 113
6.6.7 VL ot - 1o U SRS 113
6.7 INTERSECTIONS «...utttieittteeeeitteeeesutteeesteeeesstueeeeasteseessteeessssaeeeastbeeeaasseeeessneeeessbeeesasseeeesnnneeesasrananas 114
6.7.1 (L= 1o A OSSR PR 114
6.7.2 B0 101 (=] £1-Tox A OO 114
6.8 AAPPROXIMATIONS ©.eeiuteeitee ettt eiteeesteeastessssessstesasseeateessseeateesssesanteesssesanteesssesssseesssesssseesssessnseessnes 114
6.8.1 1o oL o T F= o] o) USSR 114
6.8.2 SUFTAPP, GFITAPD - veeeeete e e 115
6.9 (610N ISy 127 [N £ TSSO UP O 115
6.9.1 (o[7= o TSRSV SRV TPV 115
6.9.2 T e o TSP 116
B.10 DISPLAY ...eetiiiiiiiiee ettt ettt ettt e e et e et e e e et e e e e eab et e e eb— e e e atteeeaatreeeeabeeeeatteeeaaareeeaatbeeeeanraeeeaareas 116
6.10.1 dMOd, dIiSCE, GEFIE.....eiiiie et aeas 117
B.10.2 NBISO 1iivviitiiitee ettt b e b et e b b e b e e be e beebeabeaaeeareeabeebe e 117
6.10.3 CIPOIES, SNPOIES.....ooiiieie st nrens 118
6.10.4 CIKNOLS, SNKNOLS.....ccviiitieiiiiecie ettt ettt ebe e be e be et e st esbeesbeesbeenbesaeesaeeebeenbeens 118
TOPOLOGY COMMANDS.ottt ettt st a e st ste e ste st st e sbe e b e et e eabesbaesbaesbe s 119
7.1 =YX} (o3 Ko]=To] I 1) 2SSOSR 120

7.11 1SOS, QISCIELISALIONeiivvieiie i ctee ettt ettt et e et st e e ebe e et e e ebe s s sbaeebeeesbaeebesesbaeenbenases 120

Introduction
7.1.2 orientation, complement, invert, NOrmals, range.........cccovririeiiiinene e 121
7.13 explode, eXWIre, NDSNAPES ..o 122
7.14 emptycopy, add, COMPOUNG.........coviiiiieiiiiie et sresr e resaeereens 123
7.15 [0 4 To1 S 1T o L= USSP 123
7.2 CURVE AND SURFACE TOPOLOGYvtuvtiueesteesseeseasressresseessesssessseasssssssssssnessseessesssesssessnessssssesssees 124
721 (=]) P TP PRSP P TP PRTPRPRUPPPTN 124
7.2.2 edge, mkedge, UISOEAQE, VISOBAGEccvivreieeierieie e s sie e eree ettt sn e s 125
7.2.3 Wire, POIYIING, POIYVEITEX.....c.iiiiiieiicie s 126
724 PIOTIIE bbbt 127
7.2.5 BSPIINEPIOT ... e 129
7.2.6 IMKOTFSBE. .t bbbttt e bbbttt n e neas 129
7.2.7 MKPIANE, MKFACE ...t b 130
7.2.8 MKCUNVE, MKSUITACE ...ttt bttt se bbb b sneeneas 130
7.2.9 PCUNVE .ttt ettt ettt ettt ettt s e e e e st e Rt e e bt e e h e e e bt e e bb e e b bt e kb e e b bt e ke e et e e be e e be e e bee et 131
T.2.00 CRFI20 ettt ns 131
4 R o] (o] 1= od SRS 132
7.3 PRIMITIVES ...ttt bbbt e bt bbbt e s e e e b e bbb e et en e nennn 133
7.3.1 010D 1o (o PSS 133
7.3.2 peylinder, pcone, PSPNEre, PLOTUScivieeieierce ettt 134
7.3.3 RAITSPAICE ...ttt 134
74 SWEEPING ...utteutteuttettesiee st ettt ettt st ae e s bt e s bt et e s e e s e e b e e bt e s b e be et e e me e e Rt e eae e ebe e bt en b e enbenr b e nreenreenrean 135
74.1 PIESIM ettt bbb bbbk b bbb bbbt b et bt et 135
7.4.2 L1370 DTSSR PSRRI 136
7.4.3 01101 SO SRORS 136
7.4.4 mksweep, deletesweep, buildsweep, SIMUISWEEPccccoviiiiiiinieniee e 136
7.4.5 EFUSECLIONS. ...ttt st b ettt st sb ettt bene e 137
7.5 TOPOLOGICAL TRANSFORMATIONccutieteaseesseesueesseesseeseassesssesseesseessesssessesssesssessseessessnessnessesssees 138
75.1 L(ol0]) 138
7.5.2 EMIOVE, TIBSEE. ...ttt bbbt e b b r bbb 139
7.5.3 EErANSIALE, TFOTALE ... e 139
754 L0 LT o] N £t [T 140
7.6 OLD TOPOLOGICAL OPERATIONSviteeiteesteesteesteestesstesteesteestessaesssesnsessssssesssesssesnsesssesssessesssesssees 140
7.6.1 L{0 T oL | P oTo) 1] 1110 o H R 140
7.6.2 SECLION, PSECLION. ... ittt ittt bttt bbbt bt e s be b e b b et e b e e ne e e e e e b e 141
7.6.3 =T oo TSP OSSO 141
7.7 NEW TOPOLOGICAL OPERATIONScuvtetieteeiteatesseesseesseesseasseassesssesssessesssesssesssessssssesssssseessesssenns 143
7.7.1 bop, bopfuse, bopcut, boptuc, BOPCOMMON,c.ccveiiicec e 143
7.7.2 oo] 01511 1[0 o USSP 144
773 bopcheck, DOPArgSNAPEccv i e enes 145
7.8 DRAFTING AND BLENDINGcuttutesttateteateeseeseesressessessessessesseessesseasesbessessesssessenseanessesnessessseseensennes 146
7.8.1 (0 L=T o To U 11 PSSR 146
7.8.2 CRAMI L. bbbt 146
7.8.3 0] =T o [SRR 147
7.8.4 (0] o] OSSPSR 148
7.85 mkevol, updatevol, DUITAEVOLcccooiie s 148
7.9 TOPOLOGICAL ANALYSIS ...utiauttatiesteesteesteaseaseesaeesseasbeesbeassesssasbeeabeesbeaabesasesaeesaeeabeanbeanbesseeneeeneeas 149
7.9.1 IPIrOPS, SPIOPS, VPTOPS ..veieeuieeete sttt sie et eteeees e st sbe bt bt e st ase e e e e sbesbesbesbeebeaneeneeneenbenbesaens 149
7.9.2 DOUNGING ..t bbb bttt e 150
7.9.3 (0TS 10T T OSSR 150
710 SURFACE CREATION ...oiittiitieteateaseaseeasesaseasseasseassesssesseesseeseesssessssssesaneeaseansesssesssessesssesseesnsesnnssnes 151
7800 50 o o -SSR 151
7.10.2 filling, fillINGPAIAM......cci it ne e e eneenrens 152
711 COMPLEX TOPOLOGY ..cvviueiutetearistesseeseaseestessessestesbesbeaseesse s ebesbeabessesse et e e esbeneeane st anenbeaseennennenes 154
7.11.1 offsetshape, OffSEICOMPSNAPE.covciiirieiiee s 154

7.11.2 featprism, featdprism, featrevol, featlf, featrf ..o, 155

10

Introduction
A T T T« [- 1 SRR 157
A 0 o (=1 (0] (B 4101 0110 1] TR 158
7.12 TEXTURE MAPPING TO A SHAPE ..ttiiiiiiiiiiitiitiiie e st sibirte e e s e st sebbbbee s s e s s saabtbasssesssssabbbaaseesssssabbasanesas 158
B R Vi (- 1§ | (=T OO PRSP 158
Y (< (Yo | [T 159
8 T - (o | ¢ o | SRS 159
R - =] o= | OSSR 159
A T () (o (=] £ 11 | | TR 159
DATA EXCHANGE COMMANDS ...ttt sttt st st e s sbb s sba e s sbae s saae e 160
8.1 L7 =3 = 7Y RSP 160
8.2 [GES COMMANDS . .. cciiii ittt ettt e e e e st bbbt e e e e e s s s b b et e e e s e s s s e b b bbb e e e sesssaab bbb e e e sesssasbbbbeeeseessassreres 160
8.2.1 ([0S 7 Lo OSSP PSRRI 160
8.2.2 1101 (0151 L 1 PSSRSO 161
8.2.3 o (=T o [0 SRR 161
8.3 STEP COMMANDS ...oeiiiiiittttii ettt e s e e e s e et s e sab b e e e e e s s e sab b bbb e e eeeessaabbabaeeeeessaabbbbeeesesssaareres 162
8.3.1 L (=T 0] (=TT S S 162
8.3.2 (=] 0L (S 162
8.4 GENERAL COMMANDS ... uveieiititeeietteeesitteeesstessssssesssssbesesassassssbssessssbesesassesessbaeessasbesesasesssssens 163
8.4.1 (o701 | SRR 163
8.4.2 [0 £ L= WU TSRO O TR PURUPRTPURRUTR 163
8.4.3 <1 E= 1 oL TR 164
8.4.4 BITEIEY ettt bbb bbb bbbt 164
8.4.5 <] 10T PR 164
8.4.6 LTSy £= L LU TR 164
8.4.7 FPOMSNAPE ... ettt ettt bbbttt e 165
8.4.8 [0 TY 10701V o PSSR 165
8.4.9 0T) PSSR 165
S 1 T 111 oo) 166
I O 111 1) (=T34 166
B 7 11 1 1Y o] PSSR 166
0Nt T o 1=,V 4o To (=Y TR 166
B4 LA PAFAM....ciiiiiit ittt r e 167
3 S YU {11100 TV | RS 167
BALB IPCIEAT ... ettt bbb bbbt b bbbt ne 167
BALT APAFAW ...ttt bbbt b e bbbkttt b bbbt e et et nen 167
SIS T 1 1] | OSSOSO 168
IR R T 1 0] - | OO PP PR PRSPPI 168
S 0 D { [- Vo [169
8.5 OVERVIEW OF XDE COMMANDS ..1vviiiiiiiiitirii ettt s et e s e s s s s bbb aas e e s s s s sabbaaaeasssssabbaseeeeas 169
8.6 XDE TRANSLATION COMMANDSuuviiiiiteieeitieeeeeteeessreessasseesssssssssssresesssssesssassssssssseresssseesesnnes 169
8.6.1 LT 1o 1 o 1TSS 169
8.6.2 T 10 S < oSSR 170
8.6.3 WVETEEIgES. vttt b et b ettt b ettt b ettt b ettt b e et nbe e ene s 170
8.6.4 WVETEESTED Lttt ettt bbb et b e et bt et b e et b ere s 170
8.6.5 XIETIECUL .ot ettt e e st e et e st e st e st e eet e e s e e eaeeesaeesaneeesraeearees 170
8.6.6 D ST1 (2] IR 1) TR 170
8.6.7 DT [N]SR 171
8.6.8 D 0] 11151 1 =T 1 TSRO 171
8.7 XDE GENERAL COMMANDSciiiiittttitetetiieibtieeeseessasatbeessesssassbbsrssesssssabbssesssesssasrbsseessesssasssres 171
8.7.1 DA (=TT Lo T 171
8.7.2 D] 110 172
8.7.3 D] - | 172
8.7.4 Do 34T S 172
8.7.5 XUAUMIP ettt b e bbbt b e bt b e bbbt bt bt b e bt n e 173

11

Introduction
8.8 XDE SHAPE’S COMMANDSutttteteesteesteateseeaaeesseasseaseassesssassesstessseassesssssssessseaseansesssesssessessses 173
8.8.1 XAAUACOMPONEBNT ...ttt sttt bbbt bt e e e e s b e sbesbeebesbeeneeseene b ee 173
8.8.2 D 0aVo [0 K (- oL OSSPSR 173
8.8.3 DT @] 41T o To] 1T o1 USSR 174
8.8.4 D110 K] T oL TSSO 174
8.8.5 D= 1 =TI T oSS 174
8.8.6 D= (@ 4T - o S 174
8.8.7 XGEIREFEITEASNAPE ..ot et 175
8.8.8 XGBESNAPE ..t 175
8.8.9 XGEITOPLEVEISNAPES ...ttt 175
8.8.10 XLADEIINTO ...cviiiiieiicti ettt enen 175
B.8. 11 XNBWSNAPE ...ttt ettt s bt R bbb b sttt e n et eenen 176
8.8.12 XReMOVECOMPONENL.......coitiiitietieiiietiesieestee sttt e ettt et s e b e beesbeesbeebe s b e sseesaeenbeenneans 176
8.8.13 XREMOVESNAPE ...cvveviiiiieite ettt sttt be st e teebeese et et e seesbesbesbeeraeneeneeeens 176
B.8.14 XSBESNAPE .. uiitiiiiciie ittt et re et et sre st e teareere e e enrenrens 176
8.9 XDE COLOR™S COMMANDS.......utitteiteesteeiteaseasesasessseesseaseassesssesseessessseasssssnssssssnessseensesssesssessesssees 177
8.9.1 D 02 Vo [0 (o] (o] SO OSSPSR 177
8.9.2 XEINACOIOF ...t ettt bbb e 177
8.9.3 D (T 7N 1 (0o o] TSR PRTT 177
8.94 D€ =] (O] (o] USSR 177
8.9.5 XGELODJVISIDIILYocvvcveiieice et 178
8.9.6 XGEESNAPECOION ...t bbb 178
8.9.7 XREMOVEC OO ...ttt bbb bttt b bbbt et e bt e 178
8.9.8 D L] (0] (o] OSSR 178
8.9.9 XSELODJVISIDIILY oottt ettt st 178
8.9.10 XUNSEICOION . .uitiieiiiieieie sttt sttt bbb e st ans 179
8.10 XDE LAYER’S COMMANDSceitteutiatterteesteesteesteasseasssasesasessseesseasseassesssessesssesssesssssnssssessnesssesnsenns 179
ST 0 00 Vo 0 | SRS 179
8.10.2 XFINALAYETviieeeeieeee ettt ettt sttt et steaneese e e en e seentesbeanenreeneeneeneens 179
8.10.3 XGEIAILAYEIS ...ecveeveeeieie it siesieste et e ettt e e e s e e e te s tesbesteaneese e e enteseestesreaneeneeneeneeneens 179
8.10.4 XGBILAYEIS ...ttt 180
8.10.5 XGEIONELAYETveviiriieitietiee ettt 180
8.10.6 XISVISIDIE.....ciciiiicictiicce e enen 180
8.10.7 XREMOVEAIILAYETS. ..ottt ettt e bbbt st e e e 180
8.10.8 XREMOVELAYETcouiitieiieiie ettt sttt ettt sb b bt e e e s b e e sbe e st e e b e anesneesbeaneans 181
B.10.9 XSELLAYET ...vivveieiteietiiteie ettt sttt ettt ettt ettt bbbt b et n bt neenen 181
8.10.10 XSEEVISIDIIILY vt 181
8.10.11 XURNSEBLAIILAYETSocvveiviiesiesie sttt sttt st aeeta e e st e e e st e sbesnesreennens 181
8.10.12 XUNSEELAYET ...ttt bbb e et b e e st b et b e e stbeenare e 182
8.11 XDE PROPERTY’S COMMANDSccttttuiateeseentestessessesseasesseassenseasessessesseassesseseesesneanessessesseensensenes 182
ST 0 @ £ T Tod 1 o] oSSR 182
8112 XGBLATBA .tttk h ettt b bR R Rt bt e R bRt r e nea 182
8.11.3 XGELCENIIOIA. . .cviiiiiii ittt st et e e et e s be e be e s be e besreesbeesbeesbeenreenneens 182
8.11.4 XGEEVOIUME. .. .ocitiiie ettt et ettt s b e st e e be et e e teesbeesbeesbeebeearesasesreenraens 183
S T T Y T PSSR 183
S T0 LT =) O o1 1o [OO 183
B.11.7 XSEIMALEITAL. ... ettt bbbttt b e bbbt e 183
B.11.8 XSEEVOIUME. ... ctiiiiitiiteiet sttt ettt ettt e sttt e st et s et e s e nteenn 184
8.11.9 XShAPEMASSPIOPScuviuieiiieite sttt sttt ettt be st e te s aeete e e et e stesbesresrenreeneens 184
8.11.10 XSNAPEVOIUME ...ttt b e s be s beere e e et e saenren 184
SHAPE HEALING COMMANDS . ..ottt sttt sttt sttt sae et sastesseassesnes 185
9.1 GENERAL COMMANDS ...ttt st srestesie et eesse st abesbe bt s e e e s e nee e st nbeabeab e e e e b e nnean e b e sneebe e e enne s 185
911 0] 0] SRS 185

9.1.2 (o TT0 o] P2 Loy TR 185

12

Introduction

9.13 CHECKOVEITAPEUGES ...ttt et e bbbttt n s 185
9.1.4 (o10] 111 (0] IR OSSO RT OO OURRRTROt 185
9.15 (o0 01V (0] =1V | IR 186
9.1.6 o LT =Toa 1 1= 1oL TSRO 186
9.17 Lo OS] 1= oL S 186
9.1.8 FIXSIMAUL ..ot b e e bbb e et e b e ab et e e re e be e ere e aas 187
9.19 LRI 1L 0 o T=E 187
0,110 IXSNAPE ..ttt bbbttt 187
D111 FIXWWGAPDS vttt bbbt bbb bRt b bbb b et 188
0.1.12 OffSetCUrve, OFfSEL2ACUINVEveeirii et be e e re e 188
LB R T o] (0] (o]0 =TSSP U URURURURRPRRN 188
LN N S o] (0] | = Vo TSP URURURURRRN 189
0.1.15 SCAIESNAPE. ...ttt bbbttt e 189
0.1.16 SBHOIEIANCE. ...c.vi ittt ettt et et e et eb e s b e be e be e b e s ae e s be e ebeebeeabeeareereenre e 189
0.1.17 SPIACE. ettt r e e e b e re e e e e e e e rens 189
TN R S v 1] -1 oL SRS 190
LR (0] (=T =V (oL RSP SRRPRRTROPTURRRPO 190
9.2 CONVERTION COMMANDSuveeitteeiureessteesseessteesseesssesassessssesasessssesssessnsessssessssessnsessssessnsessnsees 191
9.21 [O [T T 13 o] OSSR 191
9.2.2 DT_ShapeConvert, DT_ShapeCOnVErtREVcccouiireiririeinieieicsieeee s 191
9.23 DT _SNAPEDIVIAE.eveeeiiitieetrteei ettt 191
9.24 DT _SPHEANGIE <.t 192
9.25 DT _SPIECUNVE ...ttt ettt b ettt s et seenn 192
9.2.6 DT _SPHECUIVE2d ..ottt b b bt ans 193
9.2.7 DT _SPIIESUITACE. ... cti ettt ettt bt nenn 193
9.2.8 [N o 27] SRS 193
10. EXTENDING TEST HARNESS WITH CUSTOM COMMANDS.cccooiiiiieeceeeeei, 195
10.1 CUSTOM COMMAND IMPLEMENTATION ...eiiitieiteeireesreesteesneesssesssesssessssessssessnsessssesssessnsessnsens 195
10.2 REGISTRATION OF COMMANDS IN TEST HARNESSvviiiiiiiiiiiieesieesitee e e ssieesteesteesneesnaesnnee s 195
10.3 CREATING A TOOLKIT (LIBRARY) AS A PLUG-IN....ccutitriuerieireereessentessessessesssesaessessessessessessssseessenses 195
10.4 CREATION OF THE PLUG-IN RESOURCE FILEccciittiieiiitieeeeitteeesitteeeeeetieeesetveeessnbeeeesetbesesenreeessnneeas 196
10.5 DYNAMIC LOADING AND ACTIVATION ...uuiiiiitiieeiiteeeeeitteeeeetteeesstbeeesaettesesssseeesssseeesssssesesasseeessnsenas 197

13
Introduction

1. Introduction

This manual explains how to use Draw, the test harness for Open CASCADE. It
provides basic documentation on using Draw. For advanced information on Draw
and its applications, see our offerings on our web site at
www.opencascade.com/support/training.html

Draw is a command interpreter based on TCL and a graphical system used to test
and demonstrate Open CASCADE modeling libraries.

1.1 Overview

Draw is a test harness for Open CASCADE. It provides a flexible and easy to use
means of testing and demonstrating the Open CASCADE modeling libraries.

Draw can be used interactively to create, display and modify objects such as curves,
surfaces and topological shapes.

Scripts may be written to customize Draw and perform tests. New types of objects
and new commands may be added using the C++ programing language.

Draw consists of:

® A command interpreter based on the TCL command language.

® A 3d graphic viewer based on the X system.

® A basic set of commands covering scripts, variables and graphics.

® A set of geometric commands allowing the user to create and modify
curves and surfaces and to use Open CASCADE geometry algorithms.
This set of commands is optional.

® A set of topological commands allowing the user to create and modify
BRep shapes and to use the Open CASCADE topology algorithms.

There is also a set of commands for each delivery unit in the modeling libraries:

GEOMETRY, TOPOLOGY, ADVALGOS, GRAPHIC, PRESENTATION.

14
Introduction

1.2 Contents of this documentation

This documentation describes:

® The command language.

® The basic set of commands.

® The graphical commands.

® The Geometry set of commands.

® The Topology set of commands.

This document does not describe other sets of commands and does not explain how
to extend Draw using C++.

This document is a reference manual. It contains a full description of each
command. All descriptions have the format illustrated below for the exit command.

Example

exit
Syntax: exit

Terminates the Draw, TCL session. If the commands are read from a file using the
source command, this will terminate the file.

Example

this iIs a very short example
exit

See also: source

1.3 Getting started

Install Draw and launch Emacs. Get a command line in Emacs using Esc x and key
in woksh.

Since version 5.1.1 Open CASCADE introduces a single executable in the DRAW
Test Harness that supersedes the several separate executables that existed before.
Respectively the user does not need to have his own executables to activate his
custom commands. All he needs to do is to implement the commands themselves,

15
Introduction

they will be activated in the common executable. This executable is now called
DRAWEXE.

Commands grouped in toolkits can now be loaded at run-time thereby implementing
dynamically loaded plug-ins. Thus, the user can work only with those commands
that suit his needs adding these commands dynamically without leaving the Test
Harness session.

Declaration of available plug-ins is done through the special resource file(s). The
pload command loads the plug-in in accordance with the specified resource file and
activates the commands implemented in the plug-in.

The whole process of using new advantages of the plug-in mechanism as well as
instructions for extending Test Harness are described below.

1.3.1 Launching DRAW Test Harness

Test Harness executable DRAWEXE is located in the $CASROOT/<platform>/bin
directory (where <platform> is win32 for Windows, SunOS for Sun Solaris and Linux
for Linux operating systems). Prior to launching it is important to make sure the
environment is correctly set-up (usually this is done automatically after the
installation process on Windows or after launching specific scripts on Unix/Linux) -
refer to Technical Documentation for details.

1.3.2 Plug-in resource file

Open CASCADE is shipped with the DrawPlugin resource file located in the
$CASROOT/src/DrawResources directory.

The format of the file is compliant with standard Open CASCADE resource files (see
the Resource_Manager.cdl file for details).

Each key defines a sequence of either further (nested) keys or a name of the
dynamic library. Keys can be nested down to an arbitrary level. However, cyclic
dependencies between the keys are not checked.

Example (excerpt from DrawPlugin):

OCAF - VISUALIZATION, OCAFKERNEL
VISUALIZATION : AISV

OCAFKERNEL : DCAF

DCAF : TKDCAF

AISV - TKViewerTest

1.3.3 Activation of commands implemented in the plug-in

To load a plug-in declared in the resource file and to activate the commands the
following command must be used in Test Harness:

pload [-PluginFileName] [[Keyl] [Key2]...], where:

16
Introduction

<-PluginFileName> Defines the name of a plug-in resource file (prefix "-" is
mandatory) described above.
If this parameter is omitted then the default name
DrawPlugin is used.

<Key>... Defines the key(s) enumerating plug-ins to be loaded.
If no keys are specified then the key named DEFAULT is
used (if there is no such key in the file then no plug-ins are
loaded).
According to the Open CASCADE resource file management rules, to access the
resource file the environment variable CSF_<PluginFileName>Defaults (and
optionally CSF_<PluginFileName>UserDefaults) must be set and point to the
directory storing the resource file. If it is omitted then the plug-in resource file will be
searched in the $CASROOT/src/DrawResources directory.

Examples:

Draw([]> pload -DrawPlugin OCAF

Will search the resource file DrawPlugin using
variable CSF_DrawPluginDefaults (and
CSF_DrawPluginUserDefaults) and will start with
the OCAF key. Since the DrawPlugin is the fFTile
shipped with Open CASCADE it will be found in the
$CASROOT/src/DrawResources directory (unless this
location is redefined by user®s variables). The
OCAF key will be recursively extracted into two
toolkits/plug-ins: TKDCAF and TKViewerTest (e.g.
on Windows they correspond to TKDCAF.dIl and
TKViewerTest.dIl). Thus, commands implemented for
Visualization and OCAF will be loaded and
activated in Test Harness.

Draw[]> pload (equivalent to pload -DrawPlugin DEFAULT).
Will find the default DrawPlugin file and the DEFAULT key. The latter
finally maps to the TKTopTest toolkit which implements basic
modeling commands.

1.3.4 Mapping between former separate Test Harness
executables and the new plug-ins

Before version 5.1.1 Open CASCADE used to be shipped with several separate
executables providing different sets of commands. The following table represents
the mapping between former executables and new plug-ins.

Former executable Current key
AlSViewer VISUALIZATION

TCAF OCAF

TTOPOLOGY MODEL ING
XDEDRAWEXE DATAEXCHANGE
XSDRAWEXE DATAEXCHANGEKERNEL

For instance, in order to activate commands available in the former AISViewer
executable, now it is enough to use the command pload VISUALIZATION.

Introduction

When you have the tclsh prompt, key in the library references:

wokcd MDL:k1deb:ref:DRAWEXE. At the prompt, key in the environment
(@@ -setenv in Unix). Draw displays a prompt. Here is a sample session:

Example

create two views, one 2d the other axonometric. Use
either the command line or the Draw taskbar (Views/avZd).
Draw[1]>av2d

create a 2d circle
Draw[2]>circle c 0 0 1 0 5
trim the circle and dump it
Draw[3]> trim c c 0 pi/2
Draw[4]> dump c
::>*********** Dump Of (o] KAAIAAAAKXAAAAdKX
==>Trimmed curve
==>Parameters : 0 1.5707963267949
==>Basis curve :
==>Circle
==> Center :0, O
==> XAxis :1, O
==> YAxis :-0, 1
==> Radius :5
make a 3d circle from it, and turn it into a bspline
Draw[6]> to3d cl1 c
Draw[7]> Fit
Draw[8]> convert c2 cl
Draw[9]> dump c2
BSplineCurve rational
Degree 2, 3 Poles, 2 Knots

Poles :

1:5,0,01

2 5,5, 00.707106781186548

3 : 3.06161699786838e-16, 5, 0 1
Knots :

1:03

2 1 1.5707963267949 3

make a surface of revolution from the spline
Draw[10]> fit

Draw[11]> help rev

reverse : reverse name ...

revsurf : revsurf name curvename X y z dx dy dz
here you must click on the curve with the mouse
Draw[12]> revsurfF s . 550 -110

Pick an object

Draw[13]> fit

rotate the view

Draw[14]> u

Draw[15]> erase c

make a bspline surface and intersect with a plane
Draw[20]> convert s s

Draw[21]> fit

Draw[22]> plane p 555111100

Draw[23]> intersect c p s

pick one of the intersection curves

you may get c_2 onstead of c 1

Draw[24]> whatis .

18

Introduction

Pick an object

c_1 is a a 3d curve

Draw[25]> clear

Draw[27]> rename c_1 c

Draw[28]> fit

save the curve, use datadir (p. 32) to specify the
directory you want to save your file in.

Draw[29]> save c

Draw[30]> exit

In this example some geometrical operations have been performed. Objects
displayed and written to files.

The Command Language

2. The Command Language

1.4 Overview

The command language used in Draw is Tcl. Tcl' documentation such as "TCL and
the TK Toolkit" by John K. Ousterhout (Addison-Wesley) will prove useful if you
intend to use Draw extensively.

This chapter is designed to give you a short outline of both the TCL language and
some extensions included in Draw. The following topics are covered:

® Syntax of the TCL language.
® Accessing variables in TCL and Draw.
® Control structures.

® Procedures.

1.5 Syntax of TCL

TCL is an interpreted command language, not a structured language like C, Pascal,
LISP or Basic. It uses a shell similar to that of csh. TCL is, however, easier to use
than csh because control structures and procedures are easier to define. As well,
because TCL does not assign a process to each command, it is faster than csh.

The basic program for TCL is a script. A script consists of one or more commands.
Commands are separated by new lines or semicolons.

Example
set a 24
set b 15
set a 25; set b 15

' Tel is software copyrighted by the Regents of the University of California, and Sun
Microsystems, Inc. The Tk Toolkit - a TCL extension to produce user interfaces - is
not used in Draw.

20

The Command Language

Each command consists of one or more “words”; the first word is the name of a
command and additional words are arguments to that command.

Words are separated by spaces or tabs. In the preceding example each of the four
commands has three words. A command may contain any number of words and
each word is a string of arbitrary length.

The evaluation of a command by TCL is done in two steps. In the first step, the
command is parsed and broken into words. Some substitutions are also performed.
In the second step, the command procedure corresponding to the first word is called
and the other words are interpreted as arguments. In the first step, there is only
string manipulation, The words only acquire “meaning” in the second step by the
command procedure.

The following substitutions are performed by TCL:
1. Variable substitution is triggered by the $ character (as with csh), the content

of the variable is substitued; { } may be used as in csh to enclose the name
of the variable.

Example

set a variable value
set file documentation
puts $Ffile #to display file contents on the screen

a simple substitution, set psfile to documentation.ps
set psfile $file.ps
puts $psfile

another substitution, set pfile to documentationPS
set pfile ${file}PS

a last one,
delete files NEWdocumentation and OLDdocumentation
foreach prefix {NEW OLD} {rm $prefix$file}

2. Command substitution is triggered by the [] characters. The brackets must
enclose a valid script. The script is evaluated and the result is substituted.
Compare command construction in csh.

Example

set degree 30

set pi 3.14159265

expr is a command evaluating a numeric expression
set radian [expr $pi*$degree/180]

3. Backslash substitution is triggered by the backslash character. It is used to
insert special characters like $, [,], etc. It is also useful to insert a new line,
a backslash terminated line is continued on the following line.
TCL uses two forms of “quoting” to prevent substitution and word breaking.

The Command Language

4. Double quote “quoting” enables the definition of a string with space and tabs
as a single word. Substitutions are still performed inside the inverted
commas " ".

Example

set msg to '"the price is 12.00"
set price 12.00
set msg "'the price is $price"

5. Braces “quoting” prevents all substitutions. Braces are also nested. The main
use of braces is to defer evaluation when defining procedures and control
structures. Braces are used for a clearer presentation of TCL scripts on
several lines.

Example

set x O

this will loop for ever

because while argument is "0 < 3"

while "$x < 3" {set x [expr $x+1]}

this will terminate as expected because
while argument is {$x < 3}

while {$x < 3} {set x [expr $x+1]}

this can be written also

while {$x < 3} {

set x [expr $x+1]

the following cannot be written
because while requires two arguments
while {$x < 3}

{
set x [expr $x+1]

Comments start with a # character as the first non-blank character in a command.
To add a comment at the end of the line, the comment must be preceded by a semi-
colon to end the preceding command.

Example

This is a comment
set a 1 # this is not a comment
set b 1; # this is a comment

The number of words is never changed by substitution when parsing in TCL. For
example, the result of a substitution is always a single word. This is different from
csh but convenient as the behavior of the parser is more predictable. It may
sometimes be necessary to force a second round of parsing. eval accomplishes
this: it accepts several arguments, concatenates them and executes the resulting
script.

22
The Command Language

Example
1 want to delete two files
set files "foo bar"

this will fail because rm will receive only one argument
and complain that "foo bar'™ does not exit

exec rm $files
a second evaluation will do it

eval exec rm $Ffiles

1.6 Accessing variables in TCL and Draw

TCL variables have only string values. Note that even numeric values are stored as
string literals, and computations using the expr command start by parsing the
strings. Draw, however, requires variables with other kinds of values such as curves,
surfaces or topological shapes.

TCL provides a mechanism to link user data to variables. Using this functionality,
Draw defines its variables as TCL variables with associated data.

The string value of a Draw variable is meaningless. It is usually set to the name of
the variable itself. Consequently, preceding a Draw variable with a $ does not
change the result of a command. The content of a Draw variable is accessed using
appropriate commands.

There are many kinds of Draw variables, and new ones may be added with C++.
Geometric and topological variables are described below.

Draw numeric variables can be used within an expression anywhere a Draw
command requires a numeric value. The expr command is useless in this case as
the variables are stored not as strings but as floating point values.

Example

dset is used for numeric variables

pi is a predefined Draw variable

dset angle pi/3 radius 10

point p radius*cos(angle) radius*sin(angle) O

It is recommended that you use TCL variables only for strings and Draw for
numerals. That way, you will avoid the expr command. As a rule, Geometry and
Topology require numbers but no strings.

23
The Command Language

1.6.1 set, unset

Syntax: set varname [value]
unset varname [varname varname ...]

set assigns a string value to a variable. If the variable does not already exist, it is
created.

Without a value, set returns the content of the variable.

unset deletes variables. It is is also used to delete Draw variables.

Example

set a "Hello world"
set b "Goodbye"

set a

==> "Hello world"
unset a b

set a

==> Error message....

NOTE
The set command can set only one variable, unlike the dset
command.

See also: dset, dval

1.6.2 dset, dval

Syntax dset varl valuel vr2 value2 ...
dval name

dset assigns values to Draw numeric variables. The argument can be any numeric
expression including Draw numeric variables. Since all Draw commands expect a
numeric expression, there is no need to use $ or expr. The dset command can
assign several variables. If there is an odd number of arguments, the last variable
will be assigned a value of 0. If the variable does not exist, it will be created.

dval evaluates an expression containing Draw numeric variables and returns the
result as a string, even in the case of a single variable. This is not used in Draw
commands as these usually interpret the expression. It is used for basic TCL
commands expecting strings.

Example

z Is set to O
dset x 10 y 15 z
=> 0

no $ required for Draw commands

24
The Command Language

point p Xy z

“puts” prints a string
puts "x = [dval x], cos(x/pi) = [dval cos(xX/pi)]"
==> x = 10, cos(x/pi) = -0.99913874099467914

NOTE
In TCL, parentheses are not considered to be special characters. Do
not forget to quote an expression if it contains spaces in order to
avoid parsing different words. (a + b) is parsed as three words:"(a +
b)" or (a+b) are correct.

See also: set, unset

1.7 lists

TCL uses lists. A list is a string containing elements separated by spaces or tabs. If
the string contains braces, the braced part accounts as one element.

This allows you to insert lists within lists.

Example

a list of 3 strings
"a b c”

a list of two strings the first is a list of 2
“"{a b} c”

Many TCL commands return lists and foreach is a useful way to create loops on list
elements.

1.7.1 Control Structures

TCL allows looping using control structures. The control structures are implemented
by commands and their syntax is very similar to that of their C counterparts (if,
while, switch, etc.). In this case, there are two main differences between TCL and
C:

2. You use braces instead of parentheses to enclose conditions.
3. You do not start the script on the next line of your command.

25
The Command Language

3.1.1 if

Syntax if condition script [elseif script else script]

If evaluates the condition and the script to see whether the condition is true.

Example

if {$x > 0} {

puts "positive”

} elseif {$x == 0} {
puts "null"

} else {

puts "negative"

3.1.2 while, for, foreach

Syntax: while condition script
for init condition reinit script
foreach varname list script

The three loop structures are similar to their C or csh equivalent. It is important to
use braces to delay evaluation. foreach will assign the elements of the list to the
variable before evaluating the script.

Example

while example

dset x 1.1

while {[dval x] < 100} {
circle c 0 0 x

dset x x*x

for example

Incr var d, increments a variable of d (default 1)
for {set i O} {$i < 10} {incr i} {

dset angle $i1*pi/10

point p$i cos(angleO sin(angle) O

TForeach example
foreach object {crapo tomson lucas} {display $object}

See also: break, continue

3.1.3 break, continue

Syntax: break
continue

Within loops, the break and continue commands have the same effect as in C.

26

The Command Language

break interrupts the innermost loop and continue jumps to the next iteration.

Example

search the index for which t$i has value "secret"
for {set i 1} {$i <= 100} {incr i} {

if {[set t$i] == "secret"} break;

3

3.2 Procedures

TCL can be extended by defining procedures using the proc command, which sets
up a context of local variables, binds arguments and executes a TCL script.

The only problematic aspect of procedures is that variables are strictly local, and as
they are implicitly created when used, it may be difficult to detect errors.

There are two means of accessing a variable outside the scope of the current
procedures: global declares a global variable (a variable outside all procedures);
upvar accesses a variable in the scope of the caller. Since arguments in TCL are
always string values, the only way to pass Draw variables is by reference, i.e.
passing the name of the variable and using the upvar command as in the following
examples.

As TCL is not a strongly typed language it is very difficult to detect programing errors
and debugging can be tedious. TCL procedures are, of course, not designed for

large scale software development but for testing and simple command or interactive
writing.

3.2.1 proc

Syntax: proc argumentlist script

proc defines a procedure. An argument may have a default value. It is then a list of
the form {argument value}. The script is the body of the procedure.

return gives a return value to the procedure.

Example

simple procedure
proc hello {} {
puts "hello world"

procedure with arguments and default values
proc distance {x1 yl {x2 0} {y2 0}} {

set d [expr (x2-x1)*(x2-x1) + (y2-y1)*(y2-y1)]
return [expr sqrt(d)]

proc fact n
if {$n == 0} {return 1} else {

27
The Command Language

return [expr n*[fact [expr n -1]111
}

See also: global, upvar

3.2.2 global, upvar

Syntax: global varname [varname ...]
upvar varname localname [varname localname ...]

global accesses high level variables. Unlike C, global variables are not visible in
procedures.

upvar gives a local name to a variable in the caller scope. This is useful when an
argument is the name of a variable instead of a value. This is a call by reference and
is the only way to use Draw variables as arguments.

NOTE
Note in the following examplesthat the $ character is always
necessarily used to access the arguments.

Example

convert degree to radian
pi is a global variable
proc deg2rad (degree} {
return [dval pi*$degree/2.]
}

create line with a point and an angle
proc linang {linename x y angle} {
upvar linename 1

line I $x $y cos($angle) sin($angle)

}

28
Basic Commands

3. Basic Commands

This chapter describes all the commands defined in the basic Draw package. Some
are TCL commands, but most of them have been formulated in Draw. These
commands are found in all Draw applications. The commands are grouped into four
sections:

® General commands, which are used for Draw and TCL management.

® Variable commands, which are used to manage Draw variables such as
storing and dumping.

® Graphic commands, which are used to manage the graphic system, and
so pertain to views.

® Variable display commands, which are used to manage the display of
objects within given views.

Note that Draw also features a GUI taskbar providing an alternative way to give
certain general, graphic and display commands

3.1 General commands

This section describes several useful commands: help to get information, source to
eval a script from a file, spy to capture the commands in a file, cpulimit to limit the
process cpu time, wait to waste some time, chrono to time commands.

3.1.1 help

Syntax: help [command [helpstring group]]

Provides help or modifies the help information.

help without arguments lists all groups and the commands in each group.

Specifying the command returns its syntax and in some cases, information on the

command, The joker,*, is automatically added at the end so that all completing
commands are returned as well.

Example

Gives help on all commands starting with a
help a

29
Basic Commands

3.1.2 source
Syntax: source filename
Executes a file.
The exit command will terminate the file.

See also: exit

3.1.3 spy

Syntax: spy [Ffilename]

Saves interactive commands in the file. If spying has already been performed, the
current file is closed. spy without an argument closes the current file and stops
spying. If a file already exists, the file is overwritten. Commands are not appended.

If a command returns an error it is saved with a comment mark.

The file created by spy can be executed with the source command.

Example

all commands will be saved in the file "session"
spy session i i
the file "session" is closed and commands are not saved

spy

See also: source

3.1.4 cpulimit
Syntax: cpulimit [nbseconds]
cpulimit limits a process after the number of seconds specified in nbseconds. It is

used in tests to avoid infinite loops. cpulimit without arguments removes all existing
limits.

Example

#1imit cpu to one hour
cpulimit 3600

30
Basic Commands

3.1.5 wait

Syntax: wait [nbseconds]

Suspends execution for the number of seconds specified in nbseconds. The default
value is ten (10) seconds. This is a useful command for a slide show.

Example
You have ten seconds ...
wait
3.1.6 chrono
Syntax: chrono [name start/stop/reset/show]

Without arguments, chrono activates Draw chronometers. The elapsed time ,cpu
system and cpu user times for each command will be printed.

With arguments, chrono is used to manage activated chronometers. You can
perform the following actions with a chronometer.

® run the chronometer (start).
® stop the chronometer (stop).
® reset the chronometer to 0 (reset).

® display the current time (show).

Example

chrono

==>Chronometers activated.

ptorus t 20 5

==>Elapsed time: O Hours O Minutes 0.0318 Seconds
==>CPU user time: 0.01 seconds

==>CPU system time: 0 seconds

3.2 Variable management commands

3.2.1 isdraw, directory

Syntax: isdraw varname

31

Basic Commands

3.2.2

directory [pattern]

isdraw tests to see if a variable is a Draw variable. isdraw will return 1 if there is a
Draw value attached to the variable.
Use directory to return a list of all Draw global variables matching a pattern.

Example

setal
isdraw a
==> (0

dset a 1
isdraw a
===> 1

circle c 00105
isdraw c
===> 1

to destroy all Draw objects with name containing curve
foreach var [directory *curve*] {unset $var}

See also: whatis

whatis, dump

Syntax: whatis varname [varname ...]
dump varname [varname ...]

whatis returns short information about a Draw variable. This is usually the type
name.

dump returns a brief type description, the coordinates, and if need be, the
parameters of a Draw variable.

Example
circlec 00105
whatis c
c is a 2d curve

dump c

E R S S o o o e KhAAAALAXAAXAKAAX
Dump of c

Circle
Center :0, O
XAxis 1, O

YAxis -0, 1
Radius :5

32
Basic Commands

NOTE
The behavior of whatis on other variables (not Draw) is not
excellent.
3.2.3 rename, copy
Syntax: rename varname tovarname [varname tovarname ...]
copy varname tovarname [varname tovarname ...]

rename changes the name of a Draw variable. The original variable will no longer
exist. Note that the content is not modified. Only the name is changed.

copy creates a new variable with a copy of the content of an existing variable. The
exact behavior of copy is type dependent; in the case of certain topological
variables, the content may still be shared.

Example

circlecl1 00105
rename cl c2

curves are copied, c2 will not be modified
copy c2 c3

3.2.4 datadir, save, restore

Syntax: datadir [directory]
save variable [filename]
restore filename [variablename]

datadir without arguments prints the path of the current data directory.

datadir with an argument sets the data directory path.

If the path starts with a dot (.) only the last directory name will be changed in the
path.

save writes a file in the data directory with the content of a variable. By default the
name of the file is the name of the variable. To give a different name use a second
argument.

restore reads the content of a file in the data directory in a local variable. By default,
the name of the variable is the name of the file. To give a different name, use a
second argument.

The exact content of the file is type-dependent. They are usually ASCII files and so,
architecture independent.

Example

note how TCL accesses shell environment variables
using $env(Q)

33
Basic Commands

datadir
==>_

datadir $env(WBCONTAINER)/data/default
==>/adv_20/BAG/data/default

box b 10 20 30
save b theBox
==>/adv_20/BAG/data/default/theBox

when TCL does not find a command it tries a shell command
Is [datadir]
==> theBox

restore theBox
==> theBox

3.3 User defined commands

DrawTrSurf provides commands to create and display a Draw geometric variable
from a Geom_Geometry object and also get a Geom_Geometry object from a Draw
geometric variable name.

DBRep provides commands to create and display a Draw topological variable from
a TopoDS_Shape object and also get a TopoDS Shape object from a Draw
topological variable name.

3.3.1 set

DrawTrSurf Package
Syntax:

void Set(Standard_CString& Name,const gp_Pnt& G) ;
void Set(Standard CString& Name,const gp Pnt2d& G) ;
void Set(Standard_CString& Name,

const Handle(Geom_Geometry)& G) ;
void Set(Standard_CString& Name,

const Handle(Geom2d_Curve)é& C) ;
void Set(Standard_CString& Name,

const Handle(Poly Triangulation)& T) ;
void Set(Standard_CString& Name,

const Handle(Poly Polygon3D)& P) ;
void Set(Standard_CString& Name,

const Handle(Poly Polygon2D)& P) ;

DBRep Package:
Syntax:

void Set(const Standard_ CString Name,
const TopoDS_Shape& S) ;

Example: DrawTrSurf
Handle(Geom2d_Circle) C1 = new Geom2d Circle

(gce_MakeCirc2d (gp_Pnt2d(50,0,) 25));
DrawTrSurf: :Set(char*, Cl);

34
Basic Commands

Example: DBRep

TopoDS_Solid B;
B = BRepPrimAPl_MakeBox (10,10,10);
DBRep: :Set(char*,B);

See also: get

3.3.2 get

DrawTrSurf Package
Syntax:

Handle_Geom Geometry Get(Standard_CString& Name) ;

DBRep Package:
Syntax:

TopoDS_Shape Get(Standard_CString& Name,
const TopAbs_ShapeEnum Typ = TopAbs_SHAPE,
const Standard_Boolean Complain
= Standard_True) ;

Example: DrawTrSurf

Standard_Integer MyCommand
(Draw_Interpretor& theCommands,
Standard_Integer argc, char** argv)

{-.-...
// Creation of a Geom_Geometry from a Draw geometric
// name
Handle (Geom_Geometry) aGeom= DrawTrSurf::Get(argv[1l]);
}

Example: DBRep

Standard_Integer MyCommand
(Draw_Interpretor& theCommands,
Standard_Integer argc, char** argv)
// Creation of a TopoDS_Shape from a Draw topological
// name
TopoDS_Solid B = DBRep::Get(argv[1l]);

See also: set

35

Graphic Commands

4. Graphic Commands

Graphic commands are used to manage the Draw graphic system. Draw provides a
2d and a 3d viewer with up to 30 views. Views are numbered and the index of the
view is displayed in the window’s title. Objects are displayed in all 2d views or in all
3d views, depending on their type. 2d objects can only be viewed in 2d views while
3d objects — only in 3d views correspondingly.

4.1 Axonometric viewer

etc.

41.1 view, delete

Syntax: view index type [X Y W H]
delete [index]

view is the basic view creation command: it creates a new view with the given index.
If a view with this index already exits, it is deleted. The view is created with default
parameters and X Y W H are the position and dimensions of the window on the
screen. Default values are 0, 0, 500, 500.

As a rule it is far simpler either to use the procedures axo, top, left or to click on the
desired view type in the menu under Views in the taskbar..

delete deletes a view. If no index is given, all the views are deleted.

Type selects from the following range:

AXON: Axonometric view
PERS: Perspective view
+X+Y: View on both axes (i.e. a top view), other codes are -X+Y, +Y-Z

-2D- : 2d view

The index, the type, the current zoom are displayed in the window title .

Example

this is the content of the mu4 procedure
proc mud {} {

delete

view 1 +X+Z 320 20 400 400

view 2 +X+Y 320 450 400 400

view 3 +Y+Z 728 20 400 400

view 4 AXON 728 450 400 400

}

See also: axo, pers, top, bottom, left, right, front, back, mu4, v2d, avad,
smallview

36
Graphic Commands

4.1.2 axo, pers, top, ...

Syntax: axo
pers

smallview type
All these commands are procedures used to define standard screen layout. They

delete all existing views and create new ones. The layout usually complies with the
European convention, i.e. a top view is under a front view.

® axo creates a large window axonometric view.

® pers creates a large window perspective view.

® top, bottom, left, right, front, back create a large window axis view
® mu4 creates four small window viewsview: front, left, top and axo.

® v2d: creates a large window 2d view.

® av2d creates two small window views, one 2d and one axo

smallview creates a view at the bottom right of the screen of the given type.

See also: view, delete

41.3 mu, md, 2dmu, 2dmd, zoom, 2dzoom

Syntax: mu [index] value
2dmu [index] value
zoom [index] value
wzoom

mu (magnify up) increases the zoom in one or several views by a factor of 10%.
md (magnify down) decreases the zoom by the inverse factor. 2dmu and 2dmd
perform the same on one or all 2d views.

zoom and 2dzoom set the zoom factor to a value specified by you. The current
zoom factor is always displayed in the window’s title bar. Zoom 20 represents a
full screen view in a large window; zoom 10, a full screen view in a small one.

wzoom (window zoom) allows you to select the area you want to zoom in on with
the mouse. You will be prompted to give two of the corners of the area that you want
to magnify and the rectangle so defined will occupy the window of the view.

Example

set a zoom of 2.5
zoom 2.5

magnify by 10%
mu 1

37
Graphic Commands

magnify by 20%
mu 2

See also: fit, 2dfit

4.1.4 pu, pd, pl, pr, 2dpu, 2dpd, 2dpl, 2dpr

Syntax: pu [index]
pd [index]

The p_ commands are used to pan. pu and pd pan up and down respectively;pl and
pr pan left and right respectively. Each time the view is displaced by 40 pixels.When
no index is given, all views will pan in the direction specified.

Example

you have selected one anonometric view
pu

or

pu 1

you have selected an mu4 view; the object in the third
view will pan up
pu 3

See also: fit, 2dfit

4.1.5 fit, 2dfit

Syntax: Fit [index]
2dfit [index]

fit computes the best zoom and pans on the content of the view. The content of the
view will be centered and fit the whole window.

When fitting all views a unique zoom is computed for all the views. All views are on
the same scale.

Example

fit only view 1
fit 1

fit all 2d views
2dfit

See also: zoom, mu, pu

38

Graphic Commands

416 wu,d,|Ir
Syntax u [index]
d [index]
I [index]
r [index]

4.1.7

4.1.8

u, d, I, r Rotate the object in view around its axis by five degrees up, down, left or
right respectively. This command is restricted to axonometric and perspective views.

Example

rotate the view up

u
focal, fu, fd
Syntax: focal [f]
fu [index]
fd [index]

focal changes the vantage point in perspective views. A low f value increases the
perspective effect; a high one give a perspective similar to that of an axonometric
view. The default value is 500.

Use fu and fd to increase or decrease the focal value by 10%. fd makes the eye
closer to the object.

Example

pers
repeat 10 fd

NOTE
Do not use a negative or null focal value.

See also: pers

color
Syntax: color index name
color sets the color to a value. The index of the color is a value between 0 and 15.
The name is an X window color name. The list of these can be found in the file

rgb.txt in the X library directory.

The default values are 0 White, 1 Red, 2 Green, 3 Blue, 4 Cyan, 5 Gold, 6 Magenta,
7 Marron, 8 Orange, 9 Pink, 10 Salmon, 11 Violet, 12 Yellow, 13 Khaki, 14 Coral.

39
Graphic Commands

Example

change the value of blue
color 3 "navy blue"

NOTE
The color change will be visible on the next redraw of the
views, for example after fit or mu, etc.

419 dtext

Syntax: dtext [x y [z]] string

dtext displays a string in all 3d or 2d views. If no coordinates are given, a graphic
selection is required. If two coordinates are given, the text is created in a 2d view at
the position specified. With 3 coordinates, the text is created in a 3d view.

The coordinates are real space coordinates.

Example

mark the origins
dtext 0 O bebop
dtext 0 0 O bebop

4.1.10 hardcopy, hcolor, xwd

Syntax: hardcopy [index]
hcolor index width gray
xwd [index] filename

hardcopy creates a postcript file called a4.ps in the current directory. This file
contains the postscript description of the view index, and will allow you to print the
view.

hcolor lets you change the aspect of lines in the postscript file. It allows to specify a
width and a gray level for one of the 16 colors. width is measured in points with
default value as 1, gray is the gray level from 0 = black to 1 = white with default
value as 0. All colors are bound to the default values at the beginning.

xwd creates an X window xwd file from an active view. By default, the index is set
to1. To visualize anxwd file, use the unix command xwud.

Example

all blue lines (color 3)
will be half-width and gray

40
Graphic Commands

hcolor 3 0.5

make a postscript file and print it
hardcopy
Ipr ad4.ps

make an xwd Ffile and display it
xwd theview
xwud -in theview

NOTE
When more than one view is present, specify the index of the view.
Only use a postscript printer to print postscript files.

See also: color

4.1.11 weclick, pick

Syntax: wclick
pick index X Y Z b [nowait]

wclick defers an event until the mouse button is clicked. The message "just click" is
displayed

Use the pick command to get graphic input. The arguments must be names for
variables where the results are stored.

® index: index of the view where the input was made.
® X,Y,Z: 3d coordinates in real world.

® b:bis the mouse button 1,2 or 3.

When there is an extra argument, its value is not used and the command does not
wait for a click; the value of b may then be 0 if there has not been a click.

This option is useful for tracking the pointer.

NOTE
The results are stored in Draw numeric variables.

Example

make a circle at mouse location
pick index Xy z b
circlecxyz0011000 30

make a dynamic circle at mouse location
stop when a button is clicked
(see the repaint command)

dset b O
while {[dval b] == 0} {
pick index X y z b nowait

41
Graphic Commands

circlecxyz0011000 30
repaint

}

See also: repaint

Draw provides commands to manage the display of objects. display, donly are
used to display, erase, clear, 2dclear to erase. The autodisplay command is used
to check whether variables are displayed when created.

The variable name "." (dot) has a special status in Draw. Any Draw command
expecting a Draw object as argument can be passed a dot. The meaning of the dot
is the following.

® |If the dot is an input argument, a graphic selection will be made.
Instead of getting the object from a variable, Draw will ask you to
select an object in a view.

® |f the dot is an output argument, an unnamed object will be created.
Of course this makes sense only for graphic objects: if you create an
unnamed number you will not be able to access it. This feature is
used when you want to create objects for display only.

® |f you do not see what you expected while executing loops or
sourcing files, use the repaint and dflush commands.

Example

OK use dot to dump an object on the screen
dump .

point . Xy z

#Not OK. display points on a curve c
with dot no variables are created

for {set i 0} {$i <= 10} {incr i} {

cvalue c $i/710 x y z

point . Xy z

point p Xy z
would have displayed only one point
because the precedent variable content is erased

is an other solution, creating variables
pO, pl, p2,

give a name to a graphic object

#

#

#

point p$i Xy z
#

#

#

rename . X

4.1.12 autodisplay

Syntax: autodisplay [0/1]

42
Graphic Commands

By default, Draw automatically displays any graphic object as soon as it is created.
This behavior known as autodisplay can be removed with the command
autodisplay. Without arguments, autodisplay toggles the autodisplay mode. The
command always returns the current mode.

When autodisplay is off, using the dot return argument is ineffective.

Example

c 1s displayed
circlec00105

toggle the mode
autodisplay

=> 0

circle c00105

c 1s erased, but not displayed
display c

See also: display

4.1.13 display, donly

Syntax: display varname [varname ...]
donly varname [varname ...]

display makes objects visible.

donly (“display only”) makes objects visible and erases all other objects. It is very
useful to extract one object from a messy screen.

Example

to see all objects
foreach var [directory] {display $var}

to select two objects and erase the other ones
donly . .

See also: erase

4.1.14 erase, clear, 2dclear

Syntax: erase [varname varname ...]
clear
2dclear

erase removes objects from all views. erase without arguments erases everything in
2d and 3d.

43
Graphic Commands

clear erases only 3d objects and 2dclear, only 2d objects. erase without arguments
is similar to " clear; 2dclear".

Example

erase eveerything with a name starting with c_
foreach var [directory c_*] {erase $var}

clear 2d views
2d clear

See also: display

4.1.15 repaint, dflush

Syntax: repaint
dflush

repaint forces repainting of views.
dflush flushes the graphic buffers.
These commands are useful within loops or in scripts.

When an object is modified or erased, the whole view must be repainted. To avoid
doing this too many times, Draw sets up a flag and delays the repaint to the end of
the command in which the new prompt is issued. In a script, you may want to display
the result of a change immediately. If the flag is raised, repaint will repaint the views
and clear the flag.

Graphic operations are buffered by Draw (and also by the X system). Usually the
buffer is flushed at the end of a command and before graphic selection. If you want
to flush the buffer from inside a script, use the dflush command.

Example

See the example with the pick command

See also: pick

4.2 AIS viewer —view commands

4.2.1 vinit
Syntax: vinit

Creates the 3D viewer window

44
Graphic Commands

4.2.2 vhelp

Syntax: vhelp

Displays help in the 3D viewer window. The help consists in a list of hotkeys and
their functionalities.

4.2.3 vtop

Syntax: vtop

Displays top view in the 3D viewer window.

Example

vinit

box b 10 10 10
vdisplay b
vFit

vtop

4.2.4 vaxo
Syntax: vaxo

Displays axonometric view in the 3D viewer window.

Example

vinit

box b 10 10 10
vdisplay b
vfit

vaxo

4.2.5 vsetbhg
Syntax: vsetbg imagefile [Tilltype]

Loads image file as background. fi l Itype must be NONE, CENTERED, TILED or
STRETCH.

Example

vinit
vsetbg myimage.brep CENTERED

4.2.6 vclear

Syntax: vclear

45

Graphic Commands

Removes all objects from the viewer.
4.2.7 vrepaint
Syntax: vrepaint

Forcedly redisplays the shape in the 3D viewer window.

4.2.8 vfit
Syntax: vfit
Automatic zoom/panning. Objects in the view are visualized to occupy the maximum
surface.
4.2.9 vzfit
Syntax: vzfit

Automatic depth panning. Objects in the view are visualized to occupy the maximum
3d space.

4.3 AIS viewer —display commands
4.3.1 vdisplay

Syntax: vdisplay namel [name2] .. [name n]

Displays named objects.

Example

vinit

box b 40 40 40 10 10 10
psphere s 20

vdisplay s b

vFit

4.3.2 vdonly

Syntax: vdonly [namel] .. [name n]

Displays only selected or named obijects. If there are no selected or named objects,
nothing is done.

Example

vinit

46
Graphic Commands

box b 40 40 40 10 10 10
psphere s 20

vdonly b

vFit

4.3.3 vdisplayall
Syntax: vdisplayall

Displays all created objects.

Example

vinit

box b 40 40 40 10 10 10
psphere s 20
vdisplayall

vfit

4.3.4 verase
Syntax: verase [namel] [name2] .. [name n]

Erases some selected or named objects. If there are no selected or named objects,
the whole viewer is erased.

Example

vinit

box bl 40 40 40 10 10 10

box b2 -40 -40 -40 10 10 10
psphere s 20

vdisplayall

vfit

erase only first box

verase bl

erase second box and sphere
verase

4.3.5 veraseall
Syntax: veraseall

Erases all objects displayed in the viewer.

Example
vinit
box bl 40 40 40 10 10 10
box b2 -40 -40 -40 10 10 10
psphere s 20
vdisplayall
vfit
erase only first box

47
Graphic Commands

verase bl
erase second box and sphere
verseall

4.3.6 vsetdispmode
Syntax: vsetdispmode [name] mode(0,1,2,3)
Sets display mode for all, selected or named objects.

mode is 0 (WireFrame), 1 (Shading), 2 (Quick HideLineremoval), 3 (Exact
HideLineremoval).

Example

vinit

box b 10 10 10
vdisplay b
vsetdispmode 1
vfit

4.3.7 vdisplaytype
Syntax: vdisplaytype type
Displays all objects of a given type.
Possible types are "Point", "Axis", "Trihedron", "PlaneTrihedron", "Line",

"Circle", "Plane", "Shape", "ConnectedShape", "MultiConn.Shape",
"Connectedlinter.”, "MultiConn.", "Constraint" and "Dimension" (see vtypes).

4.3.8 verasetype
Syntax: verasetype type
Erases all objects of a given type.
Possible types are "Point", "Axis", "Trihedron", "PlaneTrihedron", "Line",

"Circle", "Plane", "Shape", "ConnectedShape", "MultiConn.Shape",
"ConnectedInter.", "MultiConn.", "Constraint" and "Dimension" (see vtypes).

4.3.9 vtypes
Syntax: vtypes

Makes a list of known types and signatures in AIS.

4.3.10 vsetcolor
Syntax: vsetcolor [shapename] colorname
Sets color for all, selected or named shapes.

Possible colornames are "BLACK", "MATRAGRAY", "MATRABLUE",
"ALICEBLUE", "ANTIQUEWHITE", "ANTIQUEWHITE1", "ANTIQUEWHITE2",

48

Graphic Commands

"ANTIQUEWHITE3", "ANTIQUEWHITE4", "AQUAMARINE1", "AQUAMARINEZ2",
"AQUAMARINE4", "AZURE", "AZURE2", "AZURE3", "AZURE4", "BEIGE",
"BISQUE", "BISQUE2", "BISQUE3", "BISQUE4", "BLANCHEDALMOND",
"BLUE1", "BLUEZ2", "BLUE3", "BLUE4", "BLUEVIOLET", "BROWN",

"BROWN1", "BROWN2", "BROWN3", "BROWN4", "BURLYWOOD",
"BURLYWOOD1", "BURLYWOOD2", "BURLYWOOD3", "BURLYWOOD4",
"CADETBLUE", "CADETBLUE1", "CADETBLUEZ2", "CADETBLUES",

"CADETBLUE4", "CHARTREUSE", "CHARTREUSE1l", "CHARTREUSEZ2",
"CHARTREUSE3", "CHARTREUSE4", "CHOCOLATE", "CHOCOLATE1",
"CHOCOLATEZ2", "CHOCOLATES3", "CHOCOLATE4", "CORAL", "CORAL1",
"CORAL2", "CORAL3", "CORAL4", "CORNFLOWERBLUE", "CORNSILK1",
"CORNSILK2", "CORNSILK3", "CORNSILK4", "CYAN1", "CYAN2", "CYAN3",

"CYAN4", "DARKGOLDENROD", "DARKGOLDENROD1",
"DARKGOLDENROD2", "DARKGOLDENROD3", "DARKGOLDENROD4",
"DARKGREEN", "DARKKHAKI", "DARKOLIVEGREEN",
"DARKOLIVEGREEN1", "DARKOLIVEGREEN2", "DARKOLIVEGREENSI",
"DARKOLIVEGREEN4", "DARKORANGE", "DARKORANGE1",

"DARKORANGE?2", "DARKORANGES3", "DARKORANGE4", "DARKORCHID",
"DARKORCHID1", "DARKORCHID2", "DARKORCHID3", "DARKORCHID4",

"DARKSALMON", "DARKSEAGREEN", "DARKSEAGREEN1",
"DARKSEAGREEN2", "DARKSEAGREENS", "DARKSEAGREEN4",
"DARKSLATEBLUE", "DARKSLATEGRAY1", "DARKSLATEGRAY2",
"DARKSLATEGRAY3", "DARKSLATEGRAY4", "DARKSLATEGRAY",
"DARKTURQUOISE", "DARKVIOLET", "DEEPPINK", "DEEPPINK2",
"DEEPPINK3", "DEEPPINK4", "DEEPSKYBLUE1", "DEEPSKYBLUEZ2",
"DEEPSKYBLUE3", "DEEPSKYBLUE4", "DODGERBLUE1", "DODGERBLUEZ2",
"DODGERBLUE3", "DODGERBLUE4", "FIREBRICK", "FIREBRICK1",
"FIREBRICK2", "FIREBRICK3", "FIREBRICK4", "FLORALWHITE",
"FORESTGREEN", "GAINSBORO", "GHOSTWHITE", "GOLD", "GOLD1",
"GOLD2", "GOLD3", "GOLD4", "GOLDENROD", "GOLDENROD1",

"GOLDENRODZ2", "GOLDENROD3", "GOLDENROD4", "GRAY", "GRAYOQ",
"GRAY1", "GRAY1.0", "GRAY1l", "GRAY12", "GRAY13", "GRAY14",
"GRAY15", "GRAY16", "GRAY17", "GRAY18", "GRAY19", "GRAY2",
"GRAY20", "GRAY21", "GRAY22", "GRAY23", "GRAY24", "GRAY25",
"GRAY26", "GRAY27", "GRAY28", "GRAY29", "GRAY3", "GRAY30",
"GRAY31", "GRAY32", "GRAY33", "GRAY34", "GRAY35", "GRAY36",
"GRAY37", "GRAY38", "GRAY39", "GRAY4", "GRAY40", "GRAYA41",
"GRAY42", "GRAY43", "GRAY44", "GRAY45", "GRAY46", "GRAYA47",
"GRAY48", "GRAY49", "GRAY5", "GRAY50", "GRAY51", "GRAY52",
"GRAY53", "GRAY54", "GRAY55", "GRAY56", "GRAY57", "GRAY58",
"GRAY59", "GRAY6", "GRAY60", "GRAY61", "GRAY62", "GRAY63",
"GRAY64", "GRAY65", "GRAY66", "GRAY67", "GRAY68", "GRAY69",
"GRAY7", "GRAY70", "GRAY71", "GRAY72", "GRAY73", "GRAY74",
"GRAY75", "GRAY76", "GRAY77", "GRAY78", "GRAY79", "GRAYS8",
"GRAY80", "GRAY81", "GRAY82", "GRAY83", "GRAY85", "GRAY86",
"GRAY87", "GRAY88", "GRAY89", "GRAY9", "GRAY90", "GRAY9l",
"GRAY92", "GRAY93", "GRAY94", "GRAY95", "GREEN", "GREEN1",
"GREEN2", "GREENS", "GREEN4", "GREENYELLOW", "GRAY97", "GRAY98",
"GRAY99", "HONEYDEW", "HONEYDEW?2", "HONEYDEW3", "HONEYDEW4",
"HOTPINK", "HOTPINK1", "HOTPINK2", "HOTPINK3", "HOTPINK4",
"INDIANRED", "INDIANRED1", "INDIANRED2", "INDIANRED3", "INDIANRED4",
"IVORY", "IVORY2", "IVORY3", "IVORY4", "KHAKI", "KHAKI1", "KHAKI2",
"KHAKI3", "KHAKI14", "LAVENDER", "LAVENDERBLUSH1",
"LAVENDERBLUSH2", "LAVENDERBLUSH3", "LAVENDERBLUSH4",
"LAWNGREEN", "LEMONCHIFFON1", "LEMONCHIFFONZ2",

49

Graphic Commands

"LEMONCHIFFON3", "LEMONCHIFFON4", "LIGHTBLUE", "LIGHTBLUE1",

"LIGHTBLUEZ2", "LIGHTBLUES3", "LIGHTBLUE4", "LIGHTCORAL",
"LIGHTCYANL1", "LIGHTCYANZ2", "LIGHTCYAN3", "LIGHTCYAN4",
"LIGHTGOLDENROD", "LIGHTGOLDENROD1", "LIGHTGOLDENROD2",
"LIGHTGOLDENROD3", "LIGHTGOLDENROD4",
"LIGHTGOLDENRODYELLOW", "LIGHTGRAY", "LIGHTPINK", "LIGHTPINK1",
"LIGHTPINK2", "LIGHTPINK3", "LIGHTPINK4", "LIGHTSALMON1",
"LIGHTSALMONZ2", "LIGHTSALMON3", "LIGHTSALMON4",
"LIGHTSEAGREEN", "LIGHTSKYBLUE", "LIGHTSKYBLUE1",
"LIGHTSKYBLUE2", "LIGHTSKYBLUE3", "LIGHTSKYBLUE4",
"LIGHTSLATEBLUE", "LIGHTSLATEGRAY", "LIGHTSTEELBLUE",
"LIGHTSTEELBLUE1", "LIGHTSTEELBLUE2", "LIGHTSTEELBLUE3",
"LIGHTSTEELBLUE4", "LIGHTYELLOW", "LIGHTYELLOW2",
"LIGHTYELLOW3", "LIGHTYELLOW4", "LIMEGREEN", "LINEN",
"MAGENTA1", "MAGENTA2", "MAGENTA3", "MAGENTA4", "MAROON",
"MAROONL1", "MAROON?2", "MAROON3", "MAROON4",
"MEDIUMAQUAMARINE", "MEDIUMORCHID", "MEDIUMORCHID1",
"MEDIUMORCHID2", "MEDIUMORCHID3", "MEDIUMORCHIDA4",
"MEDIUMPURPLE", "MEDIUMPURPLE1", "MEDIUMPURPLEZ2",
"MEDIUMPURPLEZ", "MEDIUMPURPLE4", "MEDIUMSEAGREEN",

"MEDIUMSLATEBLUE", "MEDIUMSPRINGGREEN", "MEDIUMTURQUOISE",
"MEDIUMVIOLETRED", "MIDNIGHTBLUE", "MINTCREAM", "MISTYROSE",

"MISTYROSE2", "MISTYROSE3", "MISTYROSE4", "MOCCASIN",
"NAVAJOWHITE1", "NAVAJOWHITE2", "NAVAJOWHITES3",
"NAVAJOWHITE4", "NAVYBLUE", "OLDLACE", "OLIVEDRAB",

"OLIVEDRAB1", "OLIVEDRAB2", "OLIVEDRAB3", "OLIVEDRAB4", "ORANGE",
"ORANGEL1", "ORANGE2", "ORANGE3", "ORANGE4", "ORANGERED",
"ORANGERED1", "ORANGERED2", "ORANGERED3", "ORANGERED4",
"ORCHID", "ORCHID1", "ORCHID2", "ORCHID3", "ORCHID4",
"PALEGOLDENROD", "PALEGREEN", "PALEGREEN1", "PALEGREENZ2",
"PALEGREENS3", "PALEGREEN4", "PALETURQUOISE", "PALETURQUOISE1",
"PALETURQUOISE2", "PALETURQUOISES3", "PALETURQUOISE4",
"PALEVIOLETRED", "PALEVIOLETRED1", "PALEVIOLETRED2",
"PALEVIOLETRED3", "PALEVIOLETRED4", "PAPAYAWHIP", "PEACHPUFF",
"PEACHPUFF2", "PEACHPUFF3", "PEACHPUFF4", "PERU", "PINK", "PINK1",
"PINK2", "PINK3", "PINK4", "PLUM", "PLUM1", "PLUM2", "PLUM3", "PLUM4",
"POWDERBLUE", "PURPLE", "PURPLE1", "PURPLE2", "PURPLES3",
"PURPLE4", "RED", "RED1", "RED2", "RED3", "RED4", "ROSYBROWN",
"ROSYBROWN1", "ROSYBROWN2", "ROSYBROWNS3", "ROSYBROWN4",
"ROYALBLUE", "ROYALBLUEL", "ROYALBLUE2", "ROYALBLUES3",
"ROYALBLUE4", "SADDLEBROWN", "SALMON", "SALMON1", "SALMON2",
"SALMON3", "SALMON4", "SANDYBROWN?", "SEAGREEN", "SEAGREEN1",
"SEAGREENZ2", "SEAGREENS", "SEAGREEN4", "SEASHELL", "SEASHELL2",
"SEASHELL3", "SEASHELL4", "BEET", "TEAL", "SIENNA", "SIENNA1",
"SIENNAZ2", "SIENNA3", "SIENNA4", "SKYBLUE", "SKYBLUE1", "SKYBLUE2",
"SKYBLUES3", "SKYBLUE4", "SLATEBLUE", "SLATEBLUE1", "SLATEBLUEZ2",

"SLATEBLUES", "SLATEBLUEA4", "SLATEGRAY1", "SLATEGRAY2",
"SLATEGRAY3", "SLATEGRAY4", "SLATEGRAY", "SNOW", "SNOWwW2",
"SNOW3", "SNOW4", "SPRINGGREEN", "SPRINGGREEN2",

"SPRINGGREENS3", "SPRINGGREEN4", "STEELBLUE", "STEELBLUE1",
"STEELBLUE2", "STEELBLUE3", "STEELBLUE4", "TAN", "TAN1", "TAN2",
"TAN3", "TAN4", "THISTLE", "THISTLE1", "THISTLE2", "THISTLE3",
"THISTLE4", "TOMATO", "TOMATO1", "TOMATO2", "TOMATO3", "TOMATO4",
"TURQUOISE", "TURQUOISEL", "TURQUOISE2", "TURQUOISE3",
"TURQUOISE4", "VIOLET", "VIOLETRED", "VIOLETRED1", "VIOLETRED2",

50
Graphic Commands

"VIOLETRED3", "VIOLETRED4", "WHEAT", "WHEAT1", "WHEAT2",
"WHEAT3", "WHEAT4", "WHITE", "WHITESMOKE", "YELLOW", "YELLOWL",
"YELLOWZ2", "YELLOWS3", "YELLOW4" and "YELLOWGREEN".

4.3.11 vunsetcolor
Syntax: vunsetcolor [shapename]

Sets default color for all, selected or named shapes.

4.3.12 vsettransparency
Syntax: vsettransparency [shapename] coeficient
Sets transparency for all selected or named shapes. The Coefficient may be

between 0.0 (opaque) and 1.0 (fully transparent). Warning: at 1.0 the shape
becomes invisible.

Example

vinit

box b 10 10 10

psphere s 20

vdisplay b s

vfit

vsetdispmode 1
vsettransparency b 0.5

4.3.13 vunsettransparency
Syntax: vunsettransparency [shapename]

Sets default transparency (0.0) for all selected or named shapes.

4.3.14 vsetmaterial
Syntax: vsetmaterial [shapename] materialname

Sets material for all selected or named shapes.

materialname is “BRASS”, “BRONZE”, “COPPER”, “GOLD", “PEWTER”,
“PLASTER”, “PLASTIC", “SILVER”, “STEEL”, “STONE”, “SHINY_PLASTIC",
“SATIN”, “METALIZED", “NEON_GNC”, “CHROME”, “ALUMINIUM”,
“OBSIDIAN", “NEON_PHC”, “JADE".

Example

vinit

psphere s 20
vdisplay s
vFit
vsetdispmode 1

51
Graphic Commands

vsetmaterial s JADE

4.3.15 vunsetmaterial
Syntax: vunsetmaterial [shapename]

Sets default material for all selected or named shapes.

4.3.16 vsetwidth

Syntax: vsetwidth [shapename] coeficient

Sets width of the edges for all selected or named shapes.
The Coefficient may be between 0.0 and 10.0.

Example

vinit

box b 10 10 10
vdisplay b
vFit

vsetwidth b 5

4.3.17 vunsetwidth

Syntax: vunsetwidth [shapename]

Sets default width of edges (0.0) for all selected or named shapes.

4.3.18 vsetshading

Syntax: vsetshading shapename [coefficient]

Sets deflection coefficient that defines the quality of the shape’s representation in
the shading mode. Default coefficientis 0.0008.

Example

vinit

psphere s 20
vdisplay s

vfit

vsetdispmode 1
vsetshading s 0.005

4.3.19 vunsetshading

Syntax: vunsetshading [shapename]

52
Graphic Commands

Sets default deflection coefficient (0.0008) that defines the quality of the shape’s
representation in the shading mode. Default coefficient is 0.0008.

4.3.20 vsetam

Syntax: vsetam [shapename] mode

Activates selection mode for all selected or named shapes.
mode is O for shape itself, 1 for vertices, 2 for edges, 3 for wires, 4 for faces, 5 for
shells, 6 for solids, 7 for compounds

Example

vinit

box b 10 10 10
vdisplay b
vFit

vsetam b 2

4.3.21 vunsetam
Syntax: vunsetam

Deactivates all selection modes for all shapes.

4.3.22 vdump

Syntax: vdump <Filename>_{gif|xwd]bmp}

Extracts the contents of the viewer window to a GIF, XWD or BMP file.

4.3.23 vdir

Syntax: vdir

Displays the list of displayed objects.
4.3.24 vsub

Syntax: vsub 0/1(on/off)[shapename]

Hilights/unhilights named or selected objects which are displayed at neutral state
with subintensity color.

Example

vinit

box b 10 10 10
psphere s 20
vdisplay b s
vfit
vsetdispmode 1

53
Graphic Commands

vsub b 1

4.3.25 vardis

Syntax: vardis

Displays active areas (for each activated sensitive entity, one or several 2D
bounding boxes are displayed, depending on the implementation of a particular
entity).

4.3.26 varera
Syntax: varera

Erases active areas.

4.3.27 vsensdis

Syntax: vsensdis

Displays active entities (sensitive entities of one of the standard types corresponding
to active selection modes).

Standard entity types are those defined in Select3D package:
sensitive box

sensitive face

sensitive curve

sensitive segment

sensitive circle

sensitive point

sensitive triangulation

e sensitive triangle

Custom (application-defined) sensitive entity types are not processed by this
command.

4.3.28 vsensera
Syntax: vsensera

Erases active entities.

4.3.29 vperf

Syntax: vperf shapename 1/0 (Transformation/Loacation)
1/0 (Primitives sensibles ON/OFF)

Tests the animation of an object along a predefined trajectory.

Example

vinit
box b 10 10 10

54
Graphic Commands

psphere s 20
vdisplay b s

vFit
vsetdispmode 0O
vperf b 11
4.3.30 vr
Syntax: vr FTilename

Reads shape from BREP-format file and displays it in the viewer.

Example

vinit
vr myshape.brep

4.3.31 vstate

Syntax: vstate [namel] .. [name n]

Makes a list of the status (Displayed or Not Displayed) of some selected or named
objects.

4.4 AIS viewer — object commands
4.4.1 vtrihedron

Syntax: vtrihedron name [X0] [YO] [zZ0] [Zu]l [2v] [2w]
[Xu]l [Xv]1 [Xw]

Creates a new AIS_Trihedron object. If no argument is set, the default trihedron
(0XYZ) is created.

Example

vinit
vtrihedron tr

4.4.2 vplanetri
Syntax: vplanetri name

Creates a plane from a trihedron selection.

55
Graphic Commands

4.4.3 vsize
Syntax: vsize [name] [size]
Changes the size of a hamed or selected trihedron. If the name is not defined: it

affects the selected trihedrons otherwise nothing is done. If the value is not defined,
it is set to 100 by default.

Example

vinit

vtrihedron trl

vtrihedron tr2 0001 00100
vsize tr2 400

4.4.4 vaxis
Syntax: vaxis name [Xa Ya Za Xb Yb Zzb]

Creates an axis. If the values are not defined, an axis is created by interactive
selection of two vertices or one edge

Example

vinit
vtrihedron tr
vaxis axel 000100

445 vaxispara
Syntax: vaxispara nom

Creates an axis by interactive selection of an edge and a vertex.

4.4.6 vaxisortho
Syntax: vaxisotrho name

Creates an axis by interactive selection of an edge and a vertex. The axis will be
orthogonal to the selected edge.

4.4.7 vpoint

Syntax: vpoint name [Xa Ya Za]

Creates a point from coordinates. If the values are not defined, a point is created by
interactive selection of a vertice or an edge (in the center of the edge).

Example

vinit

56
Graphic Commands

vpoint p 0 0 0

4.4.8 vplane

Syntax: vplane name [AxisName] [PointName]
vplane name [PointName] [PointName] [PointName]
vplane name [PlaneName] [PointName]

Creates a plane from named or interactively selected entities.

Example

vinit

vpoint pl 0 50 O

vaxis axel 0 0 000 1
vtrihedron tr

vplane planel axel pl

4.4.9 vplanepara
Syntax: vplanepara name

Creates a plane from interactively selected vertex and face.

4.4.10 vplaneortho
Syntax: vplaneortho name

Creates a plane from interactive selected face and coplanar edge.

4.4.11 vline

Syntax: vline name [PointName] [PointName]
vline name [Xa Ya Za Xb Yb Zb]

Creates a line from coordinates, named or interactively selected vertices.

Example

vinit

vtrihedron tr

vpoint pl 0 50 O

vpoint p2 50 0 O

vline linel pl p2

vline line2 0 0 0500 1

4.4.12 vcircle

Syntax: vcircle name [PointName PointName PointName]
vcircle name [PlaneName PointName Radius]
Creates a line from coordinates, named or interactively selected entities.

57
Graphic Commands

Example

vinit

vtrihedron tr

vpoint pl1 0 50 O

vpoint p2 50 0 O

vpoint p3 0 0 O

vcircle circlel pl p2 p3

4.4.13 vtri2d

Syntax: vtri2d name

Creates a plane with a 2D trihedron from an interactively selected face.

MeshVS (Mesh Visualization Service) component provides flexible means of
displaying meshes with associated pre- and post- processor data.

4.5 AIS viewer — Mesh Visualization Service

451 meshfromstl
Syntax: meshfromstl meshname file

Creates a MeshVS_Mesh object based on STL file data. The object will be displayed
immediately.

Example

meshfromstl mesh myfile.stl

4.5.2 meshdispmode
Syntax: meshdispmode meshname displaymode

Changes the display mode of object meshname. The displaymode is integer,
which can be 1 (for wireframe), 2 (for shading mode) or 3 (for shrink mode).

Example

vinit
meshfromstl mesh myfile.stl
meshdispmode mesh 2

45.3 meshselmode

58
Graphic Commands

Syntax: meshselmode meshname selectionmode

Changes the selection mode of object meshname. The selectionmode is integer
OR-combination of mode flags. The basic flags are the following:

1 — node selection,

2 — 0D elements (not suppored in STL)

4 — links (not supported in STL)

8 — faces

Example

vinit
meshfromstl mesh myfile.stl
meshselmode mesh 1

45.4 meshshadcolor

Syntax: meshshadcolor meshname red green blue

Changes the face interior color of object meshname. The red, green and blue are
real values between 0 and 1.

Example

vinit
meshfromstl mesh myfile.stl
meshshadcolormode mesh 0.5 0.5 0.5

45.5 meshlinkcolor

Syntax: meshlinkcolor meshname red green blue

Changes the color of face borders for object meshname. The red, green and blue
are real values between 0 and 1.

Example

vinit
meshfromstl mesh myfile.stl
meshlinkcolormode mesh 0.5 0.5 0.5

45.6 meshmat
Syntax: meshmat meshname material

Changes the material of object meshname. material is represented with an integer
value as follows (equivalent to enumeration Graphic3d_NameOfMaterial):

0 - BRASS,
1 -BRONZE,
2 - COPPER,

3-GOLD,

59
Graphic Commands

4 - PEWTER,

5 - PLASTER,

6 - PLASTIC,

7 - SILVER,

8 - STEEL,

9 - STONE,

10 - SHINY_PLASTIC,
11 - SATIN,

12 - METALIZED,
13- NEON_GNC,
14 - CHROME,
15 - ALUMINIUM,
16 - OBSIDIAN,
17 - NEON_PHC,
18 - JADE,

19 - DEFAULT,
20 - UserDefined

Example

vinit
meshfromstl mesh myfile.stl
meshmat mesh JADE

4.5.7 meshshrcoef
Syntax: meshshrcoef meshname shrinkcoefficient
Changes the value of shrink coefficient used in the shrink mode. In the shrink mode

the face is shown as a congruent part of a usual face, so that shrinkcoefficient
controls the value of this part. The shrinkcoefficient is a positive real number.

Example

vinit
meshfromstl mesh myfile.stl
meshshrcoef mesh 0.05

45.8 meshshow
Syntax: meshshow meshname

Displays meshname in the viewer (if it is erased).

Example

vinit
meshfromstl mesh myfile.stl
meshshow mesh

60
Graphic Commands

459 meshhide

Syntax: meshhide meshname

Hides meshname in the viewer.

Example

vinit
meshfromstl mesh myfile.stl
meshhide mesh

4.5.10 meshhidesel

Syntax: meshhidesel meshname

Hides only selected entities. The other part of meshname remains visible.
4.5.11 meshshowsel

Syntax: meshshowsel meshname

Shows only selected entities. The other part of meshname becomes invisible.
4.5.12 meshshowall

Syntax: meshshowall meshname

Changes the state of all entities to visible for meshname.
4.5.13 meshdelete

Syntax: meshdelete meshname

Deletes MeshVS_Mesh object meshname.

Example

vinit
meshfromstl mesh myfile.stl
meshdelete mesh

4.6 AIS viewer — 2D viewer — view commands
4.6.1 v2dinit

Syntax: vadinit

61
Graphic Commands

v2dinit creates the 2D viewer window.

4.6.2 v2dsetbg

Syntax: v2dsetbg imagefile [filletype]

v2dsetbg loads imagefile as background. Filletype is NONE, CENTERED,
TILED, STRETCH.

Example

vadinit
v2dsetbg myimage.brep CENTERED

4.6.3 v2dfit
Syntax: va2dfit

Fits all shapes to the size of the window.

4.6.4 v2drepaint

Syntax: v2drepaint

Forcedly repaints all shapes.

465 v2dclear

Syntax: v2dclear

Clears the 2D viewer window

4.6.6 v2dtext

Syntax: v2dtext text x y [angle scale fontindex]

Creates a new object with the name text_i (i — integer value) and displays text at
the position x, y. The text can be displayed at a certain angle, on a certain scale
and with a certain fontindex.

Default values are: angle=0.0, scale=1.0, fontindex=0.

Example

vadinit
v2dtext “My text” 10 10

4.6.7 v2dsettextcolor

Syntax: v2dsettextcolor text _name colorindex

62
Graphic Commands

Changes the color of text_name object (hame must be an integer value).

Example

vadinit

v2dtext “My text” 10 10
Change color to red
v2dsettextcolor text 0 3

4.6.8 v2dpick

Syntax: v2dpick

Displays mouse coordinates and color after clicking the mouse button in the 2D
viewer window.

4.6.9 v2dgrid

Syntax: v2dgrid [type x y xstep ystep angle [drawmode]]
v2dgrid [type x y radiusstep division angle [drawmode]]

Loads a grid in the 2D viewer window.
type is Rect or Circ.
drawmode is Lines, Points or None.

Example

v2dinit

v2dgrid Circ O O 250 12 O Lines
v2drmgrid

v2dgrid Rect O O 200 200 O Lines

4.6.10 v2rmgrid

Syntax: v2rmgrid

Unloads a grid from the window.

4.6.11 v2dpickgrid
Syntax: v2dpickgrid [mouse x mouse y [grid _x grid_y]]

Gets coordinates of a grid point near the mouse button click in the 2D viewer
window and sets it to grid_x, grid_y variables.

4.6.12 v2dpsout

Syntax: v2dpsout imagefile [scale colorspace]
[width height [xcenter ycenter]]

63
Graphic Commands

Exports imagefile. You can set its the scale, width, height and colorspace.
colorspace can be RGB, BlackAndWhite, GreyScale.

4.6.13 vaddir

Syntax: v2ddir

Makes alLlist of the displayed objects.

4.7 Ais viewer — 2D viewer — display commands
4.7.1 v2ddisplay

Syntax: v2ddisplay name [projection]
Projection: origin_x origin_y origin_z normal_x normal_y normal_z dx_x dx_y dx_z.

Displays named objects.

Example

v2dinit

box b 10 10 10
psphere s 20
v2ddisplay s
v2ddisplay b
v2dfit

4.7.2 v2ddonly

Syntax: v2ddonly [namel] .. [name n]

Displays only selected or named objects. If there are no selected or named objects,
nothing is done.

Example

vadinit

box b 10 10 10
psphere s 20
v2ddisplay b
v2ddisplay s
v2ddonly s
vadfit

4.7.3 v2ddisplayall

Syntax: v2ddisplayall

64
Graphic Commands

Displays all created objects.

Example

vadinit

box b 10 10 10
psphere s 20
v2ddisplay b
v2ddisplay s
v2ddonly
v2ddisplayall
va2dfit

4.7.4 v2derase

Syntax: v2derase namel [name2] .. [name n]

Erases some selected or named objects. If there are no selected or named objects,
the whole viewer is erased.

Example

vadinit

box b 10 10 10
psphere s 20
v2ddisplay b
v2ddisplay s
v2derase b
v2dfit

4.7.5 v2deraseall

Syntax: v2deraseall

Erases all objects displayed in the viewer.

Example

vadinit

box b 10 10 10
psphere s 20
v2ddisplay b
v2ddisplay s
v2deraseall
v2dfit

4.7.6 v2dsetcolor

Syntax: v2dsetcolor [shapename] colorname

Sets color for all, selected or named shapes.

65

Graphic Commands

Values of colorname see vsetcolor.

Example

vadinit

box b 10 10 10
v2ddisplay b
v2ddisplay s
v2dsetcolor b RED
v2dfit

4.7.7 v2dunsetcolor

Syntax: v2dunsetcolor [shapename]

Sets default color for all, selected or named shapes.

Example

v2dinit

box b 10 10 10
v2ddisplay b
v2ddisplay s
v2dsetcolor RED
v2dunsetcolor b
v2dfit

4.7.8 v2dsetbgcolor

Syntax: v2dsetbgcolor colorname

Sets background color.

See vsetcolor for the values of colorname..

Example

v2dinit

box b 10 10 10
v2ddisplay b
v2ddisplay s
v2dsetbgcolor RED
v2dfit

4.7.9 v2dsetwidth

Syntax:

v2dsetwidth [shapename] widthenum

Set width of the edges for all, selected or named shapes.
widthenum may be one of: THIN, MEDIUM, THICK, VERYTHICK.

66
Graphic Commands

Example

v2dinit

box b 10 10 10
v2ddisplay b
v2ddisplay s
v2dsetwidth b THICK
va2dfit

4.7.10 v2dunsetwidth

Syntax: vunsetwidth [shapename]

Sets default width of the edges for all, selected or named shapes.

Example

v2dinit

box b 10 10 10
v2ddisplay b
v2ddisplay s
v2dsetwidth THICK
v2dunsetwidth b
v2dfit

67
OCAF commands

5. OCAF commands

This chapter contains a set of commands for Open CASCADE Application
Framework (OCAF).

5.1 Application commands

5.1.1 NewDocument
Syntax: NewDocument docname [format]

Creates a new docname document with MDTV-Standard or described format.

Example

Create new document with default (MDTV-Standard) format
NewDocument D

Create new document with BinOcaf format
NewDocument D2 BinOcaf

5.1.2 IsInSession
Syntax: IsInSession path

IReturns 0, if path document is managed by the application session, 1 — otherwise.

Example

IsInSession /myPath/myFile.std

5.1.3 ListDocuments
Syntax: ListDocuments

Makes a list of documents handled during the session of the application.

5.1.4 Open

Syntax: Open path docname

Retrieves the document of file <docname> in the path <path>. Overwrites the
document, if it is already in session.

Example

68
OCAF commands

Open /myPath/myFile.std D

5.1.5 Close
Syntax: Close docname

Closes docname document. The document is no longer handled by the applicative
session.

Example

Close D

5.1.6 Save
Syntax: Save docname

Saves docname active document.

Example

Save D

5.1.7 SaveAs
Syntax: SaveAs docname path

Saves the active document in the file <docname> in the path <path>. Overwrites
the file if it already exists.

Example

SaveAs D /myPath/myFile_std

5.2 Basic commands

5.2.1 Label
Syntax: Label docname entry

Creates the label expressed by <entry> if it does not exist.

Example

Label D 0:2

69
OCAF commands

5.2.2 NewcChild

Syntax: NewChild docname [taggerlabel = Root label]

Finds (or creates) a TagSource attribute located at father label of <taggerlabel> and
makes a new child label.

Example

Create new child of root label
NewChild D

Create new child of existing label
Label D 0:2
NewChild D 0:2

5.2.3 Children

Syntax: Children docname label

Returns the list of attributes of label.

Example

Children D 0:2

5.2.4 ForgetAll

Syntax: ForgetAll docname label

Forgets all attributes of the label.

Example

ForgetAll D 0:2

5.3 Application commands

5.3.1 Main
Syntax: Main dochame

Returns the main label of the framework.

70
OCAF commands

5.3.2 UndoLimit

Syntax: UndoLimit docname [value=0]

Sets the limit on the number of Undo Delta stored. 0 will disable Undo on the
document. A negative value means that there is no limit. Note that by default Undo
is disabled. Enabling it will take effect with the next call to NewCommand. Of course,
this limit is the same for Redo

Example

UndoLimit D 100

5.3.3 Undo

Syntax: Undo docname [value=1]

Undoes value steps.

Example

Undo D

5.3.4 Redo

Syntax: Redo docname [value=1]

Redoes value steps.

Example

Redo D

5.3.5 OpenCommand
Syntax: OpenCommand docname

Opens a new command transaction.

Example

OpenCommand D

5.3.6 CommitCommand

Syntax: CommitCommand docname

71
OCAF commands

Commits the Command transaction.

Example

CommitCommand D

5.3.7 NewCommand
Syntax: NewCommand docname

This is a short-cut for Commit and Open transaction.

Example

NewCommand D

5.3.8 AbortCommand
Syntax: AbortCommand docname

Aborts the Command transaction.

Example

AbortCommand D

5.3.9 Copy
Syntax: Copy docnhame entry Xdocname Xentry

Copies the contents of <entry> to <Xentry>. No links are registred.

Example

Copy D1 0:2 D2 0:4

5.3.10 UpdateLink
Syntax: UpdateLink docname [entry]

Updates external reference set at <entry>.

Example

UpdateLink D

72
OCAF commands

5.3.11 CopyWithLink
Syntax: CopyWithLink docname entry Xdocname Xentry
Aborts the Command transaction.

Copies the content of <entry> to <Xentry>. The link is registred with an Xlink
attribute at < Xentry > label.

Example

CopyWithLink D1 0:2 D2 0:4

5.3.12 UpdateXLinks
Syntax: UpdateXLinks docname entry

Sets modifications on labels impacted by external references to the <entry>. The
document becomes invalid and must be recomputed

Example

UpdateXLinks D 0:2

5.3.13 DumpDocument
Syntax: DumpDocument docname

Displays parameters of docname document.

Example

DumpDocument D

5.4 Data Framework commands

5.4.1 MakeDF
Syntax: MakeDF dfname

Creates a new data framework.

Example

MakeDF D

73
OCAF commands

5.4.2 ClearDF
Syntax: ClearDF dfname

Clears a data framework.

Example

ClearDF D

5.4.3 CopyDF
Syntax: CopyDF dfnamel entryl [dfname2] entry2

Copies a data framework.

Example

CopyDF D 0:2 0:4

5.4.4 CopyLabel
Syntax: CopyLabel dfname fromlabel tolablel

Copies a label.

Example

CopyLabel D1 0:2 0:4

545 MiniDumpDF
Syntax: MiniDumpDF dfname

Makes a mini-dump of a data framework.

Example

MiniDumpDF D

5.4.6 XDumpDF
Syntax: XDumpDF dfname

Makes an extended dump of a data framework.

Example

74
OCAF commands

XDumpDF D

5.5 General attributes commands

5.5.1 Setinteger
Syntax: Setinteger dfname entry value

Finds or creates an Integer attribute at entry label and sets value.

Example

Setinteger D 0:2 100

5.5.2 Getlinteger
Syntax: Getlnteger dfname entry [drawname]

Gets a value of an Integer attribute at entry label and sets it to drawname variable,
if it is defined.

Example

Getlnteger D 0:2 Intl

5.5.3 SetReal

Syntax: SetReal dfname entry value

Finds or creates a Real attribute at entry label and sets value.

Example

SetReal D 0:2 100.

5.54 GetReal
Syntax: GetReal dfname entry [drawname]

Gets a value of a Real attribute at entry label and sets it to drawname variable, if it
is defined.

Example

GetReal D 0:2 Reall

75
OCAF commands

5.5.5 SetintArray

Syntax: SetintArray dfname entry Ilower upper valuel
value2 ..

Finds or creates an IntegerArray attribute at entry label with lower and upper
bounds and sets valuel, . value2...

Example

SetintArray D 0:2 1 4 100 200 300 400

5.5.6 GetIntArray
Syntax: GetiIntArray dfname entry

Gets a value of an IntegerArray attribute at entry label.

Example

GetIntArray D 0:2

5.5.7 SetRealArray

Syntax: SetRealArray dfname entry Jlower upper valuel
value2 ..

Finds or creates a RealArray attribute at entry label with lower and upper bounds
and sets valuel, . value2...

Example

GetRealArray D 0:2 1 4 100. 200. 300. 400.

5.5.8 GetRealArray

Syntax: GetRealArray dfname entry

Gets a value of a RealArray attribute at entry label.

Example

GetRealArray D 0:2

5.5.9 SetComment
Syntax: SetComment dfname entry value

Finds or creates a Comment attribute at entry label and sets value.

76
OCAF commands

Example

SetComment D 0:2 “My comment”

5.5.10 GetComment
Syntax: GetComment dfname entry

Gets a value of a Comment attribute at entry label.

Example

GetComment D 0:2

5.5.11 SetExtStringArray

Syntax: SetExtStringArray dfname entry lower upper
valuel value2 ..

Finds or creates an ExtStringArray attribute at entry label with lower and upper
bounds and sets valuel, . value2...

Example

SetExtStringArray D 0:2 1 3 “stringl” “string2” “string3”

5.5.12 GetExtStringArray
Syntax: GetExtStringArray dfname entry

Gets a value of an ExtStringArray attribute at entry label.

Example

GetExtStringArray D 0:2

5.5.13 SetName

Syntax: SetName dfname entry value

Finds or creates a Name attribute at entry label and set value.

Example

SetName D 0:2 *“My name”

77
OCAF commands

5.5.14 GetName
Syntax: GetName dfname entry

Gets a value of a Name attribute at entry label.

Example

GetName D 0:2

5.5.15 SetReference
Syntax: SetReference dfname entry reference

Creates a Reference attribute at entry label and sets reference.

Example

SetReference D 0:2 0:4

5.5.16 GetReference
Syntax: GetReference dfname entry

Gets a value of a Reference attribute at entry label.

Example

GetReference D 0:2

5.5.17 SetUAttribute
Syntax: SetUAttribute dfname entry localGUID

Creates a UAttribute attribute at entry label with localGUID.

Example

set localGUID “c73bd076-22ee-11d2-acde-080009dc4422”
SetUAttribute D 0:2 ${localGUID}

5.5.18 GetUAttribute
Syntax: GetUAttribute dfname entry loacalGUID

Finds a UAttribute at entry label with localGUID.

Example

78
OCAF commands

set localGUID “c73bd076-22ee-11d2-acde-080009dc4422”’
GetUAttribute D 0:2 ${localGUID}

5.5.19 SetFunction
Syntax: SetFunction dfname entry ID failure

Finds or creates a Function attribute at entry label with driver ID and failure index.

Example

set ID “c73bd076-22ee-11d2-acde-080009dc4422”’
SetFunction D 0:2 ${ID} 1

5.5.20 GetFunction
Syntax: GetFunction dfname entry ID failure

Finds a Function attribute at entry label and sets driver ID to ID variable and failure
index to failure variable.

Example

GetFunction D 0:2 ID failure

5.5.21 NewShape

Syntax: NewShape dfname entry [shape]

Finds or creates a Shape attribute at entry label. Creates or updates the associated
NamedShape attribute by shape if shape is defined.

Example

box b 10 10 10
NewShape D 0:2 b

5.5.22 SetShape

Syntax: SetShape dfname entry shape

Creates or updates a NamedShape attribute at entry label by shape.

Example

box b 10 10 10
SetShape D 0:2 b

79

OCAF commands

5.5.23 GetShape2

Syntax: GetShape2 dfname entry shape

Sets a shape from NamedShape attribute associated with entry label to shape draw
variable.

Example

GetShape2 D 0:2 b

5.6 Geometric attributes commands

5.6.1 SetPoint

5.6.2

5.6.3

Syntax: SetPoint dfname entry point

Finds or creates a Point attribute at entry label and sets point as generated in the
associated NamedShape attribute.

Example

point p 10 10 10
SetPoint D 0:2 p

GetPoint
Syntax: GetPoint dfname entry [drawname]

Gets a vertex from NamedShape attribute at entry label and sets it to drawname
variable, if it is defined.

Example

GetPoint D 0:2 p

SetAxis
Syntax: SetAxis dfname entry axis

Finds or creates an Axis attribute at entry label and sets axis as generated in the
associated NamedShape attribute.

Example

line 1 10 20 30 100 200 300

80
OCAF commands

SetAxis D 0:2 1

5.6.4 GetAxis

Syntax: GetAxis dfname entry [drawname]

Gets a line from NamedShape attribute at entry label and sets it to drawname
variable, if it is defined.

Example

GetAxis D 0:2 1

5.6.5 SetPlane

Syntax: SetPlane dfname entry plane

Finds or creates a Plane attribute at entry label and sets plane as generated in the
associated NamedShape attribute.

Example

plane pl 10 20 30 -1 0 0
SetPlane D 0:2 pl

5.6.6 GetPlane
Syntax: GetPlane dfname entry [drawname]

Gets a plane from NamedShape attribute at entry label and sets it to drawname
variable, if it is defined.

Example

GetPlane D 0:2 pl

5.6.7 SetGeometry
Syntax: SetGeometry dfname entry [type] [shape]
Creates a Geometry attribute at entry label and sets type and shape as generated

in the associated NamedShape attribute if they are defined. type must be one of the
following: any/pnt/lin/cir/ell/spl/pln/cyl.

Example

point p 10 10 10
SetGeometry D 0:2 pnt p

81
OCAF commands

5.6.8 GetGeometryType
Syntax: GetGeometryType dfname entry

Gets a geometry type from Geometry attribute at entry label.

Example

GetGeometryType D 0:2

5.6.9 SetConstraint

Syntax: SetConstraint dfname entry keyword geometrie
[geometrie ..]
SetConstraint dfname entry “plane” geometrie
SetConstraint dfname entry “value” value

1. Creates a Constraint attribute at entry label and sets keyword constraint
between geometry(ies).

keyword must be one of the following:
rad/dia/minr/majr/tan/par/perp/concentric/equal/dist/angle/eqrad/symm/midp/
eqdist/fix/rigid

or

from/axis/mate/alignf/aligna/axesal/facesa/round/offset

2. Sets plane for the existing constraint.

3. Sets value for the existing constraint.

Example

SetConstraint D 0:2 “value” 5

5.6.10 GetConstraint

Syntax: GetConstraint dfname entry

Dumps a Constraint attribute at entry label

Example

GetConstraint D 0:2

5.6.11 SetVariable

Syntax: SetVariable dfname entry isconstant(0/1) units

82
OCAF commands

Creates a Variable attribute at entry label and sets isconstant flag and units as a
string.

Example

SetVariable D 0:2 1 “mm”

5.6.12 GetVariable

Syntax: GetVariable dfname entry isconstant units

Gets an isconstant flag and units of a Variable attribute at entry label.

Example

GetVariable D 0:2 isconstant units
puts “IsConstant=${isconstant}”
puts “Units=${units}”

5.7 Tree attributes commands

5.7.1 RootNode
Syntax: RootNode dfname treenodeentry [ID]

Returns ultimate father of TreeNode attribute identified by its treenodeentry and its
ID (or default ID, if ID is not defined).

5.7.2 SetNode
Syntax: SetNode dfname treenodeentry [ID]

Creates a TreeNode attribute on the treenodeentry label with its tree ID (or assigns
a default ID, if the ID is not defined).

5.7.3 AppendNode

Syntax: AppendNode dfname fatherentry childentry
[fatheriD]

Inserts a TreeNode attribute with its tree fatherID (or default ID, if fatherID is not
defined) on childentry as last child of fatherentry.

83
OCAF commands

5.7.4 PrependNode

Syntax: PrependNode dfname fatherentry childentry
[fatheriD]

Inserts a TreeNode attribute with its tree fatherID (or default ID, if fatherID is not
defined) on childentry as first child of fatherentry.

5.7.5 InsertNodeBefore

Syntax: InsertNodeBefore dfname treenodeentry
beforetreenode [ID]

Inserts a TreeNode attribute with tree ID (or default ID, if ID is not defined)
beforetreenode before treenodeentry.

5.7.6 InsertNodeAfter

Syntax: InsertNodeAfter dfname treenodeentry
aftertreenode [ID]

Inserts a TreeNode attribute with tree ID (or default ID, if ID is not defined)
aftertreenode after treenodeentry.

5.7.7 DetachNode
Syntax: DetachNode dfname treenodeentry [ID]

Removes a TreeNode attribute with tree ID (or default ID, if ID is not defined) from
treenodeentry.

5.7.8 ChildNodelterate

Syntax: ChildNodel terate dfname treenodeentry
alllevels(0/1) [ID]

Iterates on the tree of TreeNode attributes with tree ID (or default ID, if ID is not
defined). If alllevels is set to 1 it explores not only the first, but all the sub Step

levels.

Example
Label D 0:2
Label D 0:3
Label D 0:4
Label D 0:5
Label D 0:6
Label D 0:7
Label D 0:8

84

OCAF commands

5.7.9

Label D 0:9

Set root node
SetNode D 0:2

AppendNode D O:
AppendNode D O:
PrependNode D O
PrependNode D O
PrependNode D O

2 0:4
2 0:5
4 0:3
4 0:8
4 0:9

InsertNodeBefore D 0:5 0:6
InsertNodeAfter D 0:4 0:7

DetachNode D 0:8

List all levels
ChildNodelterate D 0:2 1

==>0:4
==>0:9
==>0:3
==>0:7
==>0:6
==>0:5

List only first levels
ChildNodelterate D 0:2 1

==>0:4
==>0:7
==>0:6
==>0:5

InitChildNodelterator

Syntax: InitChildNodelterator dfname treenodeentry
alllevels(0/1) [ID]

Initializes the iteration on the tree of TreeNode attributes with tree ID (or default ID, if
ID is not defined). If alllevels is set to 1 it explores not only the first, but also all sub
Step levels.

Example

InitChildNodelterate D 0:5 1
set aChildNumber O
for {set i 1} {$i < 100} {incr i} {
ifT {[ChildNodeMore] == “TRUE} {
puts “Tree node = [ChildNodeValue]”
incr aChildNumber
ChildNodeNext

3 }
puts “aChildNumber=$aChi ldNumber”

85
OCAF commands

5.7.10 ChildNodeMore
Syntax: ChildNodeMore

Returns TRUE if there is a current item in the iteration.

5.7.11 ChildNodeNext
Syntax: ChildNodeNext

Moves to the next ltem.

5.7.12 ChildNodeValue
Syntax: ChildNodeVvalue

Returns the current treenode of ChildNodelterator.

5.7.13 ChildNodeNextBrother
Syntax: ChildNodeNextBrother

Moves to the next Brother. If there is none, goes up. This method is interesting only
with "allLevels" behavior.

5.8 Standard presentation commands

5.8.1 AlSInitViewer
Syntax: AlSInitViewer docname

Creates and sets AlSViewer attribute at root label, creates AIS viewer window.

Example

AlSInitViewer D

5.8.2 AISRepaint
Syntax: AlSRepaint dochame

Updates the AIS viewer window.

Example

86
OCAF commands

AlSRepaint D

5.8.3 AlISDisplay

Syntax: AlSDisplay docname entry [not_update]

Displays a presantation of AlSobject from entry label in AIS viewer. If not_update is
not defined then AlSobject is recomputed and all visualization settings are applied.

Example

AlSDisplay D 0:5

5.8.4 AlSUpdate
Syntax: AlSUpdate docname entry

Recomputes a presantation of AlSobject from entry label and applies the
visualization setting in AIS viewer.

Example

AlSUpdate D 0:5

5.8.5 AIlSErase

Syntax: AlSErase docname entry

Erases AlSobject of entry label in AIS viewer.

Example

AlSErase D 0:5

5.8.6 AISRemove

Syntax: AlISRemove docname entry

Erases AlSobject of entry label in AIS viewer, then AlSobject is removed from
AIS_InteractiveContext.

Example

AlSRemove D 0:5

87
OCAF commands

5.8.7 AISSet
Syntax: AlSSet docname entry ID
Creates AlISPresentation attribute at entry label and sets as driver ID. ID must be

one of the following: A (axis), C (constraint), NS (namedshape), G (geometry), PL
(plane), PT (point).

Example

AlSSet D 0:5 NS

5.8.8 AISDriver
Syntax: AlISDriver docname entry [ID]
Returns DriverGUID stored in AlSPresentation attribute of an entry label or sets a

new one. ID must be one of the following: A (axis), C (constraint), NS
(namedshape), G (geometry), PL (plane), PT (point).

Example

Get Driver GUID
AlISDriver D 0:5

5.8.9 AISUnset
Syntax: AlSUnset docname entry

Deletes AlSPresentation attribute (if it exists) of an entry label.

Example

AlSUnset D 0:5

5.8.10 AlSTransparency
Syntax: AlSTransparency docname entry [transparency]

Sets (if transparency is defined) or gets the value of transparency for
AISPresentation attribute of an entry label.

Example

AlSTransparency D 0:5 0.5

88
OCAF commands

5.8.11 AISHasOwnTransparency
Syntax: AlSHasOwnTransparency docname entry

Tests AlSPresentation attribute of an entry label by own transparency.

Example

AlSHasOwnTransparency D 0:5

5.8.12 AlSMaterial

Syntax: AlSMaterial docname entry [material]

Sets (if material is defined) or gets the value of transparency for AISPresentation
attribute of an entry label. material is integer from 0 to 20 (see meshmat).

Example

AlSMaterial D 0:5 5

5.8.13 AlSHasOwnMaterial
Syntax: AlSHasOwnMaterial docnhame entry

Tests AlSPresentation attribute of an entry label by own material.

Example

AlSHasOwnMaterial D 0:5

5.8.14 AISColor
Syntax: AlSColor docname entry [color]

Sets (if color is defined) or gets value of color for AISPresentation attribute of an
entry label. color is integer from 0 to 516 (see color names in vsetcolor).

Example

AlSColor D 0:5 25

5.8.15 AISHasOwnColor
Syntax: AlSHasOwnColor docname entry

Tests AlSPresentation attribute of an entry label by own color.

89

OCAF commands

Example

AlSHasOwnColor D 0:5

90
Geometry commands

6. Geometry commands

6.1 Overview

Draw provides a set of commands to test geometry libraries. These commands are
found in the TGEOMETRY executable, or in any Draw executable which includes
GeometryTest commands.

In the context of Geometry, Draw includes the following types of variable:

® 2d and 3d points
® The 2d curve, which corresponds to Curve in Geom2d.

® The 3d2 curve and surface, which correspond to Curve and Surface in
Geom “.

Draw geometric variables never share data; the copy command will always make a
complete copy of the content of the variable.

The following topics are covered in the nine sections of this chapter:

® Curve creation deals with the various types of curves and how to create
them.

® Surface creation deals with the different types of surfaces and how to
create them.

® Curve and surface modification deals with the commands used to
modify the definition of curves and surfaces, most of which concern
modifications to bezier and bspline curves.

® Geometric transformations covers translation, rotation, mirror image
and point scaling transformations.

® Curve and Surface Analysis deals with the commands used to
compute points, derivatives and curvatures.

® Intersections presents intersections of surfaces and curves.

® Approximations deals with creating curves and surfaces from a set of
points.

® Constraints concerns construction of 2d circles and lines by constraints
such as tangency.

2 See Geom and Geom2d packages for further information about Open CASCADE
geometry.

91

Geometry commands

Display describes commands to control the display of curves and
surfaces.

Where possible, the commands have been made broad in application, i.e. they apply
to 2d curves, 3d curves and surfaces. For instance, the circle command may create
a 2d or a 3d circle depending on the number of arguments given.

Likewise, the translate command will process points, curves or surfaces, depending
on argument type. You may not always find the specific command you are looking
for in the section where you expect it to be. In that case, look in another section. The
trim command, for example, is described in the surface section. It can, nonetheless,
be used with curves as well.

6.2 Curve creation

This section deals with both points and curves. Types of curves are:

Analytical curves such as lines, circles, ellipses, parabolas, and
hyperbolas.

Polar curves such as bezier curves and bspline curves.

Trimmed curves and offset curves made from other curves with the trim
and offset commands. Because they are used on both curves and
surfaces, the trim and offset commands are described in the surface
creation section.

NURBS can be created from other curves using convert in the Surface
Creation section.

Curves can be created from the isoparametric lines of surfaces by the
uiso and viso commands.

3d curves can be created from 2d curves and vice versa using the to3d
and to2d commands. The project command computes a 2d curve on a
3d surface.

Curves are displayed with an arrow showing the last parameter.

6.2.1 point

Syntax:

point name x y [z]

point creates a 2d or 3d point, depending on the number of arguments.

Example

2d point
point pl1 1 2

92
Geometry commands

3d point
point p2 10 20 -5

6.2.2 line

Syntax: line name x y [z] dx dy [dz]

line creates a 2d or 3d line. x y z are the coordinates of the line’s point of origin; dx,
dy, dz give the direction vector.

A 2d line will be represented asl x y dx dy, and a 3d line asl x y z dx dy dz. A line is
parameterized along its length starting from the point of origin along the direction
vector. The direction vector is normalized and must not be null. Lines are infinite,
even though their representation is not.

Example

a 2d line at 45 degrees of the X axis
linel 2011

a 3d line through the point 10 0 0 and parallel to Z
line1 1000001

6.2.3 circle

Syntax: circle name x y [z [dx dy dz]] [ux uy [uz]] radius
circle creates a 2d or a 3d circle.

In 2d, x, y are the coordinates of the center and ux, uy define the vector towards the
point of origin of the parameters. By default, this direction is (1,0). The X Axis of the
local coordinate system defines the origin of the parameters of the circle. Use
another vector than the x axis to change the origin of parameters.

In 3d, X, y, z are the coordinates of the center; dx, dy, dz give the vector normal to
the plane of the circle. By default, this vector is (0,0,1) i.e. the Z axis (it must not be
null). ux, uy, uz is the direction of the origin; if not given, a default direction will be
computed. This vector must neither be null nor parallel to dx, dy, dz.

The circle is parameterized by the angle in [0,2*pi] starting from the origin and. Note
that the specification of origin direction and plane is the same for all analytical
curves and surfaces.

Example

A 2d circle of radius 5 centered at 10,-2
circle cl1 10 -2 5

93
Geometry commands

another 2d circle with a user defined origin

the point of parameter 0 on this circle will be
1+sqrt(2) 1+sqrt(2)

circle c2 1 1

a 3d circle, center 10 20 -5, axis Z, radius 17
circle c3 10 20 -5 17

same 3d circle with axis Y
circle c4 10 20 -5 0 1 0 17

Ffull 3d circle, axis X, ori g on Z
circle ¢c5 1020 -5100001

6.2.4 ellipse

Syntax: ellipse name x y [z [dx dy dZz]] [ux uy [uz]] firstradius secondradius ellipse
creates a 2d or 3d ellipse. In a 2d ellipse, the first two arguments define the center;
in a 3d ellipse, the first three. The axis system is given by firstradius, the major
radius, and secondradius, the minor radius. The parameter range of the ellipse is
[0,2.%pi] starting from the X axis and going towards the Y axis. The Draw ellipse is
parameterized by an angle:

P(u) = O + firstradius*cos(u)*Xdir + secondradius*sin(u)*Ydir

where:

® P is the point of parameter u,

® O, Xdir and Ydir are respectively the origin, “X Direction” and “Y
Direction” of its local coordinate system.

Example

default 2d ellipse
ellipse el 10 5 20 10

2d ellipse at angle 60 degree
ellipse e2 001 2 30 5

3d ellipse, In the XY plane
ellipse e3 000 25 5

3d ellipse in the X,Z plane with axis 1, 0 ,1
ellipse e4 000010101255

See also: circle

6.2.5 hyperbola

Syntax: hyperbola name x y [z [dx dy dz]] [ux uy [uz]] firstradius secondradius

94
Geometry commands

hyperbola creates a 2d or 3d conic. The first arguments define the center. The axis
system is given by firstradius, the major radius, and secondradius, the minor radius.
Note that the hyperbola has only one branch, that in the X direction.

The Draw hyperbola is parameterized as follows:

P(U) = O + firstradius*Cosh(U)*XDir + secondradius*Sinh(U)*YDir

where:

® P s the point of parameter U,

® O, XDir and YDir are respectively the origin, “X Direction” and “Y

Direction” of its local coordinate system.

Example

default 2d hyperbola, with asymptotes 1,1 -1,1
hyperbola hl 0 0 30 30

2d hyperbola at angle 60 degrees
hyperbola h2 0 0 1 2 20 20

3d hyperbola, in the XY plane
hyperbola h3 0 0 0 50 50

See also: circle

6.2.6 parabola
Syntax: parabola name x y [z [dx dy dz]] [ux uy [uz]] FocalLength

parabola creates a 2d or 3d parabola. in the axis system defined by the first
arguments.The origin is the apex of the parabola.

The Geom_Parabola parabola is parameterized as follows:
P(u) = O + u*u/(4.*F)*XDir + u*YDir

where:
® P s the point of parameter u,

® O, XDir and YDir are respectively the origin, “X Direction” and “Y
Direction” of its local coordinate system,

® F is the focal length of the parabola.

Example

2d parabola

95
Geometry commands

parabola pl 0 0 50

2d parabola with convexity +Y
parabola p2 0 0 0 1 50

3d parabola In the Y-Z plane, convexity +Z
parabola p3 0001 0000 1 50

See also: circle

6.2.7 beziercurve, 2dbeziercurve

Syntax: beziercurve name nbpole pole, [weight]
2dbeziercurve name nbpole pole, [weight]

beziercurve creates a 3d rational or non-rational Bezier curve. Give the number of
poles (control points,) and the coordinates of the poles (x1 y1 z1 [w1] x2 y2 z2 [w2]).
The degree will be nbpoles-1. To create a rational curve, give weights with the
poles. You must give weights for all poles or for none. If the weights of all the poles
are equal, the curve is polynomial, and therefore non-rational.

Example

a rational 2d bezier curve (arc of circle)
2dbeziercurve ci 3 0 0 1 10 O sqrt(2.)/2. 10 10 1

a 3d bezier curve, not rational
beziercurve cc 4 0 0 0 10 0 0 10 O 10 10 10 10

6.2.8 bsplinecurve, 2dbsplinecurve, pbsplinecurve,
2dpbsplinecurve

Syntax: bsplinecurve name degree nbknots knot, umult pole,
weight 2dbsplinecurve name degree nbknots knot, umult
pole, weight pbsplinecurve name degree nbknots knot,
umult pole, weight(periodic)
2dpbsplinecurve name degree nbknots knot, umult pole,
weight (periodic)

bsplinecurve creates 2d or 3d bspline curves; the pbsplinecurve and
2dpbsplinecurve commands create periodic bspline curves.

A bspline curve is defined by its degree, its periodic or non-periodic nature, a table
of knots and a table of poles (i.e. control points). Consequently, specify the degree,
the number of knots, and for each knot, the multiplicity, for each pole, the weight. In
the syntax above, the commas link the adjacent arguments which they fall between:
knot and multiplicities, pole and weight.

The table of knots is an increasing sequence of reals without repetition.

96

Geometry commands

Multiplicities must be lower or equal to the degree of the curve. For non-periodic
curves, the first and last multiplicities can be equal to degree+1. For a periodic
curve, the first and last multiplicities must be equal.

The poles must be given with their weights, use weights of 1 for a non rational curve,
the number of poles must be:

® For a non periodic curve: Sum of multiplicities - degree + 1

® For a periodic curve: Sum of multiplicities - last multiplicity

Example

a bspline curve with 4 poles and 3 knots
bsplinecurve bc 2 3 03 112 3\
100071707130810071

a 2d periodic circle (parameter from O to 2*pi !I)
dset h sqrt(3)/2

2dpbsplinecurve ¢ 2 \

4 0 2 pi/1.5 2 pi/0.75 2 2*pi 2 \

0 -h/3 1 \

0.5 -h/3 0.5 \

0.25 h/6 1 \

0 2*h/3 0.5 \

-0.25 h/6 1 \

-0.5 -h/3 0.5 \

0 -h/3 1

NOTE
You can create the NURBS subset of bspline curves and
surfaces by trimming analytical curves and surfaces and
executing the command “convert”; see below.

6.2.9 uiso, Viso

Syntax: uiso name surface u
viso name surface u

Use these commands to create a U or V isoparametric curve from a surface.

Example

create a cylinder and extract iso curves

cylinder c 10
uiso cl c pi/6
Vviso c2 c

NOTE
Cannot be done from offset surfaces.

97

Geometry commands

6.2.10 to2d, to3d

Syntax: to3d name curve2d [plane]
to2d name curve3d [plane]

The to3d and to2d commands are used to create respectively a 3d curve from a 2d
curve and a 2d curve from a 3d curve. The transformation uses a planar surface to
define the XY plane in 3d (by default this plane is the default OXYplane). to3d
always gives a correct result, but as to2d is not a projection, it may surprise you. It is
always correct if the curve is planar and parallel to the plane of projection. The
points defining the curve are projected on the plane. A circle, however, will remain a
circle and will not be changed to an ellipse.

Example

the following commands
circle c 005

plane p -2 1012 3
to3d c c p

will create the same circle as
circlec-2101235

See also: project

6.2.11 project

Syntax: project name curve3d surface

project computes a 2d curve in the parametric space of a surface corresponding to
a 3d curve. This can only be used on analytical surfaces.

Example

iIntersect a cylinder and a plane

and project the resulting ellipse on the cylinder
this will create a 2d sinusoid-like bspline
cylinder ¢ 5

plane p 000011

intersect i c p

project i2d i c

6.3 Surface creation

Types of surfaces are:

® Analytical surfaces: plane, cylinder, cone, sphere, torus.

® Polar surfaces: bezier surfaces, bspline surfaces

98
Geometry commands

® Trimmed and Offset surfaces; see trim, trimu, trimv, offset.

® Surfaces produced by Revolution and Extrusion, created from curves
with the revsurf and extsurf.

® NURBS surfaces.

Surfaces are displayed with isoparametric lines. To show the parameterization, a
small parametric line with a length 1/10 of V is displayed at 1/10 of U.

6.3.1 plane
Syntax: plane name [x y z [dx dy dz [ux uy uz]]1]

Uses this command to create an infinite plane. A plane is the same as a 3d
coordinate system, x,y,z is the origin, dx, dy, dz is the Z direction and ux, uy, uz is
the X direction. The plane is perpendicular to Z and X is the U parameter. dx,dy,dz
and ux,uy,uz must not be null and not colinear. ux,uy,uz will be modified to be
orthogonal to dx,dy,dz. There are default values for the coordinate system. If no
arguments are given, the global system (0,0,0), (0,0,1), (1,0,0). If only the origin is
given, the axes are those given by default(0,0,1), (1,0,0). If the origin and the Z axis
are given, the X axis is generated perpendicular to the Z axis. Note that this
definition will be used for all analytical surfaces.

Example

a plane through the point 10,0,0 perpendicular to X
with U direction on Y
plane p1 10001 00010

an horixontal plane with origin 10, -20, -5
plane p2 10 -20 -5

6.3.2 cylinder

Syntax: cylinder name [x y z [dx dy dz [ux uy uz]]] radius

A cylinder is defined by a coordinate system, and a radius. The surface generated is
an infinite cylinder with the Z axis as the axis. The U parameter is the angle starting
from X going in the Y direction.

See also: plane

Example

a cylinder on the default Z axis, radius 10
cylinder c1 10

a cylinder, also along the Z axis but with origin 5,
10, -3
cylinder c2510-3 10

99
Geometry commands

a cylinder through the origin and on a diagonal

with longitude pi/3 and latitude pi/4 (euler angles)
dset lo pi/3. la pi/4.

cylinder ¢3 0 0 0 cos(la)*cos(lo) cos(la)*sin(lo)
sin(la) 10

6.3.3 cone
Syntax: cone name [X y z [dx dy dz [ux uy uz]]] semi-angle radius

Creates a cone in the infinite coordinate system along the Z-axis. The radius is that
of the circle at the intersection of the cone and the XY plane. The semi-angle is the
angle formed by the cone relative to the axis; it should be between —90° and 90°. If
the radius is 0, the vertex is the origin.

See also: plane

Example

a cone at 45 degrees at the origin on Z
cone cl 45 0

a cone on axis Z with radius rl1 at z1 and r2 at z2
cone c2 0 0 z1 180.*atan2(r2-rl1,z2-z1)/pi rl

6.3.4 sphere

Syntax: sphere name [X y z [dx dy dz [ux uy uz]]] radius

Creates a sphere in the local coordinate system defined in the plane command. The
sphere is centered at the origin. To parameterize the sphere, u is the angle from X to
Y, between o and 2*pi. v is the angle in the half-circle at angle u in the plane
containing the Z axis. v is between -pi/2 and pi/2. The poles are the points Z = +/-
radius; their parameters are u,+/-pi/2 for any u in 0,2*pi.

Example
a sphere at the origin
sphere sl1 10
a sphere at 10 10 10, with poles on the axis 1,1,1
sphere s2 10 10 10 1 1 1 10

See also: plane

6.3.5 torus

Syntax; torus name [X y z [dx dy dz [ux uy uz]]] major minor

100
Geometry commands

Creates a torus in the local coordinate system with the given major and minor radii.
Z is the axis for the major radius. The major radius may be lower in value than the
minor radius.

To parameterize a torus, u is the angle from X to Y; v is the angle in the plane at
angle u from the XY plane to Z. u and v are in 0,2*pi.

Example

a torus at the origin
torus tl1 20 5

a torus in another coordinate system
torus t2 10 5 -2 21 0 20 5

See also: plane

6.3.6 beziersurf
Syntax: beziersurf name nbupoles nbvolpes pole, [weight]

Use this command to create a bezier surface, rational or non-rational. First give the
numbers of poles in the u and v directions.

Then give the poles in the following order: pole(1, 1), pole(nbupoles, 1), pole(1,
nbvpoles) and pole(nbupoles, nbvpoles).

Weights may be omitted, but if you give one weight you must give all of them.

Example

a non-rational degree 2,3 surface
beziersurf s 3 4 \
00010052000\

0 10 2 10 10 3 20 10 2 \

0 20 10 10 20 20 20 20 10 \

0 30 0 10 30 0 20 30 O

See also: beziercurve

6.3.7 bsplinesurf, upbsplinesurf, vpbsplinesurf,
uvpbsplinesurf

Syntax: bsplinesurf name udegree nbuknots uknot umult ... nbvknot vknot
vmult...Xyzw...
upbsplinesurf ...
vpbsplinesurf ...
uvpbsplinesurf ...

101

Geometry commands

6.3.8

bsplinesurf generates bspline surfaces. upbsplinesurf creates a bspline surface
periodic in u; vpbsplinesurf creates one periodic in v; and uvpbsplinesurf creates
one periodic in uv.

The syntax is similar to the bsplinecurve command. First give the degree in u and
the knots in u with their multiplicities, then do the same in v. The poles follow. The
number of poles is the product of the number in u and the number in v. See
bsplinecurve to compute the number of poles, the poles are first given in U as in
the beziersurf command. You must give weights if the surface is rational.

Example

create a bspline surface of degree 1 2
with two knots in U and three in V
bsplinesurf s \

120212\

23031123\

000110051\

01021101031\
0201011020201\
03001103001

See also: bsplinecurve, beziersurf, convert

trim, trimu, trimv

Syntax: trim newname name [ul u2 [v1 v2]]
trimu newname name
trimv newname name

The trim commands create trimmed curves or trimmed surfaces. Note that trimmed
curves and surfaces are classes of the Geom package. The trim command creates
either a new trimmed curve from a curve or a new trimmed surface in u and v from a
surface. trimu creates a u-trimmed surface, and trimv a v-trimmed surface. After an
initial trim, a second execution with no parameters given recreates the basis curve.
The curves can be either 2d or 3d. If the trimming parameters decrease and if the
curve or surface is not periodic, the direction is reversed.
NOTE

Note that a trimmed curve or surface contains a copy of the

basis geometry: modifying that will not modify the trimmed

geometry. Trimming trimmed geometry will not create

multiple levels of trimming. The basis geometry will be used.

Example

create a 3d circle
circle c 0 0 0 10

trim it, use the same variable, the original is
deleted
trim c c 0 pi/2

the original can be recovered!

102
Geometry commands

trim orc c

trim again
trim c c pi/Z4 pi/2

the original is not the trimmed curve but the basis
trim orc c

as the circle is periodic, the two following commands
are identical

trim cc c pi/2 0

trim cc c pi/2 2*pi

trim an infinite cylinder
cylinder cy 10
trimv cy cy 0 50

See also: reverse

6.3.9 offset

Syntax: offset name basename distance [dx dy dz]

Creates offset curves or surfaces at a given distance from a basis curve or surface.
Offset curves and surfaces are classes from the Geom package.

The curve can be a 2d or a 3d curve. To compute the offsets for a 3d curve, you
must also give a vector dx,dy,dz. For a planar curve, this vector is usually the normal
to the plane containing the curve.

The offset curve or surface copies the basic geometry, which can be modified later.

Example

graphic demonstration that the outline of a torus
1s the offset of an ellipse

smallview +X+Y

dset angle pi/6

torus t 0 O O O cos(angle) sin(angle) 50 20

fit

ellipse e 0 0 0 50 50*sin(angle)

note that the distance can be negative

offset 11 e 2000 1

6.3.10 revsurf

Syntax: revsurf name curvename x y z dx dy dz

Creates a surface of revolution from a 3d curve. A surface of revolution or revolved
surface is obtained by rotating a curve (called the “meridian”) through a complete
revolution about an axis (referred to as the “axis of revolution”). The curve and the
axis must be in the same plane (the “reference plane” of the surface). Give the point
of origin x,y,z and the vector dx,dy,dz to define the axis of revolution. To
parameterize a surface of revolution: u is the angle of rotation around the axis. lts

103
Geometry commands

origin is given by the position of the meridian on the surface. v is the parameter of
the meridian.

Example

another way of creating a torus like surface
circle ¢ 50 0 0 20
revsurf sc 000010

6.3.11 extsurf

Syntax: extsurf newname curvename dx dy dz

Use the extsurf command to create a surface of linear extrusion from a 3d curve.
The basis curve is swept in a given direction,the “direction of extrusion” defined by a
vector. In the syntax, dx,dy,dz gives the direction of extrusion. To parameterize a
surface of extrusion: u is the parameter along the extruded curve; the v parameter is
along the direction of extrusion.

Example

an elliptic cylinder
ellipse e 0 0 0 10 5
extsurF s e 00 1

to make i1t finite
trimv s s 0 10

6.3.12 convert

Syntax: convert newname name

convert creates a 2d or 3d NURBS curve or a NURBS surface from any 2d curve, 3d
curve or surface. In other words, conics, beziers and bsplines are turned into NURBS.
Offsets are not processed.

Example

turn a 2d arc of a circle Into a 2d NURBS
circle c 005

trim c ¢ 0 pi/3

convert cl c

an easy way to make a planar bspline surface
plane p

trimpp -11-11

convert pl p

NOTE
Offset curves and surfaces are not treated by this command.

104
Geometry commands

6.4 Curve and surface modifications

Draw provides commands to modify curves and surfaces, some of them are general,
others restricted to bezier curves or bsplines.

General modifications:

® Reversing the parametrization: reverse, ureverse, vreverse

Modifications for both bezier curves and bsplines:

® Exchanging U and V on a surface: exchuv
® Segmentation: segment, segsur
® Increasing the degree: incdeg, incudeg, incvdeg

® Moving poles: cmovep, movep, movecolp, moverowp

Modifications for bezier curves:

® Adding and removing poles: insertpole, rempole, remcolpole,
remrowpole

Modifications for bspline:

® |[nserting and removing knots: insertknot, remknot, insertuknot,
remuknot, insetvknot, remvknot

® Modifying periodic curves and surfaces: setperiodic,
setnotperiodic, setorigin, setuperiodic, setunotperiodic,
setuorigin, setvperiodic, setvnotperiodic, setvorigin

6.4.1 reverse, ureverse, vreverse

Syntax: reverse curvename
ureverse surfacename
vreverse surfacename

The reverse command reverses the parameterization and inverses the orientation of
a 2d or 3d curve. Note that the geometry is modified. To keep the curve or the
surface, you must copy it before modification.

105

Geometry commands

ureverse or vreverse reverse the u or v parameter of a surface. Note that the new
parameters of the curve may change according to the type of curve. For instance,
they will change sign on a line or stay 0,1 on a bezier.

Reversing a parameter on an analytical surface may create an indirect coordinate
system.

Example

reverse a trimmed 2d circle
circle c 0 05

trim c c pi/4 pi/2

reverse c

dumping c will show that it is now trimmed between
3*pi/2 and 7*pi/4 i.e. 2*pi-pi/2 and 2*pi-pi/4

6.4.2 exchuv

Syntax: exchuv surfacename

For a bezier or bspline surface this command exchanges the u and v parameters.

Example

exchanging u and v on a spline (made from a cylinder)
cylinder c 5

trimv c ¢ 0 10

convert cl c

exchuv cl

6.4.3 segment, segsur

Syntax: segment curve Ufirst Ulast
segsur surface UFirst Ulast VFfirst Vlast

segment and segsur segment a bezier curve and a bspline curve or surface
respectively. These commands modify the curve to restrict it between the new
parameters: the starting point of the modified curve, Ufirst, and the end point, Ulast.
Ufirst is less than Ulast.

This command must not be confused with trim which creates new geometry.

Example

segment a bezier curve in half
beziercurve c 3 000 1000 10 10 0
segment c ufirst ulast

106

Geometry commands

6.4.4 iincudeg, incvdeg

Syntax: incudeg surfacename newdegree
incvdeg surfacename newdegree

incudeg and incvdeg increase the degree in the U or V parameter of a bezier or
bspline surface.

Example

make a planar bspline and increase the degree to 2 3
plane p

trimpp-11-11

convert pl p

incudeg pl 2

incvdeg pl 3

NOTE
The geometry is modified.

6.4.5 cmovep, movep, movecolp, moverowp

Syntax: cmovep curve index dx dy [dz]
movep surface uindex vindex dx dy dz
movecolp surface uindex dx dy dz
moverowp surface vindex dx dy dz

move methods translate poles of a bezier curve, a bspline curve or a bspline
surface. cmovep and movep translate one pole with a given index.

movecolp and moverowp translate a whole column (expressed by the uindex) or
row (expressed by the vindex) of poles.

Example

start with a plane

transform to bspline, raise degree and add relief
plane p

trim p p -10 10 -10 10

convert pl p
incud pl 2
incvd pl 2
movecolp p1 2 0 0 5
moverowp pl 2 0 0 5
movep pl 2 2 00 5

107
Geometry commands

6.4.6 insertpole, rempole, remcolpole, remrowpole

Syntax: insertpole curvename index x y [z] [weight]
rempole curvename index
remcolpole surfacename index
remrowpole surfacename index

insertpole inserts a new pole into a 2d or 3d bezier curve. You may add a weight for
the pole. The default value for the weight is 1. The pole is added at the position after
that of the index pole. Use an index O to insert the new pole before the first one
already existing in your drawing.

rempole removes a pole from a 2d or 3d bezier curve. Leave at least two poles in
the curves.

remcolpole and remrowpole remove a column or a row of poles from a bezier
surface. A column is in the v direction and a row in the u direction The resulting
degree must be at least 1; i.e there will be two rows and two columns left.

Example

start with a segment, insert a pole at end
then remove the central pole

beziercurve c 2 000 100 0

insertpole ¢ 2 10 10 O

rempole c 2

6.4.7 insertknot, insertuknot, insertvknot

Syntax: insertknot name knot [mult = 1] [knot mult ...]
insertuknot surfacename knot mult
insertvknot surfacename knot mult

insertknot inserts knots in the knot sequence of a bspline curve. You must give a
knot value and a target multiplicity. The default multiplicity is 1. If there is already a
knot with the given value and a multiplicity lower than the target one, its multiplicity
will be raised. insertuknot and insertvknot insert knots in a surface.

Example

create a cylindrical surface and insert a knot
cylinder c 10

trim c c 0 pi/2 0 10

convert cl c

insertuknot cl pi/Z4 1

108
Geometry commands

6.4.8 remknot, remuknot, remvknot

Syntax: remknot index [mult] [tol]
remuknot index [mult] [tol]
remvknot index [mult] [tol]

remknot removes a knot from the knot sequence of a curve or a surface. Give the
index of the knot and optionally, the target multiplicity. If the target multiplicity is not
0, the multiplicity of the knot will be lowered. As the curve may be modified, you are
allowed to set a tolerance to control the process. If the tolerance is low, the knot will
only be removed if the curve will not be modified.

By default, if no tolerance is given, the knot will always be removed.

Example

bspline circle, remove a knot
circle c 0 05

convert cl c

incd cl 5

remknot cl1 2

NOTE
Curves or Surfaces may be modified.

6.4.9 setperiodic, setnotperiodic, setuperiodic,
setunotperiodic, setvperiodic, setvnotperiodic

Syntax: setperiodic curve
setnotperiodic curve
setuperiodic surface
setunotperiodic surface
setvperiodic surface
setvnotperiodic surface

setperiodic turns a bspline curve into a periodic bspline curve; the knot vector stays
the same and excess poles are truncated. The curve may be modified if it has not
been closed. setnotperiodic removes the periodicity of a periodic curve. The pole
table mau be modified. Note that knots are added at the beginning and the end of
the knot vector and the multiplicities are knots set to degree+1 at the start and the
end.

setuperiodic and setvperiodic make the u or the v parameter of bspline surfaces
periodic; setunotperiodic, and setvnotperiodic remove periodicity from the u or
the v parameter of bspline surfaces.

Example

a circle deperiodicized
circle c 005

convert cl c
setnotperiodic cl

109

Geometry commands

6.4.10 setorigin, setuorigin, setvorigin

Syntax: setorigin curvename index
setuorigin surfacename index
setuorigin surfacename index

These commands change the origin of the parameters on periodic curves or
surfaces. The new origin must be an existing knot. To set an origin other than an
existing knot, you must first insert one with the insertknot command.

Example

a torus with new U and V origins
torus t 20 5

convert tl1 t

setuorigin tl1 2

setvorigin tl 2

6.5 Transformations

Draw provides commands to apply linear transformations to geometric objects: they
include translation, rotation, mirroring and scaling.

6.5.1 translate, 2dtranslate

Syntax: translate name [names ...] dx dy dz
2dtranslate name [names ...] dx dy

The Translate command translates 3d points, curves and surfaces along a vector
dx,dy,dz. You can translate more than one object with the same command.

For 2d points or curves, use the 2dtranslate command.

Example

3d tranlation

point p 10 20 30
circle ¢ 10 20 30 5
torus t 10 20 30 5 2
translate p ¢ t 0 0 15

NOTE
Objects are modified by this command.

6.5.2 rotate, 2drotate

Syntax: rotate name [name ...] x y z dx dy dz angle

2drotate name [name ...] x y angle
The rotate command rotates a 3d point curve or surface. You must give an axis of
rotation with a point x,y,z, a vector dx,dy,dz, and an angle in degrees.

110
Geometry commands

For a 2d rotation, you need only give the center point and the angle. In 2d or 3d, the
angle can be negative.

Example

make a helix of circles. create a scripte file with
this code and execute it using source.

circle cO 10 0 0 3

for {set i 1} {$i <= 10} {incr i} {

copy c[expr $i-1] c$i

translate c$i 0 0 3

rotate c$i 0 0 0 0 0 1 36

}

6.5.3 pmirror, Imirror, smirror, 2dpmirror, 2dImirror

Syntax: pmirror name [names ...] Xy z
Imirror name [names ...] xy z dx dy dz
smirror name [names ...] Xy z dx dy dz
2dpmirror name [names ...] X VY
2dImirror name [names ...] x y dx dy

The mirror commands perform a mirror transformation of 2d or 3d geometry.

pmirror is the point mirror, mirroring 3d curves and surfaces about a point of
symmetry. Imirror is the line mirror commamd, mirroring 3d curves and surfaces
about an axis of symmetry. smirror is the surface mirror, mirroring 3d curves and
surfaces about a plane of symmetry. In the last case, the plane of symmetry is
perpendicular to dx,dy,dz.

In 2d, only 2dpmirror, point symmetry mirroring, and 2dIlmirror, axis symmetry
mirroring, are available.

Example

build 3 images of a torus
torus t 10 10 101 2 3 5 1
copy t tl

pmirror t1 0 0 O

copy t t2

Imirror 2 000100

copy t t3

smirror t3 000100

6.5.4 pscale, 2dpscale

Syntax: pscale name [name ...] Xy z s

2dpscale name [name ...] Xy s
The pscale and 2dpscale commands transform an object by point scaling. You
must give the center and the scaling factor. Because other scalings modify the type
of the object, they are not provided. For example, a sphere may be transformed into
an ellipsoid. Using a scaling factor of -1 is similar to using pmirror.

111
Geometry commands

Example

double the size of a sphere
sphere s 0 0 0 10
pscale s 0 0 0 2

6.6 Curve and surface analysis

Draw provides methods to compute information about curves and surfaces:

® coord to find the coordinates of a point.
® cvalue and 2dcvalue to compute points and derivatives on curves.
® svalue to compute points and derivatives on a surface.

® |ocalprop and minmaxcurandif to compute the curvature on a
curve.

® parameters to compute (u,v) values for a point on a surface.
® proj and 2dproj to project a point on a curve or a surface.

® surface_radius to compute the curvature on a surface.

6.6.1 coord

Syntax: coord P x y [Z]

The coord command will set the coordinates of the point P. x, y (and optionally z)

Example

translate a point
point p 10 5 5
translate p 5 0 0
coord p Xy z

x value i1s 15

See also: point
6.6.2 cvalue, 2dcvalue

Syntax: cvalue curve U x y z [dlx dly dlz [d2x d2y d2z]]
2dcvalue curve U x y [dix dly [d2x d2y]]

For a curve at a given parameter, and depending on the number of arguments,
cvalue computes: the coordinates in x,y,z, the first derivative in d1x,d1y,d1z and the
second derivative in d2x,d2y,d2z.

Example

on a bezier curve at parameter O

112
Geometry commands

the point is the first pole

the derivative is the vector first to second pole
multiplied by the degree

the second derivative is the difference

first to second pole, second to third pole
multipied by degree * degree-1

2dbeziercurve c 4 00112130

2dcvalue ¢ 0 x y dilx dly d2x d2y

HHHFEHHH

values of x y dlx dly d2x d2y
are 0 0 3 3 0 -6

6.6.3 svalue

Syntax: svalue surfname U v X y z [dux duy duz dvx dvy dvz [d2ux
d2uy d2uz d2vx d2vy d2vz d2uvx d2uvy d2uvz]]

svalue computes points and derivatives on a surface for a pair of parameter values.
The result depends on the number of arguments. You can compute first and second
derivatives.

Example

display points on a sphere

sphere s 10

for {dset t 0} {[dval t] <= 1} {dset t t+0.01} {
svalue s t*2*pi t*pi-pi/2 Xy z

point . Xy z

}

6.6.4 localprop, minmaxcurandinf

Syntax: localprop curvename U
minmaxcurandinf curve

The localprop command computes the curvature of a curve.
minmaxcurandinf computes and prints the parameters of the points where the
curvature is minimum and maximum on a 2d curve.

Example

show curvature at the center of a bezier curve
beziercurve c 300010202000

localprop c 0.5

==> Curvature : 0.02

See also: surface_radius

113
Geometry commands

6.6.5 parameters
Syntax: parameters surf/curve x y z U [V]
The parameters command returns the parameters on the surface of the 3d point

X,¥,Z in variables u and v . This command may only be used on analytical surfaces:
plane, cylinder, cone, sphere and torus.

Example

Compute parameters on a plane
plane p 0 0 1011 0

parameters p 55 5 u v

the values of u and v are - 0 5

6.6.6 proj, 2dproj

Syntax: proj name X y z
2dproj name xy

Use proj to project a point on a 3d curve or a surface and 2dproj for a 2d curve.

The command will compute and display all points in the projection. The lines joining
the point to the projections are created with the names ext_1, ext_2, ...

Example

project point on a torus
torus t 20 5

proj t 30 10 7

==> ext_1 ext 2 ext_3 ext 4

6.6.7 surface radius
Syntax: surface_radius surface u v [cl c2]
The surface_radius command computes the main curvatures of a surface at

parameters (u,v). If there are extra arguments, their curvatures are stored in
variables c1 and c2.

Example

computes curvatures of a cylinder
cylinder c 5

surface_radius c pi 3 cl c2
==> Min Radius of Curvature

==> Min Radius of Curvature infinite

114
Geometry commands

6.7 Intersections

The intersect command computes intersections of surfaces; the 2dintersect
command, intersections of 2d curves.

6.7.1 intersect
Syntax: intersect name surfacel surface2
The intersect command intersects two surfaces. If there is one intersection curve it

will be named "name", if there are more than one they will be named "name_1",
"name_2", ...

Example

create an ellipse
cone c 45 0

plane p 0 0 40 0 1 5
intersect e c p

6.7.2 2dintersect

Syntax: 2dintersect curvel curve2

2dintersect displays the intersection points between two 2d curves.

Example

intersect two 2d ellipses
ellipse e1 0 0 5 2

ellipse e2 00015 2
2dintersect el e2

6.8 Approximations

Draw provides command to create curves and surfaces by approximation.
2dapprox fits a curve through 2d points, appro fits a curve through 3d points,

surfapp and grilapp fits a surface through 3d points, 2dinterpolate may be used to
interpolate a curve.

6.8.1 appro, 2dapprox

Syntax: appro result nbpoint [curve]

115

Geometry commands

2dapprox result nbpoint [curve / x1 yl x2 y2]

These commands fit a curve through a set of points. First give the number of points,
then choose one of the three ways available to get the points. If you have no
arguments, click on the points. If you have a curve argument or a list of points, the
command launches computation of the points on the curve.

Example

pick points and they will be Ffitted
2dapprox c¢ 10

6.8.2 surfapp, grilapp
Syntax: surfapp name nbupoints nbvpoints xy z
grilapp name nbupoints nbvpoints xo dx yo dy z11 z12 ...
surfapp fits a surface through an array of u and v points, nbupoints*nbvpoints.

grilapp has the same function, but the x,y coordinates of the points are on a grid
starting at x0,y0 with steps dx,dy.

Example

a surface using the same data as in the beziersurf
example sect 4.4

surfapp s 3 4 \

00010052000\

0 10 2 10 10 3 20 10 2 \

0 20 10 10 20 20 20 20 10 \

0 30 010 30 020 300

6.9 Constraints

The cirtang command is used to construct 2d circles tangent to curves and lintan to
construct 2d lines tangent to curves.

6.9.1 cirtang

Syntax: cirtang cname curve/point/radius curve/point/radius
curve/point/radius

116

Geometry commands

The cirtang command will build all circles satisfying the three constraints which are
either a curve (the circle must be tangent to that curve), a point (the circle must pass
through that point), or a radius for the circle. Only one constraint can be a radius.
The solutions will be stored in variables name_1, name_2, etc.

Example

a point, a line and a radius. 2 solutions
point p 0 O

line 1100 -1 1

cirtangcp 14

==>c 1lc?2

6.9.2 lintan

Syntax: lintan name curve curve [angle]

The lintan command will build all 2d lines tangent to two curves. If a third angle
argument is given the second curve must be a line and lintan will build all lines
tangent to the first curve and forming the given angle with the line. The angle is
given in degrees. The solutions are named name_1, name_2, etc.

Example

lines tangent to 2 circles, 4 solutions
circle c1 -10 0 10

circle c2 10 0 5

lintan I cl c2

lines at 15 degrees tangent to a circle and a line, 2
solutions: 11_1 112

circle c1 -10 0 1

linel 2011

lintan 11 c1 I 15

6.10 Display

Draw provides commands to control the display of geometric objects. Some display
parameters are used for all objects, others are valid for surfaces only, some for
bezier and bspline only, and others for bspline only.

On curves and surfaces, you can control the mode of representation with the dmode
command. You can control the parameters for the mode with the defle command
and the discr command, which control deflection and discretization respectively.

On surfaces, you can control the number of isoparametric curves displayed on the
surface with the nbiso commands.

117
Geometry commands

On bezier and bspline curve and surface you can toggle the display of the control
points with the clpoles and shpoles commands.

On bspline curves and surfaces you can toggle the display of the knots with the
shknots and clknots commands.

6.10.1 dmod, discr, defle

Syntax: dmode name [name ...71 u/d
discr name [name ...] nbintervals
defle name [name ...] deflection

dmode allows you to choose the display mode for a curve or a surface.

In mode "u", or “uniform deflection”, the points are computed to keep the polygon at
a distance lower than the deflection of the geometry. The deflection is set with the
defle command. This mode involves intensive use of computational power.

In "d", or discretization mode, a fixed number of points is computed. This number is
set with the discr command. This is the default mode. On a bspline, the fixed
number of points is computed for each span of the curve. (A span is the interval
between two knots).

If the curve or the isolines seem to present too many angles, you can either increase
the discretization or lower the deflection, depending on the mode. This will increase
the number of points.

Example

increment the number of points on a big circle
circle c 0 0 50 50
discr 100

change the mode
dmode c u

6.10.2 nbiso

Syntax: nbiso name [names...] nuiso nviso

nbiso changes the number of isoparametric curves displayed on a surface in the U
and V directions. On a bspline surface, isoparametric curves are displayed by
default at knot values. Use nbiso to turn this feature off.

Example

display 35 meridians and 15 parallels on a spere
sphere s 20
nbiso s 35 15

118

Geometry commands

6.10.3 clpoles, shpoles

Syntax: clpoles name
shpoles name

On bezier and bspline curves and surfaces, the control polygon is displayed by
default: clpoles erases it and shpoles restores it.

Example

make a bezier curve and erase the poles
beziercurve ¢ 3 00 0 10 0 0 10 10 O
clpoles c

6.10.4 clknots, shknots

Syntax: clknots name
shknots name

By default, knots on a bspline curve or surface are displayed with markers at the

points with parametric value equal to the knots. clknots removes them and shknots
restores them.

Example

hide the knots on a bspline curve
bsplinecurve bc 2 3 03 112 3\
100071707130810071
clknots bc

119

Topology commands

7. Topology commands

Draw provides a set of commands to test Open CASCADE Topology libraries. The
Draw commands are found in the DRAWEXE executable or in any executable
including the BRepTest commands.

Topology defines the relationship between simple geometric entities, which can thus
be linked together to represent complex shapes. The type of variable used by
Topology in Draw is the shape variable.

The different topological shapes3 include:

COMPOUND: A group of any type of topological object.

COMPSOLID: A set of solids connected by their faces. This expands the
notions of WIRE and SHELL to solids.

SOLID: A part of space limited by shells. It is three dimensional.

SHELL: A set of faces connected by their edges. A shell can be open or
closed.

FACE: In 2d, a plane; in 3d, part of a surface. Its geometry is constrained
(trimmed) by contours. It is two dimensional.

WIRE: A set of edges connected by their vertices. It can be open or
closed depending on whether the edges are linked or not.

EDGE: A topological element corresponding to a restrained curve. An
edge is generally limited by vertices. It has one dimension.

VERTEX: A topological element corresponding to a point. It has a zero
dimension.

Shapes are usually shared. copy will create a new shape which shares its
representation with the original. Nonetheless, two shapes sharing the same topology
can be moved independently (see the section on transformation).

% See the Topology documentation for more information.

120

Topology commands

The following topics are covered in the eight sections of this chapter:

Basic shape commands to handle the structure of shapes and control the
display.

Curve and surface topology, or methods to create topology from
geometry and vice versa.

Primitive construction commands: box, cylinder, wedge etc.
Sweeping of shapes.

Transformations of shapes: translation, copy, etc.
Topological operations, or booleans.

Drafting and blending.

Analysis of shapes.

7.1 Basic topology

The set of basic commands allows simple operations on shapes, or step-by-step
construction of objects. These commands are useful for analysis of shape structure
and include:

isos and discretisation to control display of shape faces by
isoparametric curves .

orientation, complement and invert to modify topological attributes
such as orientation.

explode, exwire and nbshapes to analyze the structure of a shape.

emptycopy, add, compound to create shapes by stepwise construction.

In Draw, shapes are displayed using isoparametric curves. There is color coding for

the edges:

a red edge is an isolated edge, which belongs to no faces.
a green edge is a free boundary edge, which belongs to one face,

a yellow edge is a shared edge, which belongs to at least two faces.

7.1.1 isos, discretisation

Syntax:

isos [name ...][nbisos]
discretisation nbpoints

121
Topology commands

isos determines or changes the number of isoparametric curves on shapes.

The same number is used for the u and v directions. With no arguments, isos prints
the current default value. To determine, the number of isos for a shape, give it name
as the first argument.

discretisation changes the default number of points used to display the curves. The
default value is 30.

Example

Display only the edges (the wireframe)
isos O

NOTE
Don’t confuse “isos” and “discretisation” with the geometric
commands “nbisos” and “discr”.

7.1.2 orientation, complement, invert, normals, range

Syntax: orientation name [name ...] F/R/E/I
complement name [name ...]
invert name
normals s (length = 10), disp normals
range name value value

orientation assigns the orientation of shapes - simple and complex - to one of the
following four values: FORWARD, REVERSED, INTERNAL, EXTERNAL.

complement changes the current orientation of shapes to its complement,
FORWARD <-> REVERSED, INTERNAL <-> EXTERNAL.

invert creates a new shape which is a copy of the original with the orientation all
subshapes reversed. For example, it may be useful to reverse the normals of a
solid.

normals returns the assignment of colors to orientation values.

range defines the length of a selected edge by defining the values of a starting point
and an end point.

Example

invert normals of a box
box b 10 20 30

normals b 5

invert b

normals b 5

to assign a value to an edge

box bl 10 20 30

to define the box as edges

explode bl e
b1b2b3b4b5b6b7b8b9bil10b1l b 12

122
Topology commands

to define as an edge

makedge e 1

to define the length of the edge as starting from O
and finishing at 1

range e 0 1

7.1.3 explode, exwire, nbshapes

Syntax: explode name [C/So/Sh/F/W/E/V]
exwire name
nbshapes name

explode extracts subshapes from an entity. The subshapes will be named name_1,
name_2, ... Note that they are not copied but shared with the original.

With name only, explode will extract the first sublevel of shapes: the shells of a solid
or the edges of a wire, for example. With one argument, explode will extract all
subshapes of that type: C for compounds, So for solids, Sh for shells, F for faces, W
for wires, E for edges, V for vertices.

exwire is a special case of explode for wires, which extracts the edges in an
ordered way,if possible. Each edge, for example, is connected to the following one
by a vertex.

nbshapes counts the number of shapes of each type in an entity.

Example

on a box
box b 10 20 30

whatis returns the type and various information
whatis b
=> b is a shape SOLID FORWARD Free Modified

make one shell

explode b

whatis b_1

=> b 1 is a shape SHELL FORWARD Modified Orientable
Closed

extract the edges b 1, ... , b 12

explode b e

==>b 1 ... b 12

count subshapes
nbshapes b

==>

Number of shapes in b
VERTEX : 8

EDGE : 12

WIRE : 6

FACE : 6

SHELL : 1

SOLID : 1

COMPSOLID :- O
COMPOUND : O

123
Topology commands

SHAPE : 34

7.1.4 emptycopy, add, compound

Syntax: emptycopy [newname] name
add name toname
compound [name ...] compoundname

emptycopy returns an empty shape with the same orientation, location, and
geometry as the target shape, but with no sub-shapes. If the newname argument is
not given, the new shape is stored with the same name. This command is used to
modify a frozen shape. A frozen shape is a shape used by another one. To modify it,
you must emptycopy it. Its subshape may be reinserted with the add command.

add inserts shape C into shape S. Verify that C and S reference compatible types of
objects:

Any Shape can be added to a Compound.

Only a Solid can be added to a CompSolid.

Only a Shell, an Edge or a Vertex can be added into a Solid.
Only a Face can be added to a Shell.

Only a Wire and Vertex can be added in a Solid.

Only an Edge can be added to a Wire.

Only a Vertex can be added to an Edge.

Nothing can be added to a Vertex.
Care should be taken using emptycopy and add.

On the other hand, compound is a safe way to achieve a similar result. It creates a
compound from shapes. If no shapes are given, the compound is empty.

Example

a compoun
box b1 0 0
box b2 3 0
box b3 6 0
compound b

7.1.5 checkshape

Syntax: checkshape [-top] shape [result] [-short]

Where:

-top — check only topological validity of a shape.

124
Topology commands

shape — the only required parameter which represents the name of the shape
to check.

result — optional parameter which is the prefix of the output shape names.

-short — short description of check.

checkshape examines the selected object for topological and geometric coherence.
The object should be a three dimensional shape.

Example

checkshape returns a comment valid or invalid
box b1 000111

checkshape bl

returns the comment

this shape seems to be valid

NOTE
This test is performed using the tolerance set in the algorithm.

7.2 Curve and surface topology

This group of commands is used to create topology from shapes and to extract
shapes from geometry.

® To create vertices, use the vertex command.

® To create edges use, the edge, mkedge commands.

® To create wires, use the wire, polyline, polyvertex commands.
® To create faces, use the mkplane, mkface commands.

® To extract the geometry from edges or faces, use the mkcurve and
mkface commands.

® To extract the 2d curves from edges or faces, use the pcurve command.

7.2.1 vertex
Syntax: vertex name [x y z / p edge]

Creates a vertex at either a 3d location x,y,z or the point at parameter p on an edge.

125
Topology commands

Example

vertex vl 10 20 30

7.2.2 edge, mkedge, uisoedge, visoedge

Syntax: edge name vertex1 vertex2
mkedge edge curve [surface] [pfirst plast] [vfirst [pfirst] viast [plast]]
uisoedge edge face u vl v2
visoedge edge face v ul u2

edge creates a straight line edge between two vertices.

mkedge generates edges from curves*. Two parameters can be given for the
vertices: the first and last parameters of the curve are given by default. Vertices can
also be given with their parameters, this option allows you to block the creation of
new vertices. If the parameters of the vertices are not given, they are computed by
projection on the curve. Instead of a 3d curve, a 2d curve and a surface can be
given.

Example

straight line edge
vertex vi1 10 0 O
vertex v2 10 10 O
edge el vl v2

make a circular edge
circlec 0005
mkedge e2 ¢ 0 pi/2

A similar result may be achieved by trimming the curve
The trimming is removed by mkedge

trim c c 0 pi/2

mkedge e2 c

visoedge and uisoedge are commands that generate a uiso parameter edge
or a viso parameter edge.

4 Compare the BRepAPI_MakeEdge class in Topology

126

Topology commands

Example

to create an edge between vl and v2 at point u
to create the example plane

plane p

trimpp0101

convert p p
incudeg p 3
incvdeg p 3
movep p 22001

movep p 3 3 0 0 0.5

mkface p p

to create the edge iIn the plane at the u axis point
0.5, and between the v axis points v=0.2 and v =0.8
uisoedge e p 0.5 0.20 0.8

7.2.3 wire, polyline, polyvertex

Syntax: wire wirename el/wl [e2/w2 ...]
polyline name x1 yl z1 x2 y2 z2 ...
polyvertex name vl v2 _._.

wire creates a wire from edges or wires. The order of the elements should ensure
that the wire is connected, and vertex locations will be compared to detect
connection. If the vertices are different, new edges will be created to ensure
topological connectivity. The original edge may be copied in the new one.

polyline creates a polygonal wire from point coordinates. To make a closed wire,
you should give the first point again at the end of the argument list.

polyvertex creates a polygonal wire from vertices.

Example

create two polygonal wires

glue them and define as a single wire
polyline w1 0 0 0 10 0 0 10 10 O
polyline w2 10 10 0 0 10 0 0 0 O

wire w wl w2

127
Topology commands

7.2.4 profile
Syntax profile name [code values] [code values] ...
Code Values Action
0] XYZ Sets the origin of the plane
P DX DY DZUXUY UZ Sets the normal and X of the plane
F XY Sets the first point
X DX Translates a point along X
Y DY Translates a point along Y
L DL Translates a point along direction
XX X Sets point X coordinate
YY Y Sets point Y coordinate
T DX DY Translates a point
TT XY Sets a point
R Angle Rotates direction
RR Angle Sets direction
D DX DY Sets direction
IX X Intersects with vertical
Y Y Intersects with horizontal
C Radius Angle Arc of circle tangent to direction
Suffix
No suffix Makes a closed face
w Make a closed wire
Www Make an open wire

profile builds a profile in a plane using a moving point and direction. By default, the
profile is closed and a face is created. The original point is 0 0, and direction is 1 0
situated in the XY plane.

Codes and values are used to define the next point or change the direction. When
the profile changes from a straight line to a curve, a tangent is created. All angles
are in degrees and can be negative.

The point [code values] can be repeated any number of times and in any order to
create the profile contour.

The profile shape definition is the suffix; no suffix produces a face, w is a closed
wire, Ww is an open wire.

Code letters are not case-sensitive.

128
Topology commands

Example

to create a trianglular plane using a vertex at the
origin, in the xy plane
profile pO0O00X1YO0Ox1y1

Example

to create a contour using the different code
possibilities

two vertices in the xy plane

profile p F10x 2y 1ww

to view from a point normal to the plane
top

add a circular element of 45 degrees
profile p F10x 2y 1cl45 ww

add a tangential segment with a length value 1
profile pF10x2y1cl1l451 1 ww

add a vertex with xy values of 1.5 and 1.5
profile p F10x2y1c1451 1ttt 1.51.5ww

add a vertex with the
profile p F10x2y1

value 0.2, y value is constant
1451 1 tt 1.5 1.5 xx 0.2 ww

0O X

add a vertex with the y value 2 x value is constant
profile pF10x2y1cl1l451 1ttt 1.51.5yy 2 ww

add a circular element with a radius value of 1 and a
circular value of 290 degrees

profile p F10x2y1c1451 1ttt 1.51.5xx0.2yy 2c¢c
1 290

wire continues at a tangent to the intersection x = 0
profile p F10x2y1c145101 1ttt 1.51.5xx0.2yy 2c
1 290 ix 0 ww

continue the wire at an angle of 90 degrees until it
intersects the y axis at y= -0.3

profile p F10x2y1c1451 1ttt 1.51.5xx0.2yy 2c¢c
1290 ix O r 90 ix -0.3 ww

#close the wire
profile p F10x2y1c145101 1ttt 1.51.5xx0.2yy 2c
1290 ix 0 r 90 ix -0.3 w

to create the plane with the same contour
profile p F 1 0x2y1c145101 1 tt1.51.5xx0.2yy 2c¢c
1290 ix 0 r 90 ix -0.3

129
Topology commands

7.2.5 bsplineprof
Syntax: bsplineprof name [S face] [W WW]

for an edge : <digitizes> ... <mouse button 2>
to end profile : <mouse button 3>

Build a profile in the XY plane from digitizes
By default the profile is closed and a face is built.

W Make a closed wire
ww Make an open wires

bsplineprof creates a 2d profile from bspline curves using the mouse as the input.
MB1 creates the points, MB2 finishes the current curve and starts the next curve,
MB3 closes the profile.

The profile shape definition is the suffix; no suffix produces a face, w is a closed
wire, Ww is an open wire.

Example

#to view the xy plane

top

#to create a 2d curve with the mouse
bsplineprof res

click mbl to start the curve

click mbl to create the second vertex
click mbl to create a curve

==>

#click mb2 to fFinish the curve and start a new curve
==>

click mbl to create the second curve
click mb3 to create the face

7.2.6 mkoffset

Syntax: mkoffset result face/compound of wires nboffset stepoffset

mkoffset creates a parallel wire in the same plane using a face or an existing
continuous set of wires as a reference. The number of occurences is not limited.

The offset distance defines the spacing and the positionning of the occurences.

Example

#Create a box and select a face

box b 12 3

explode b f

#Create three exterior parallel contours with an offset
value of 2

mkoffset r b 1 3 2

Create one interior parallel contour with an offset
value of

130
Topology commands

0.4
mkoffset r b 1 1 -0.4

NOTE
The mkoffset command must be used with prudence, angular
contours produce offset contours with fillets. Interior parallel
contours can produce more than one wire, normally these are
refused. In the following example, any increase in the offset value is
refused

Example

to create the example contour

profile pFOO X2y 4ttl11ttO04w

to create an incoherent interior offset
mkoffset r p 1 -0.50

==>p is not a FACE but a WIRE
BRepFill_TrimEdgeTool: incoherent intersection
to create two incoherent wires

mkoffset r p 1 -0.50

7.2.7 mkplane, mkface

Syntax: mkplane name wire
mkface name surface [ufirst ulast vfirst vlast]

mkplane generates a face from a planar wire. The planar surface will be
constructed with an orientation which keeps the face inside the wire.

mkface generates a face from a surface. Parameter values can be given to trim a
rectangular area. The default boundaries are those of the surface.

Example

make a polygonal face

polyline £ 0 0 0 20 0 0 20 10 0 10 10 0 10 20 0 0 20
00O00O

mkplane ¥ f

make a cylindrical face
cylinder g 10

trim g g -pi/3 pi/2 0 15
mkface g g

7.2.8 mkcurve, mksurface

Syntax: mkcurve curve edge
mksurface name face

131
Topology commands

mkcurve creates a 3d curve from an edge. The curve will be trimmed to the edge
boundaries.

mksurface creates a surface from a face. The surface will not be trimmed.

Example

make a line
vertex vi1 0 0 O
vertex v2 10 0 O
edge e vl v2
mkcurve 1 e

7.2.9 pcurve
Syntax: pcurve [name edgename] facename

pcurve extracts the 2d curve of an edge on a face. If only the face is specified, the
command extracts all the curves and colors them according to their orientation. This
is useful in checking to see if the edges in a face are correctly oriented, i.e. they turn
counterclockwise. To make curves visible, use a fitted 2d view.

Example

view the pcurves of a face
plane p

trimpp -11-11

mkface p p

av2d; # a 2d view

pcurve p

2dfit

7.2.10 chfi2d

Syntax: chfi2d result face [edgel edge2 (F radius/CDD di
d2/CDA d ang) ...

chfi2d creates chamfers and fillets on 2D objects. Select t:wo adjacent edges and:

® aradius value
® two respective distance values

® g distance value and an angle

The radius value produces a fillet between the two faces.

The distance is the length value from the edge between the two selected faces in a
normal direction.

132

Topology commands

Example

to create a 2d fillet

top

profile p x 2y 2 x -2

chfi2d cfr
==>Pick an
#select an
==>Pick an
#select an

p .- . FO.3
object

edge

object

edge

Example

to create a 2d chamfer using two distances
profile p x 2y 2 x -2

chfi2d cfr
==>Pick an
#select an
==>Pick an
#select an

p - - CDD 0.3 0.6
object

edge

object

edge

Example

to create a 2d chamfer using a defined distance and

angle
top

profile p x 2y 2 x -2

chfi2d cfr
==>Pick an
#select an
==>Pick an
#select an

p - - CDA 0.3 75
object

edge

object

edge

7.2.11 nproject

Syntax:

nproject pj el e2 e3 ... surf -g -d [dmax] [Tol

[continuity [maxdeg [maxseg]l]l

nproject creates a shape projection which is normal to the target surface.

Example

create a curved surface
line 1 000100

triml1 1 02

convert 1 1

incdeg I 3
cmovep 1 1
cmovep 1 3
copy 1 11

translate 1
mkedge el |
mkedge e2 1
wire w el e

0 0.50
00.50
2

| -0.50

133
Topology commands

prism pw 0 0 3
donl p
#display in four views
mu4
fit
create the example shape
circle c1.8-0.510101000.4
mkedge e c
donly p e
create the normal projection of the shape(circle)
nproject r e p

7.3 Primitives

Primitive commands make it possible to create simple shapes. They include:

® box and wedge commands.
® pcylinder, pcone, psphere, ptorus commands.

® halfspace command

7.3.1 box, wedge

Syntax: box name [x y z] dx dy dz
wedge name dx dy dz Itx / xmin zmin Xmax Xmax

box creates a box parallel to the axes with dimensions dx,dy,dz. x,y,z is the corner
of the box. It is the default origin.

wedge creates a box with five faces called a wedge. One face is in the OXZ plane,
and has dimensions dx,dz while the other face is in the plane y = dy. This face either
has dimensions Itx, dz or is bounded by xmin,zmin,xmax,zmax.

The other faces are defined between these faces. The face in the y=yd plane may
be degenerated into a line if Itx = 0, or a point if xmin = xmax and ymin = ymax. In
these cases, the line and the point both have 5 faces each. To position the wedge
use the ttranslate and trotate commands.

Example

a box at the origin
box bl 10 20 30

another box
box b2 30 30 40 10 20 30

a wedge
wedge wl 10 20 30 5

134
Topology commands

a wedge with a sharp edge (5 faces)
wedge w2 10 20 30 O

a pyramid
wedge w3 20 20 20 10 10 10 10

7.3.2 pcylinder, pcone, psphere, ptorus

Syntax: pcylinder name [plane] radius height [angle]
pcone name [plane] radiusl radius2 height [angle]
pcone name [plane] radiusl radius2 height [angle]
psphere name [plane] radiusl [anglel angle2] [angle]
ptorus name [plane] radiusl radius2 [anglel angle2] [angle]

All these commands create solid blocks in the default coordinate system, using the Z
axis as the axis of revolution and the X axis as the origin of the angles. To use
another system, translate and rotate the resulting solid or use a plane as first
argument to specify a coordinate system. All primitives have an optional last
argument which is an angle expreesed in degrees and located on the Z axis, starting
from the X axis. The default angle is 360.

pcylinder creates a cylindrical block with the given radius and height.

pcone creates a truncated cone of the given height with radius1 in the plane z = 0
and radius2 in the plane z = height. Neither radius can be negative, but one of them
can be null.

psphere creates a solid sphere centered on the origin. If two angles, anglel and
angle2, are given, the solid will be limited by two planes at latitude anglel and
angle2. The angles must be increasing and in the range -90,90.

ptorus creates a solid torus with the given radii, centered on the origin, which is a
point along the z axis. If two angles increasing in degree in the range 0 — 360 are
given, the solid will be bounded by two planar surfaces at those positions on the
circle.

Example

a can shape
pcylinder cy 5 10

a quarter of a truncated cone
pcone co 15 10 10 90

three-quarters of sphere
psphere sp 10 270

half torus
ptorus to 20 5 0 90

7.3.3 halfspace

Syntax: halfspace result face/shell x vy z

135
Topology commands

halfspace creates an infinite solid volume based on a face in a defined direction.
This volume can be used to perform the boolean operation of cutting a solid by a
face or plane.

Example
box bO00123
explode b f
==>b 1 b 2b3b4b5Db56
halfspace hr b_3 0.5 0.5 0.5

7.4 Sweeping

Sweeping creates shapes by sweeping out a shape along a defined path:

® prism sweeps along a direction.
® revol sweeps around an axis.
® pipe sweeps along a wire.

® mksweep and buildsweep are commands to create sweeps by defining
the arguments and algorithms.

® thrusections creates a sweep from wire in different planes.

7.4.1 prism
Syntax: prism result base dx dy dz [Copy | Inf | Semilnf]

prism creates a new shape by sweeping a shape in a direction. Any shape can be
swept: a vertex gives an edge; an edge gives a face; and a face gives a solid.

The shape is swept along the vector dx dy dz. The original shape will be shared in
the result unless Copy is specified. If Inf is specified the prism is infinite in both
directions. If Semilnf is specified the prism is infinite in the dx,dy,dz direction, and
the length of the vector has no importance.

Example

sweep a planar face to make a solid

polyline f0 001000105055 051500150000
mkplane f T

prism p £ 0 0 10

136
Topology commands

7.4.2 revol

Syntax: revol result base x y z dx dy dz angle [Copy]

revol creates a new shape by sweeping a base shape through an angle along the
axis x,y,z dx,dy,dz. As with the prism command, the shape can be of any type and is
not shared if Copy is specified.

Example

shell by wire rotation
polyline w0 00 1000105055051500150
revol sw 20000 10 90

7.4.3 pipe
Syntax: pipe name wire_spine Profile

pipe creates a new shape by sweeping a shape known as the profile along a wire
known as the spine.

Example

sweep a circle along a bezier curve to make a solid
pipe

beziercurve spine 4 0 0 0 10 0 0 10 10 0 20 10 O
mkedge spine spine

wire spine spine

circle profile 000100 2

mkedge profile profile

wire profile profile

mkplane profile profile

pipe p spine profile

7.4.4 mksweep, deletesweep, buildsweep, simulsweep

Syntax: mksweep wire
addsweep wire[vertex][-M][-C] [auxiilaryshapedeletesweep wire
setsweep options [argl [arg2 [...]]]

options are :

-FR : Tangent and Normal are defined by a Frenet trihedron
-CF : Tangent is given by Frenet,

the Normal is computed to minimize the torsion

-DX Surf : Tangent and Normal are given by Darboux trihedron,
Surf must be a shell or a face

-CN dx dy dz : BiNormal is given by dx dy dz

137
Topology commands

-FX Tx Ty TZ [Nx Ny Nz] : Tangent and Normal are fixed
-G guide 0|1(AC

simulsweep r [n] [option]

buildsweep [r] [option] [Tol]

These commands are used to create a shape from wires. One wire is designated as
the contour that defines the direction; it is called the spine. At least one other wire is
used to define the the sweep profile.

mksweep initializes the sweep creation and defines the wire to be used as the
spine.

addsweep defines the wire to be used as the profile.

deletesweep cancels the choice of profile wire, without leaving the mksweep mode.
You can re-select a profile wire.

setsweep commands the algorithms used for the construction of the sweep.

simulsweep can be used to create a preview of the shape. [n] is the number of
sections that are used to simulate the sweep.

buildsweep creates the sweep using the arguments defined by all the commands.

Example

#create a sweep based on a semi-circular wire using the
Frenet algorithm

#create a circular figure

circle c2000100 10

trim c2 c2 -pi/2 pi/2

mkedge e2 c2

donly e2

wire w e2

whatis w

mksweep w

to display all the options for a sweep

setsweep

#to create a sweep using the Frenet algorithm where the
#normal is computed to minimise the torsion

setsweep -CF

addsweep w -R

to simulate the sweep with a visual approximation
simulsweep w 3

buildsweep w —R

7.4.5 thrusections
Syntax: thrusections [-N] result issolid isruled wirel wire2 [..wire..]

thrusections creates a shape using wires that are positioned in different planes.
Each wire selected must have the same number of edges and vertices.

A bezier curve is generated between the vertices of each wire. The option [-N]
means no check is made on wires for direction.

138
Topology commands

Example
#create three wires in three planes
polyline w1 0 00500550230
polyline w2 013413443133
polyline w3 005505555235

create the shape
thrusections th issolid isruled wl w2 w3
==>thrusections th issolid isruled wl w2 w3
Tolerances obtenues -->3d : O
-—>2d : O

7.5 Topological transformation

Transformations are applications of matrices. When the transformation is
nondeforming, such as translation or rotation, the object is not copied. The topology
localcoordinate system feature is used. The copy can be enforced with the tcopy
command.

® tcopy makes a copy of the structure of a shape.
® ttranslate, trotate, tmove, reset move a shape.

® tmirror, tscale always modify the shape.

75.1 tcopy
Syntax: tcopy name toname [name toname ...]

Copies the structure of one shape, including the geometry, into another, newer
shape.

Example

create an edge from a curve and copy it

beziercurve ¢ 3 00 0 10 0 0 20 10 O

mkedge el c

ttranslate el 05 0

tcopy el e2

ttranslate e2 0 5 0

now modify the curve, only el and e2 will be modified
cmovep ¢ 2 0 0 20

139
Topology commands

7.5.2 tmove, treset

Syntax: tmove name [name ...] shape
reset name [name ...]

tmove and reset modify the location, or the local coordinate system of a shape.

tmove applies the location of a given shape to other shapes. reset restores one or
several shapes it to its or their original coordinate system(s).

Example

create two boxes

box bl 10 10 10

box b2 20 0 0 10 10 10

translate the first box
ttranslate bl 0 10 O

and apply the same location to b2
tmove b2 bl

return to original positions
reset bl b2

7.5.3 ttranslate, trotate

Syntax: ttranslate [name ...] dx dy dz
trotate [name ...] x y z dx dy dz angle

ttranslate translates a set of shapes by a given vector, and trotate rotates them by
a given angle around an axis. Both commands only modify the location of the shape.
When creating multiple shapes, the same location is used for all the shapes. (See
toto.tcl example below. Note that the code of this file can also be directly executed in
interactive mode.)

Locations are very economic in the data structure because multiple occurences of
an object share the topological description.

Example
make rotated copies of a sphere in between two cylinders
create a file source toto.tcl
toto.tcl code:
for {set i1 0} {$i < 360} {incr i 20} {
copy s s$i
trotate s$1i 0 0 0 0 O 1 $i
}

create two cylinders
pcylinder cl1 30 5

copy cl c2

ttranslate c2 0 0 20

#create a sphere
psphere s 3
ttranslate s 25 0 12.5

call the source file for multiple copies

140
Topology commands

source toto.tcl

7.5.4 tmirror, tscale

Syntax: tmirror name X y z dx dy dz
tscale name x y z scale

tmirror makes a mirror copy of a shape about a plane x,y,z dx,dy,dz. Tscale applies
a central homotopic mapping to a shape.

Example

mirror a portion of cylinder about the YZ plane
pcylinder cl1 10 10 270

copy cl c2

tmirror c2 15001 00

and scale it

tscale ¢c1 0 0 0 0.5

7.6 Old Topological operations

« fuse, cut, common are boolean operations.
* section, psection compute sections.
* sewing joins two or more shapes.

7.6.1 fuse, cut, common

Syntax: fuse name shapel shape2
cut name shapel shape?2
common name shapel shape2

fuse creates a new shape by a boolean operation on two existing shapes. The new
shape contains both originals intact.

cut creates a new shape which contains all of the second shape but only the first
shape without the intersection of the two shapes.

common creates a new shape which contains only what is in common between the
two original shapes in their intersection.

141
Topology commands

Example

all four boolean operations on a box and a cylinder

box b 0 -10 5 20 20 10
pcylinder ¢ 5 20

fuse s1 b c
ttranslate s1 40 0 O

cut s2 b c
ttranslate s2 -40 0 O

cut s3 c b
ttranslate s3 0 40 O

common s4 b c
ttranslate s4 0 -40 O

7.6.2 section, psection

Syntax: section result shapel shape2
psection name shape plane

section creates a compound object consisting of the edges for the intersection
curves on the faces of two shapes.

psection creates a planar section consisting of the edges for the intersection curves
on the faces of a shape and a plane.

Example

section line between a cylinder and a box
pcylinder ¢ 10 20

box b 0 0 5 15 15 15

trotate b 0 00111 20

section s b c

planar section of a cone
pcone ¢ 10 30 30

plane p 0 0 151 1 2
psection s c p

7.6.3 sewing
Syntax: sewing result [tolerance] shapel shape2 ...

Sewing joins shapes by connecting their adjacent or near adjacent edges.
Adjacency can be redefined by modifying the tolerance value.

142

Topology commands

Example

create two adjacent boxes

box bO0OO0123

box b2 020123

sewing sr b b2

whatis sr

sr is a shape COMPOUND FORWARD Free Modified

143
Topology commands

7.7 New Topological operations

The new algorithm of Boolean operations avoids a large number of weak points and
limitations presented in the old boolean operation algorithm.

7.7.1 bop, bopfuse, bopcut, boptuc, bopcommon,
bop defines shapel and shape2 subject to ulterior Boolean operations

bopfuse creates a new shape by a boolean operation on two existing shapes. The
new shape contains both originals intact.

bopcut creates a new shape which contains all ??? of the second shape but only
the first shape without the intersection of the two shapes.

boptuc is a reverced bopcut.

bopcommon creates a new shape which contains only whatever is in common
between the two original shapes in their intersection.

Syntax: bop shapel shape2
bopcommon result
bopfuse result
bopcut result
boptuc result

These commands have short variants:

bcommon result shapel shape?2
bfuse result shapel shape2
bcut result shapel shape2

bop fills data structure (DS) of boolean operation for shapel and shape2.
bopcommon, bopfuse, bopcut, boptuc commands used after bop command.
After one bop command it is possible to call several commands from the list above.
For example: bop S1 S2; bopfuse R.

Example

all four boolean operations on a box and a cylinder

box b 0 -10 5 20 20 10
pcylinder ¢ 5 20

fills data structure
bop b c

bopfuse sl
ttranslate s1 40 0 O

144
Topology commands

bopcut s2
ttranslate s2 -40 0 O

boptuc s3
ttranslate s3 0 40 0O

bopcommon s4
ttranslate s4 0 -40 O
Short variants of commands:

bfuse s11 b c
ttranslate s11 40 O 100

bcut s12 b c
ttranslate s12 -40 0 100

bcommon s14 b c
ttranslate s14 0 -40 100

7.7.2 bopsection

bopsection creates a compound object consisting of the edges for the intersection
curves on the faces of two shapes.

Syntax: bop shapel shape?2
bopsection result

Short variant:

bsection result shapel shape2 [-2d/-2d1/-2s2] [-a]

bop fills data structure (DS) of boolean operation for shapel and shape2.
bopsection command used after bop command

-2d - PCurves are computed on both parts.
-2d1 - PCurves are computed on first part.
-2d2 - PCurves are computed on second part.
-a - geometries built are approximated.

Example

section line between a cylinder and a box
pcylinder ¢ 10 20

box b 0 0 5 15 15 15

trotate b 0 00111 20

bop b ¢

bopsection s

Short variant:

bsection s2 b c

145

Topology commands

7.7.3 bopcheck, bopargshape

Syntax: bopcheck shape
bopargcheck shape1 [[shape2] [-F/O/C/T/S/U] [/R|F|T|V|E|I|P]] [#BF]

bopcheck checks a shape for self-interference.

bopargcheck checks the validity of argument(s) for boolean operations.

-<Boolean Operation>

F (fuse)

O (common)

C (cut)

T (cut21)

S (section)

U (unknown)

By default a section is made.

/<Test Options>

R (disable small edges (shrank range) test)
F (disable faces verification test)

T (disable tangent faces searching test)

V (disable test possibility to merge vertices)
E (disable test possibility to merge edges)

| (disable self-interference test)

P (disable shape type test)
By default all options are enabled.

#<Additional Test Options>

B (stop test on first faulty found); default OFF
F (full output for faulty shapes);

By default the output is made in a short format.

NOTE: <Boolean Operation> and <Test Options> are used only for a couple

of argument shapes, except for | and P options that are always used to test a
couple of shapes as well as a single shape.

Example

checks a shape on self-interference
box b1 000111
bopcheck bl

checks the validity of argument for boolean cut operations
box b2 0 0 0 10 10 10
bopargcheck bl b2 -C

146
Topology commands

7.8 Drafting and blending

Drafting is creation of a new shape by tilting faces through an angle.

Blending is the creation of a new shape by rounding edges to create a fillet.

® Use the depouille command for drafting.

® Use the chamf command to add a chamfer to an edge
® Use the blend command for simple blending.

® Use fubl for a fusion + blending operation.

® Use buildevol, mkevol, updatevol to realize varying radius
blending.

7.8.1 depouille
Syntax: dep result shape dirx diry dirz face angle x y x dx dy dz [face angle...]
depouille creates a new shape by drafting one or more faces of a shape.
Identify the shape(s) to be drafted, the drafting direction, and the face(s) with an

angle and an axis of rotation for each face. You can use dot syntax to identify the
faces.

Example

draft a face of a box

box b 10 10 10

explode b f

==>b 1b 2b 3b 4b 5b 6

depab001b 2100100105

7.8.2 chamf

Syntax: chamf newname shape edge face S dist
chamf newname shape edge face distl dist2
chamf newname shape edge face A dist angle

chamf creates a chamfer along the edge between faces using:

® a equal distances from the edge
® the edge, a face and distance, a second distance

® the edge, a reference face and an angle

147
Topology commands

Use the dot syntax to select the faces and edges.

Example

to create a chamfer based on equal distances from the
edge (45 degree angle)

create a box

box b 123

chamfch b . . SO0.5

==>Pick an object

select an edge

==>Pick an object

select an adjacent face

Example

to create a chamfer based on different distances from
the selected edge

box b 12 3

chamfFch b . . 0.3 0.4

==>Pick an object

select an edge

==>Pick an object

select an adjacent face

Example

to create a chamfer based on a distance from the edge
and an angle

box b 123

chamfch b . . A0.4 30

==>Pick an object

select an edge

==>Pick an object

select an adjacent face

7.8.3 Dblend
Syntax: blend result object radl edl rad2 ed2 ... [R/Q/P]
blend creates a new shape by filleting the edges of an existing shape. The edge

must be inside the shape. You may use the dot syntax. Note that the blend is
propagated to the edges of tangential planar, cylindrical or conical faces.

Example

blend a box, click on an edge

box b 20 20 20

blend b b 2 .

==>tolerance ang : 0.01
==>tolerance 3d : 0.0001
==>tolerance 2d : l1le-05

==>Fleche : 0.001

==>tolblend 0.01 0.0001 1e-05 0.001
==>Pick an object

148
Topology commands

click on the edge you want ot fillet

==>COMPUTE: temps total 0.1s dont :
==>- Init + ExtentAnalyse Os

==>- PerformSetOfSurf 0.02s

==>- PerformFilletOnVertex 0.02s
==>- FilDS Os

==>- Reconstruction 0.06s

==>- SetRegul Os

7.8.4 fubl

Syntax: fubl name shapel shape2 radius

fubl creates a boolean fusion of two shapes and then blends (fillets) the intersection
edges using the given radius.

Example

fuse-blend two boxes
box bl 20 20 5

copy bl b2

ttranslate b2 -10 10 3
fubl a bl b2 1

See also: fuse, blend

7.8.5 mkevol, updatevol, buildevol

Syntax: mkevol result object (then use updatevol) [R/Q/P]
updatevol edge ul radiusl [u2 radius2 ...]
buildevol

These three commands work together to create fillets with evolving radii.

mkevol allows you to specify the shape and the name of the result. It returns the
tolerances of the fillet.

updatevol allows you to describe the filleted edges you want to create. For each
edge, you give a set of coordinates: parameter and radius and the command
prompts you to pick the edge of the shape which you want to modify. The
parameters will be calculated along the edges and the radius function applied to the
whole edge.

buildevol produces the result described previously in mkevol and updatevol.

Example

makes an evolved radius on a box
box b 10 10 10

mkevol b b

==>tolerance ang : 0.01
==>tolerance 3d : 0.0001

149
Topology commands

==>tolerance 2d : l1le-05
==>fleche : 0.001
==>tolblend 0.01 0.0001 l1le-05 0.001

click an edge
updatevol . 011322
==>Pick an object

buildevol

==>Dump of SweepApproximation
==>Error 3d = 1.28548881203818e-14
==>Error 2d = 1.3468326936926e-14 ,
==>1.20292299999388e-14

==>2 Segment(s) of degree 3

==>COMPUTE: temps total 0.91s dont :
==>- Init + ExtentAnalyse Os

==>- PerformSetOfSurf 0.33s

==>- PerformFilletOnVertex 0.53s
==>- FilIDS 0.01s

==>- Reconstruction 0.04s

==>- SetRegul Os

7.9 Topological analysis

Analysis of shapes includes commands to compute length, area, volumes and
inertial properties.

® Use Iprops, sprops, vprops to compute integral properties.
Use bounding to display the bounding box of a shape.

Use distmini to calculate the minimum distance between two
shapes.

7.9.1 lIprops, sprops, vprops

Syntax: Iprops shape
sprops shape
vprops shape

Iprops computes the mass properties of all edges in the shape with a linear density
of 1, sprops of all faces with a surface density of 1 and vprops of all solids with a
density of 1.

All three commands print the mass, the coordinates of the center of gravity, the
matrix of inertia and the moments. Mass is either the length, the area or the volume.
The center and the main axis of inertia are displayed.

Example

150
Topology commands

volume of a cylinder
pcylinder ¢ 10 20
Vprops c

==> results

Mass : 6283.18529981086

Center of gravity :

X = 4.1004749224903e-06

Y = -2.03392858349861e-16
Z = 9.9999999941362

Matrix of Inertia :

366519.141445068 5.71451850691484e-12
0.257640437382627

5.71451850691484e-12 366519.141444962
2.26823064169991e-10 0.257640437382627
2.26823064169991e-10 314159.265358863

Moments :

IX = 366519.141446336

1Y = 366519.141444962

1.Z = 314159.265357595

7.9.2 bounding

Syntax: bounding shape

Displays the bounding box of a shape. The bounding box is a cuboid created with
faces parallel to the x, y, and z planes. The command returns the dimension values
of the the box, “xmin ymin zmin xmax ymax zmax.”

Example

bounding box of a torus
ptorus t 20 5

bounding t

==>-27.059805107309852 -27.059805107309852 -
5.0000001000000003

==>27.059805107309852 27.059805107309852

5.0000001000000003

7.9.3 distmini

Syntax: distmini name Shapel Shape2

distmini calculates the minimum distance between two shapes. The calculation
returns the number of solutions, If more than one solution exists. The options are
displayed in the viewer(red) and the results are listed in the shell window. The
distmini lines are considered as shapes which have a value v.

151
Topology commands

Example

box b 0 0 0 10 20 30

box b2 30 30 0 10 20 30

distmini dl1 b b2

==>the distance value is : 22.3606797749979
==>the number of solutions is :2

==>solution number 1

==>the type of the solution on the first shape is 0O
==>the type of the solution on the second shape is 0
==>the coordinates of the point on the first shape are:
==>X=10 Y=20 Z=30

==>the coordinates of the point on the second shape
are:

==>X=30 Y=30 Z=30

==>solution number 2:

==>the type of the solution on the first shape is 0
==>the type of the solution on the second shape is 0
==>the coordinates of the point on the first shape are:
==>X=10 Y=20 Z=0

==>the coordinates of the point on the second shape
are:

==>X=30 Y=30 Z=0

==>d1_val d1 di2

7.10 Surface creation

Surface creation commands include surfaces created from boundaries and from
spaces between shapes.

® gplate creates a surface from a boundary definition.
® filling creates a surface from a group of surfaces.

7.10.1 gplate,

Syntax: gplate result nbrcurfront nbrpntconst [Surfinit] [edge O] [edge tang (1:G1;2:G2)
surf]...[point] [u v tang (1:G1;2:G2) surf] ...

gplate creates a surface from a defined boundary. The boundary can be defined
using edges, points, or other surfaces.

Example

plane p
trimpp-13-13
mkface p p

152
Topology commands

beziercurve c1 3000101200
mkedge el cl

tcopy el e2

tcopy el e3

ttranslate e2 0 2 O

trotate e3 0 000 0 1 90

tcopy e3 e4

ttranslate e4 2 0 O

create the surface

gplate r1 4 O pel 0e20e30e40

DistMax=8.50014503228635e-16

*** GEOMPLATE END***

Calculation time: 0.33

Loop number: 1

Approximation results
Approximation error : 2.06274907619957e-13
Criterium error : 4.97600631215754e-14

#to create a surface defined by edges and passing through a

point

to define the border edges and the point
plane p

trimpp -13-13

mkface p p

beziercurve c1 3000101200
mkedge el cl
tcopy el e2
tcopy el e3

ttranslate e2 0 2 O

trotate e3 0000 0 1 90

tcopy e3 e4

ttranslate e4 2 0 O

to create a point

point pp 110

to create the surface

gplate r2 4 1 pel 0 e2 0 e3 0e4 0 pp

DistMax=3.65622157610934e-06

*** GEOMPLATE END***

Calculculation time: 0.27

Loop number: 1

Approximation results
Approximation error : 0.000422195884750181
Criterium error : 3.43709808053967e-05

7.10.2 filling, fillingparam

Syntax: filling result nbB nbC nbP [SurfInit] [edge][face]order...
edge[face]order... point/u v face order...

filling creates a surface between borders. It uses the gplate algorithm but creates a
surface that is tangential to the adjacent surfaces. The result is a smooth continuous
surface based on the G1 criterion.

153

Topology commands

To define the surface border:

® enter the number of edges, constraints, and points

® enumerate the edges, constraints and points

The surface can pass through other points. These are defined after the border
definition.

You can use the fillingparam command to access the filling parameters.
The options are:

-l : to list current values

-i : to set default values

-r deg nbPonC nblt anis : to set filling options

-c t2d t3d tang tcur : to set tolerances

-a maxdeg maxseg : Approximation option

Example
to create four curved survaces and a point
plane p
trimpp -13-13
mkface p p

beziercurve c1 3000101200
mkedge el cl
tcopy el e2
tcopy el e3

ttranslate e2 0 2 O
trotate e3 0000 0 1 90
tcopy e3 e4

ttranslate e4 2 0 O

point pp 1 10

prism f1 e1 0 -1 0
prism f2 e2 0 1 0
prism f3 e3 -1 00
prism f4 e4 1 00

to create a tangential surface

Fillingrl1 400 pel fl11e2f21e3f31ed4f41

to create a tangential surface passing through point pp
Filling r2 40 1pel f11e2 f21e3 f31ed4 f4 1 pp#
to visualise the surface in detail

isos r2 40

to display the current filling parameters
fillingparam -1

==>

Degree = 3

NbPtsOnCur = 10

154
Topology commands

Nblter = 3
Anisotropie = 0
Tol2d = l1le-05
Tol3d = 0.0001
TolAng = 0.01
TolCurv = 0.1

MaxDeg = 8
MaxSegments = 9

7.11 Complex Topology

Complex topology is the group of commands that modify the topology of shapes.
This includes feature modeling.

7.11.1 offsetshape, offsetcompshape

Syntax: offsetshape r shape offset [tol] [face ...]
offsetcompshape r shape offset [face ...]

offsetshape and offsetcompshape assigns a thickness to the edges of a shape.
The offset value can be negative or positive. This value defines the thickness and
direction of the resulting shape. Each face can be removed to create a hollow object.

The resulting shape is based on a calculation of intersections. In case of simple
shapes such as a box, only the adjacent intersections are required and you can use
the offsetshape command.

In case of complex shapes, where intersections can occur from non-adjacent edges
and faces, use the offsetcompshape command. comp indicates complete and
requires more time to calculate the result.

The opening between the object interior and exterior is defined by the argument face
or faces.

Example

box bl 10 20 30

explode bl f

==>pl 1 bl 2 bl 3 bl 4 bl 5 bl 6
offsetcompshape r bl -1 bl 3

Syntax: offsetparameter tolerance intersection(c/p) join(a/i)
offsetload shape offset [facel face2 ..]
offsetonface facel offsetl face2 offset2 ..
offsetperform result

155
Topology commands

offsetparameter sets the values of parameters and options for the following
command offsetload:

® tolerance defines the coincidence tolerance criterion for generated
shapes;

“ 0

® intersection defines the mode of intersection: “c” means complete

intersection, “p” means partial intersection;

® join defines the mode of connecting new adjacent faces: “a” means
GeomAbs_Arc, “I” means GeomAbs_ Intersection.

offsetload loads shape, offset value and, if necessary, a set of faces to remove
from the shape. These data are later used by command offsetperform.

offsetonface indicates the faces of shape (loaded earlier by command offsetload)
that should be shifted with special offset value. This command is optional. Warning:
this command should be called only after offsetload and it takes effect only if
parameter Jjoin = GeomAbs_Intersection.

offsetperform performs the result of 3d-offset algorithm using the data loaded by
previous commands.

Example

box bl 10 20 30

explode bl f

==>pl 1 bl 2 bl 3 bl 4 bl 5 bl 6
offsetparameter le-7 p i
offsetload bl 2 bl 1 bl 2
offsetonface bl 3 5

offsetperform result

7.11.2 featprism, featdprism, featrevol, featlf, featrf

Syntax: featprism shape element skface Dirx Diry Dirz
Fuse(0/1/2) Modify(0/1)
featdprism shape face skface angle Fuse(0/1/2)
Modify(0/1)
featrevol shape element skface Ox Oy 0z Dx Dy Dz
Fuse(0/1/2) Modify(0/1)
featlf shape wire plane DirX DirY DirZ DirX DirY Dirz
Fuse(0/1/2) Modify(0/1)
featrf shape wire plane X Y Z DirX DirY DirZ Size
Size Fuse(0/1/2) Modify(0/1)
featperform prism/revol/pipe/dprism/I1f result
[[Ffrom] Funtil]
featperformval prism/revol/dprism/If result value

featprism loads the arguments for a prism with contiguous sides normal to the face.

featdprism loads the arguments for a prism which is created in a direction normal to
the face and includes a draft angle.

featrevol loads the arguments for a prism with a circular evolution.

156

Topology commands

featlf loads the arguments for a linear rib or slot. This feature uses planar faces and
a wire as a guideline.

featrf loads the arguments for a rib or slot with a curved surface. This feature uses a
circular face and a wire as a guideline.

featperform loads the arguments to create the feature.
featperformval uses the defined arguments to create a feature with a limiting value.

All the features are created from a set of arguments which are defined when you
initialize the feature context. Negative values can be used to create depressions.

Example

to create a feature prism with a draft angle and a
normal direction
create a box with a wire contour on the upper face
box b111
profil FO001F0.250.25 x 0.5y 0.5 x -0.5
explode b f
loads the feature arguments defining the draft angle
featdprism b fb 6 510
create the feature
featperformval dprism r 1
==>BRepFeat_MakeDPrism: :Perform(Height)
BRepFeat Form: :GlobalPerform ()

Gluer

still Gluer

Gluer result

to create a feature prism with circular direction
create a box with a wire contour on the upper face
box b111
profil FO001FO0.250.25 x 0.5y 0.5 x -0.5
explode b f
loads the feature arguments defining a rotation axis
featrevol b fb 6 10101010
featperformval revol r 45
==>BRepFeat_MakeRevol: :Perform(Angle)
BRepFeat_ Form: :GlobalPerform ()

Gluer

still Gluer

Gluer result

to create a slot using the linear feature

#create the base model using the multi viewer

mu4

profile p x5y 1 x -3y -0.5x-1.5y0.5x05y4x-1y
-5

prism pr p 0 0 1

create the contour for the linear feature
vertex vl -0.2 4 0.3

vertex v2 0.2 4 0.3

vertex v3 0.2 0.2 0.3

vertex v4 4 0.2 0.3

vertex v5 4 -0.2 0.3

157
Topology commands

edge el vl v2

edge e2 v2 v3

edge e3 v3 v4

edge e4 v4 V5

wire w el e2 e3 e4

define a plane

plane pl 0.2 0.2 0.3 00 1

loads the linear feature arguments
featlf pr wpl 00 0.300001
featperform 1T result

to create a rib using the revolution feature
#create the base model using the multi viewer
mu4

pcylinder c1 3 5

create the contour for the revolution feature
profile w ¢ 1 190 Ww

trotate w 0 0 01 0 0 90

ttranslate w -3 0 1

trotate w -3 0 1.5 0 0 1 180

plane pl -3 01.5010

loads the revolution feature arguments
featrf clwpl 0000010.30.311
featperform rf result

7.11.3 draft

Syntax: draft result shape dirx diry dirz angle
shape/surf/length [-IN/-OUT] [Ri/Ro] [-Internal]

draft computes a draft angle surface from a wire. The surface is determined by the

draft direction, the inclination of the draft surface, a draft angle, and a limiting
distance.

® The draft angle is measured in radians.
® The draft direction is determined by the argument -INTERNAL

® The argument Ri/Ro deftermines wether the corner edges of the

draft surface are angular or rounded.

® Arguments that can be used to define the surface distance are:

length, a defined distance

® shape, until the surface contacts a shape

surface, until the surface contacts a surface.

NOTE
The original aim of adding a draft angle to a shape is to

158
Topology commands

produce a shape which can be removed easily from a mould.
The Examples below use larger angles than are used normally
and the calculation results returned are not indicated.

Example

to create a simple profile

profile p FOO X2y 4tt04w

creates a draft with rounded angles

draft res p 0 01 3 1 -Ro

to create a profile with an internal angle
profile p FOO X2y 4ttl115tt04w

creates a draft with rounded external angles
draft res p 0 01 31 -Ro

7.11.4 deform, nurbsconvert
Syntax: deform newname name CoeffX CoeffY Coeffz

deform modifies the shape using the x, y, and z coefficients. You can reduce or
magnify the shape in the x,y, and z directions.

Syntax nurbsconvert result name [result name]

nurbsconvert changes the NURBS curve definition of a shape to a Bspline curve
definition. This conversion is required for assymetric deformation and prepares the
arguments for other commands such as deform. The conversion can be necessary
when transferring shape data to other applications.

Example

pcylinder ¢ 20 20

deformac 1 35

the conversion to bspline is followed by the
deformation

==> result

7.12 Texture Mapping to a Shape

Texture mapping allows you to map textures on a shape. Textures are texture image
files and several are predefined. You can control the number of occurrences of the
texture on a face, the position of a texture and the scale factor of the texture.

7.12.1 vtexture

Syntax vtexture NameOfShape TextureFile
vtexture NameOfShape
vtexture NameOfShape ?

159
Topology commands

vtexture NameOfShape 1dOfTexture

TextureFile identifies the file containing the texture you want. The same syntax
without TextureFile disables texture mapping. The question-mark “?” lists available
textures. IdOfTexture allows you to apply predefined textures.

7.12.2 vtexscale

Syntax: vtexscale NameOfShape ScaleU ScaleV
vtexscale NameOfShape ScaleUV
vtexscale NameOfShape

ScaleU and Scale V allow you to scale the texture according to the U and V
parameters individually, while ScaleUV applies the same scale to both parameters.
The same syntax without ScaleU, ScaleV or ScaleUV disables texture scaling.

7.12.3 vtexorigin

Syntax vtexorigin NameOfShape UOrigin VOrigin
vtexorigin NameOfShape UVOrigin
vtexorigin NameOfShape

UOrigin and VOrigin allow you to place the texture according to the U and V
parameters individually while UVOrigin applies the same position value to both
parameters. The same syntax without UOrigin, VOrigin or UVOrigin disables origin
positioning.

7.12.4 vtexrepeat

Syntax vtexrepeat NameOfShape URepeat VRepeat
vtexrepeat NameOfShape UVRepeat
vtexrepeat NameOfShape

URepeat and VRepeat allow you to repeat the texture along the U and V
parameters individually while UVRepeat applies the same number of repetitions for

both parameters. The same syntax without URepeat, VRepeat or UVRepeat
disables texture repetition.

7.12.5 vtexdefault

Syntax vtexdefault NameOfShape

Vtexdefault sets or resets the texture mapping default parameters.
The defaults are:

URepeat = VRepeat = 1 = no repetition

UOrigin = VOrigin = 1 = origin set at (0,0)
UScale = VScale = 1 = texture covers 100% of the face

160

Data Exchange commands

8. Data Exchange commands

8.1 General

8.2

This paragraph presents some general information about Data Exchange (DE)
operations.

DE commands are intended for translation files of various formats (IGES,STEP) into
Open CASCADE shapes with their attributes (colors, layers etc.)

This files include a number of entities. Each entity has its own number in the file
which we call label and denote as <#> for a STEP file and <D> for an IGES file.
Each file has entities called roots (one or more). A full description of such entities is
contained in the Users’s Guide for a corresponding format.

Each Draw session has an interface model — some structure for keeping various
information.

First step of translation — loading information from a file into a model.

Second step — creation of an OpenCASCADE shape from this model.

Each entity from file has its own number in the model (<num>).

During the translation a map of correspondences between labels(from file) and
numbers (from model) is created.

The model and the mentioned map are used for working with most of DE
commands.

IGES commands

8.2.1

These commands are used during the translation of IGES models.

igesread
Syntax: igesread <file_name> <result_shape name> [<selection>]
Read an IGES file to an Open CASCADE shape.

This command will interactively ask the user to select a set of entities to be
converted:

N |Mode Description

0 |End finish conversion and exit igesread

1 | Visible roots convert only visible roots

2 | All roots convert all roots

3 | One entity convert an entity with a number provided by the user
4 | Selection convert only entities contained in a selection

After the selected set of entities is loaded the user will be asked how loaded entities
should be converted into Open CASCADE shapes (e.g., one shape per root or one
shape for all the entities). It is also possible to save loaded shapes in files, and to
cancel loading.

161

Data Exchange commands

8.2.2

The second parameter of this command defines the name of the loaded shape. If
several shapes are created, they will get indexed names. For instance, if the last
parameter was ‘s’, they willbe s_1, ... s_N.

<selection> specifies the scope of selected entities in the model, it is xst-
transferrable-roots by default. More about <selection> see in the “IGES FORMAT
User's Guide”.

If as <selection> we use symbol * all roots will be translated.

Example

translation all roots from file
igesread /diskO1/files/model.igs a *

tplosttrim
Syntax: tplosttrim [<IGES_type>]

Sometimes the trimming contours of IGES faces (i.e., entity 141 for 143, 142 for
144) can be lost during translation due to fails. This command gives us a number of
lost trims and the number of corresponding IGES entities.

It outputs the rank and numbers of faces that lost their trims and their numbers for
each type (143, 144, 510) and their total number. If a face lost several of its trims it
is output only once.

Optional parameter <IGES_type> can be TrimmedSurface, BoundedSurface or
Face to specify the only type of IGES faces.

Example

tplosttrim TrimmedSurface

8.2.3 brepiges

Syntax: brepiges <shape_name> <filename.igs>

Writes an Open CASCADE shape to an IGES file.

Example

write shape with name aa to IGES file

brepiges aa /diskl/tmp/aaa.igs

==> unit (write) : MM

==> mode write : Faces

=> To modifiy : command param

==> 1 Shapes written, giving 345 Entities

==> Now, to write a file, command : writeall filename
==> Qutput on Ffile : /diskl/tmp/aaa.igs

==> Write OK

162
Data Exchange commands

8.3 STEP commands

These commands are used during the translation of STEP models.

8.3.1 stepread
Syntax: stepread <file_name> <result_shape_name> [<selection>]

Read a STEP file to an Open CASCADE shape.
This command will interactively ask the user to select a set of entities to be

converted:
N [Mode Description
0 |End finish transfer and exit stepread
1 | root with rank 1 [transfer first root
2 |root by its rank | transfer root specified by its rank
3 | One entity transfer an entity with a number provided by the user
4 | Selection transfer only entities contained in a selection

After the selected set of entities is loaded the user will be asked how loaded entities
should be converted into Open CASCADE shapes.

The second parameter of this command defines the name of the loaded shape. If
several shapes are created, they will get indexed names. For instance, if the last
parameter was ‘s’, they willbe s_1, ... s_N.

<selection> specifies the scope of selected entities in the model. More about
<selection> see in the “STEP FORMAT User’s Guide”.

If as <selection> we use symbol * all roots will be translated.

Example

translation all roots from file
stepread /diskOl1/files/model.stp a *

8.3.2 stepwrite
Syntax: stepwrite <mode> <shape_name> <file_name>

Writes an Open CASCADE shape to a STEP file.
The available modes are the following:
0 or ‘@’ - "as is" mode — mode is selected automatically depending on type &
geometry of the shape
1 or ‘m’ - manifold_solid_brep or brep_with_voids
2 or ‘' - faceted_brep
3 or ‘w’ - geometric_curve_set
4 or ‘s’ - shell_based_surface_model
For further information see "STEP FORMAT User’s Guide ".

Example

write shape with name a to STEP file with mode O

163

Data Exchange commands

stepwrite 0 a /diskl/tmp/aaa.igs

8.4 General commands

8.4.1

These commands are auxilary commands. Most of them are used for the analysis of
result of translation of IGES and STEP files.

count

Syntax: count <counter> [<selection>]

Is used to calculate statistics on the entities in the model.

Gives us a count of entities.

The optional selection argument, if specified, defines a subset of entities, which are
to be taken into account. The first argument should be one of the currently defined
counters (for example):

Counter Operation
xst-types Calculates how many entities of each Open CASCADE type
exist
step214-types Calculates how many entities of each STEP type exist
Example

count xst-types

8.4.2 data

Syntax: data <symbol>

Is used to obtain general statistics on the loaded data.
Information printed by this command depends on the symbol specified:

Symbol Output

g Prints the information contained in the header of the file

corf Prints messages generated during the loading of the STEP file (when
the procedure of the integrity of the loaded data check is performed) and
the resulting statistics (f works only with fail messages while ¢ with both
fail and warning messages)

t The same as c or f, with a list of failed or warned entities
m or | The same as t but also prints a status for each entity
e Lists all entities of the model with their numbers, types, validity status
etc.
R The same as e but lists only root entities
Example

print full information about warnings and fails

164
Data Exchange commands

data c

8.4.3 elabel

Syntax: elabel <num>

Entities in the IGES and STEP files are numbered in the succeeding order. An entity
can be identified either by its number or by its label. Label is the letter ‘#'(for STEP,
for IGES use ‘D’) followed by the rank. This command gives us a label for an entity
with a known number.

Example

elabel 84

8.4.4 entity

Syntax: entity <#(D)>_or_<num> <level_of_information>

The content of an IGES or STEP entity can be obtained by using this command.
Entity can be determined by its number or label.

<level_of_information> has range [0-6]. You can get more information about this
level using this command without parameters.

Example

Ffull information for STEP entity with label 84
entity #84 6

8.4.5 enum
Syntax: enum <#(D)>

Prints a number for the entity with a given label.

Example

give a number for IGES entity with label 21
enum D21

8.4.6 estatus

Syntax: estatus <#(D)>_or_<num>

The list of entities referenced by a given entity and the list of entities referencing to it
can be obtained by this command.

165

Data Exchange commands

8.4.7

8.4.8

8.4.9

Example

estatus #315

fromshape
Syntax: fromshape <shape_name>

Gives us the number of an IGES or STEP entity corresponding to an Open
CASCADE shape. If no corresponding entity can be found and if Open CASCADE
shape is a compound the command explodes it to subshapes and try to find
corresponding entities for them.

Example

fromshape a_1 23

givecount
Syntax: givecount <selection_name> [<selection_name>]
Prints a number of loaded entities defined by the selection argument.

Possible values of <selection_name> you can find in the “IGES FORMAT Users’s
Guide”.

Example

givecount xst-model-roots

givelist
Syntax: givelist <selection_name>

Prints a list of a subset of loaded entities defined by the selection argument:

Selection Description

xst-model-all all entities of the model

xst-model-roots all roots

xst-pointed (Interactively) pointed entities (not used in DRAW)
xst-transferrable-all all transferable (recognized) entities
xst-transferrable-roots Transferable roots

Example

give a list of all entities of the model
givelist xst-model-all

166
Data Exchange commands

8.4.10 listcount

Syntax: listcount <counter> [<selection> ...]

Prints a list of entities per each type matching the criteria defined by arguments.
Optional <selection> argument, if specified, defines a subset of entities, which are to
be taken into account. Argument <counter> should be one of the currently defined

counters:

Counter Operation
xst-types Ca!lculates how many entities of each Open CASCADE type
iges-types (é)glscfulates how many entities of each IGES type and form
iges-levels (Ca))glscfulates how many entities lie in different IGES levels
Example

listcount xst-types

8.4.11 listitems

Syntax: listitems

This command prints a list of objects (counters, selections etc.) defined in the
current session.

Example

listitems

8.4.12 listtypes

Syntax: listtypes [<selection_name> ...]

Gives a list of entity types which were encountered in the last loaded file (with a
number of entities of each type). The list can be shown not for all entities but for a
subset of them. This subset is defined by an optional selection argument.

Example

Ffull list of all entities with thier counts
listtypes

8.4.13 newmodel

Syntax: newmodel

167
Data Exchange commands

Clears the current model.

Example

newmodel

8.4.14 param
Syntax: param [<parameter>] [<value>]

This command is used to manage translation parameters.

Command without arguments gives us a full list of parameters with current values.
Command with <parameter> (without <value>) gives us the current value of this
parameter and all possible values for it. Command with <value> sets this new value
to <parameter>.

For more information about translation parameters see the corresponding User’s
Guide.

Example

info about possible schemes for writing STEP file
param write.step.schema

8.4.15 sumcount
Syntax: sumcount <counter> [<selection> ...]

Prints only a number of entities per each type matching the criteria defined by
arguments.

Example

sumcount xst-types

8.4.16 tpclear

Syntax: tpclear

Clears the map of correspondences between IGES or STEP entities and Open
CASCADE shapes.

Example

tpclear

8.4.17 tpdraw

168
Data Exchange commands

Syntax: tpdraw <#(D)>_or_<num>

Creates an Open CASCADE shape corresponding to an IGES or STEP entity.

Example

tpdraw 57

8.4.18 tpent

Syntax: tpent <#(D)>_or_<num>

Get information about the result of translation of the given IGES or STEP entity.

Example

tpent #23

8.4.19 tpstat
Syntax: tpstat [*|?]<symbol> [<selection>]
Gives all statistics on the last transfer, including the list of transferred entities with

mapping from IGES or STEP to Open CASCADE types, as well as fail and warning
messages. The parameter symbol defines what information will be printed:

Symbol Output

General statistics (list of results and messages)

Count of all warning and fail messages

List of all warning and fail messages

Count of all fail messages

List of all fail messages

List of all transferred roots

The same, with types of source entity and result type

The same, with messages

Count of roots for geometrical types

Count of roots for topological types

—|=|~|o|un |z |T|=|0O]o

The same, with a type of the source entity

Ty

The sign *’ before the parameters n, s, b, t, r makes it work on all entities (not only
on roots). The sign ‘?’ before n, s, b, t limits the scope of information to invalid
entities.

Optional argument <selection> can limit the action of the command with a selected
subset of entities.

To get help, run this command without arguments.

Example

translation ratio on IGES faces
tpstat *liges-faces

169
Data Exchange commands

8.4.20 xload

Syntax: xload <file_name>

This command loads an IGES or STEP file into memory (i.e. to fill the model with
data from the file) without creation of an Open CASCADE shape.

Example

xload /diskl/tmp/aaa.stp

8.5 Overview of XDE commands

These commands are used for translation of IGES and STEP files into an XCAF
document (special document is inherited from CAF document and is intended for
Extended Data Exchange (XDE)) and working with it. XDE translation allows
reading and writing of shapes with additional attributes — colors, layers etc. All
commands can be divided into the following groups:

o XDE translation commands
XDE general commands
XDE shape’s commands
XDE color's commands
XDE layer’'s commands
XDE property’s commands

8.6 XDE translation commands

Reminding: All operations of translation are performed with parameters managed by
command param (see above)

8.6.1 Readlges

Syntax: Readlges <document> <file_name>

Reads information from an IGES file to an XCAF document.

Example

Readlges D /diskl/tmp/aaa.igs
==> Document saved with name D

170
Data Exchange commands

8.6.2 ReadStep

Syntax: ReadStep <document> <file_name>

Reads information from a STEP file to an XCAF document.

Example

ReadStep D /diskl/tmp/aaa.stp
==> Document saved with name D

8.6.3 Writelges

Syntax: Writelges <document> <file_name>

Writes information from an XCAF document to an IGES file.

Example

Writelges D /diskl/tmp/aaa.igs

8.6.4 WriteStep

Syntax: WriteStep <document> <file_name>

Writes information from an XCAF document to a STEP file.

Example

WriteStep D /diskl/tmp/aaa.stp

8.6.5 XFileCur
Syntax: XFileCur

Returns the name of file which is set as the current one in the Draw session.

Example

XFileCur
==> “as1-ct-203.stp”

8.6.6 XFileList

Syntax: XFileList

171
Data Exchange commands

Returns a list all files that were transferred by the last transfer. This command is
meant (assigned) for the assemble step file.

Example

XFileList

==> “as1-ct-Bolt.stp”

==> “as1-ct-L-Bracktet.stp”
==> “as1-ct-LBA.stp”

==> “as1-ct-NBA.stp”

==> ..

8.6.7 XFileSet

Syntax: XFileSet <filename>

Sets the current file taking it from the components list of the assemble file.

Example

XFileSet as1-ct-NBA.stp

8.6.8 XFromShape

Syntax: XFromShape <shape>

This command is similar to command “fromshape” (see above) but gives additional
information about the name of file. It is useful in the case when a shape was
translated from several files.

Example

XFromShape a
==> Shape a: imported from entity 217:#26 in Ffile asl-ct-
Nut.stp

8.7 XDE general commands
8.7.1 XNewDoc

Syntax: XNewDoc <document>

Creates a new XCAF document.

Example

XNewDoc D

172
Data Exchange commands

8.7.2 XShow

Syntax: XShow <document> [<label1> ...]

Shows a shape from a given label in the 3D viewer. If the label is not given — shows
all shapes from the document.

Example

show shape from label 0:1:1:4 from document D
XShow D 0:1:1:4

8.7.3 XStat

Syntax: XStat <document>

Prints common information from an XCAF document.

Example

XStat D

==>Statistis of shapes in the document:

==>level N O : 9

==>level N 1 : 18

==>level N2 - 5

==>Total number of labels for shapes in the document = 32
==>Number of labels with name = 27
==>Number of labels with color link
==>Number of labels with layer link
==>Statistis of Props in the document:
==>Number of Centroid Props = 5
==>Number of Volume Props = 5
==>Number of Area Props =5

==>Number of colors = 4

==>BLUE1 RED YELLOW BLUE2

==>Number of layers = 0

3
0

8.7.4 XWdump

Syntax: XWdump <document> <filename>

Saves the contents of the viewer window as an image (XWD, GIF or BMP file).
<filename> must have a corresponding extention.

Example

XWdump D /diskl/tmp/image.gif

173
Data Exchange commands

8.7.5 Xdump

Syntax: Xdump <document> [int deep {0|1}]

Prints information about the tree structure of the document. If parameter 1 is given,
then the tree is printed with a link to shapes.

Example
Xdump D 1
==> ASSEMBLY 0:1:1:1 L-BRACKET(0xe8180448)
==> ASSEMBLY 0:1:1:2 NUT(Oxe82151e8)
==> ASSEMBLY 0:1:1:3 BOLT(0xe829b000)
==> ASSEMBLY 0:1:1:4 PLATE(0xe8387780)
==> ASSEMBLY 0:1:1:5 ROD(0xe8475418)
==> ASSEMBLY 0:1:1:6 AS1(0xe8476968)
==> ASSEMBLY 0:1:1:7 L-BRACKET-ASSEMBLY (0xe8476230)
==> ASSEMBLY 0:1:1:1 L-BRACKET(0xe8180448)
==> ASSEMBLY 0:1:1:8 NUT-BOLT-ASSEMBLY (0xe8475ec0)
==> ASSEMBLY 0:1:1:2 NUT(0xe82151e8)
==> ASSEMBLY 0:1:1:3 BOLT(0xe829b000)
etc.

8.8 XDE shape’s commands
8.8.1 XAddComponent

Syntax: XAddComponent <document> <label> <shape>

Adds a component shape to assembly.

Example

Add shape b as component shape to assembly shape from
label 0:1:1:1
XAddComponent D 0:1:1:1 b

8.8.2 XAddShape

Syntax: XAddShape <document> <shape> [makeassembly=1]

Adds a shape (or an assembly) to a document. If this shape already exists in the
document, then prints the label which points to it. By default, a new shape is added
as an assembly (i.e. last parameter 1), otherwise it is necessary to pass 0 as the last
parameter.

Example

add shape b to document D
XAddShape D b 0
==> 0:1:1:10

174

Data Exchange commands

1T pointed shape is compound and last parameter in
XAddShape command is used by default (1), then for
each subshapes new label is created

8.8.3 XFindComponent

Syntax: XFindComponent <document> <shape>

Prints a sequence of labels of the assembly path.

Example

XFindComponent D b

8.8.4 XFindShape

Syntax: XFindShape <document> <shape>

Finds and prints a label with an indicated top-level shape.

Example

XFindShape D a

8.8.5 XGetFreeShapes

Syntax: XGetFreeShapes <document> [shape_prefix]

Print labels or create DRAW shapes for all free shapes in the document.

If [shape_prefix] is absent — prints labels, else — creates DRAW shapes with names
[shape_prefix] num (i.e. for example: there are 3 free shapes and [shape_prefix] = a

therefore shapes will be created with names a_1, a_2 and a_3).
Note: a free shape is a shape to which no other shape refers to.

Example

XGetFreeShapes D
==> 0:1:1:6 0:1:1:10 0:1:1:12 0:1:1:13

XGetFreeShapes D sh
==> sh 1 sh 2 sh 3 sh 4

8.8.6 XGetOneShape

Syntax: XGetOneShape <shape> <document>

Creates one DRAW shape for all free shapes from a document.

175

Data Exchange commands

Example

XGetOneShape a D

8.8.7 XGetReferredShape

Syntax: XGetReferredShape <document> <label>

Prints a label that contains a top-level shape that corresponds to a shape at a given
label.

Example

XGetReferredShape D 0:1:1:1:1

8.8.8 XGetShape

Syntax: XGetShape <result> <document> <label>

Puts a shape from the indicated label in document to <result>.

Example

XGetShape b D 0:1:1:3

8.8.9 XGetToplLevelShapes

Syntax: XGetTopLevelShapes <document>

Prints labels that contain top-level shapes.

Example

XGetTopLevelShapes D
==> 0:1:1:1 0:1:1:2 0:1:1:3 0:1:1:4 0:1:1:5 0:1:1:6 0:1:1:7
0:1:1:8 0:1:1:9

8.8.10 XLabellnfo

Syntax: XLabellnfo <document> <label>

Prints information about a shape, stored at an indicated label.

Example

XLabelInfo D 0:1:1:6

176
Data Exchange commands

==> There are TopLevel Shape. There are an Assembly. This
Shape don’t used.

8.8.11 XNewShape

Syntax: XNewShape <document>

Creates a new empty top-level shape.

Example

XNewShape D

8.8.12 XRemoveComponent
Syntax: XRemoveComponent <document> <label>

Removes a component from the components label.

Example

XRemoveComponent D 0:1:1:1:1

8.8.13 XRemoveShape

Syntax: XRemoveShape <document> <label>

Removes a shape from a document (by it's label).

Example

XRemoveShape D 0:1:1:2

8.8.14 XSetShape

Syntax: XSetShape <document> <label> <shape>

Sets a shape at the indicated label.

Example

XSetShape D 0:1:1:3 b

177
Data Exchange commands

8.9 XDE color’'s commands
8.9.1 XAddColor

Syntax: XAddColor <document> <R> <G>

Adds color in document to the color table. Parameters R,G,B are real.

Example

XAddColor D 0.5 0.25 0.25

8.9.2 XFindColor

Syntax: XFindColor <document> <R> <G>

Finds a label where the indicated color is situated.

Example

XFindColor D 0.25 0.25 0.5
==> 0:1:2:2

8.9.3 XGetAllColors

Syntax: XGetAllColors <document>

Prints all colors that are defined in the document.

Example

XGetAllColors D
==> RED DARKORANGE BLUE1 GREEN YELLOW3

8.9.4 XGetColor

Syntax: XGetColor <document> <label>

Returns a color defined at the indicated label from the color table.

Example

XGetColor D 0:1:2:3
==> BLUE1

178

Data Exchange commands

8.9.5 XGetObjVisibility

Syntax: XGetObjVisibility <document> {<label>|<shape>}

Returns the visibility of a shape.

Example

XGetObjVisibility D 0:1:1:4

8.9.6 XGetShapeColor

Syntax: XGetShapeColor <document> <label> <colortype(s|c)>

Returns the color defined by <label>. If colortype=s’ — returns surface color, else —
returns curve color.

Example

XGetShapeColor D 0:1:1:4 ¢

8.9.7 XRemoveColor

Syntax: XRemoveColor <document> <label>

Removes a color from the color table in a document.

Example

XRemoveColor D 0:1:2:1

8.9.8 XSetColor

Syntax: XSetColor <document> {<label>|<shape>} <R> <G>

Sets an RGB color to a shape given by label.

Example

XsetColor D 0:1:1:4 0.5 0.5 O.

8.9.9 XSetObjVisibility

Syntax: XSetObjVisibility <document> {<label>|<shape>} {0|1}

Sets the visibility of a shape.

179
Data Exchange commands

Example

set shape from label 0:1:1:4 as invisible
XSetObjVisibility D 0:1:1:4 0

8.9.10 XUnsetColor

Syntax: XUnsetColor <document> {<label>|<shape>} <colortype>

Unset a color given??? type (‘s’ or ‘c’) for the indicated shape.

Example

XUnsetColor D 0:1:1:4 s

8.10 XDE layer’'s commands

8.10.1 XAddLayer

Syntax: XAddLayer <document> <layer>

Adds a new layer in an XCAF document. <layer> - name of new layer (string).

Example

XAddLayer D layer2

8.10.2 XFindLayer

Syntax: XFindLayer <document> <layer>

Prints a label where a layer is situated.

Example

XFindLayer D Bolt
==> 0:1:3:2

8.10.3 XGetAllLayers

Syntax: XGetAllLayers <document>

Prints all layers in an XCAF document.

180
Data Exchange commands

Example

XGetAllLayers D
==> “0:1:1:3” “Bolt” “0:1:1:9”

8.10.4 XGetLayers

Syntax: XGetLayers <document> {<shape>|<label>}

Returns names of layers, which are pointed to by links of an indicated shape.

Example

XGetLayers D 0:1:1:3
==> leolt11 ‘1123,1

8.10.5 XGetOnelLayer

Syntax: XGetOnelLayer <document> <label>

Prints the name of a layer at a given label.

Example

XGetOneLayer D 0:1:3:2

8.10.6 XlIsVisible

Syntax: XlsVisible <document> {<label>|<layer>}

Returns 1 if the indicated layer is visible, else returns 0.

Example

XIsVisible D 0:1:3:1

8.10.7 XRemoveAllLayers

Syntax: XRemoveAllLayers <document>

Removes all layers from an XCAF document.

Example

XRemoveAllLayers D

181
Data Exchange commands

8.10.8 XRemovelLayer
Syntax: XRemovelLayer <document> {<label>|<layer>}

Removes the indicated layer from an XCAF document.

Example

XRemovelLayer D layer2

8.10.9 XSetLayer

Syntax: XSetlLayer <document> {<shape>|<label>} <layer>
[shape_in_one_layer {0]1}]

Sets a reference between a shape and a layer (adds a layer if it is necessary).
Parameter <shape_in_one_layer> shows whether a shape could be in a number of
layers or only in one (0 by default).

Example

XSetLayer D 0:1:1:2 layer2

8.10.10 XSetVisibility
Syntax: XSetVisibility <document> {<label>|<layer>} <isvisible {0]|1}>

Sets the visibility of a layer.

Example

set layer at label 0:1:3:2 as invisible
XSetVisibility D 0:1:3:2 0

8.10.11 XUnSetAllLayers

Syntax: XUnSetAllLayers <document> {<label>|<shape>}

Unsets a shape from all layers.

Example

XUnSetAllLayers D 0:1:1:2

182
Data Exchange commands

8.10.12 XUnSetLayer

Syntax: XUnSetLayer <document> {<label>|<shape>} <layer>

Unsets a shape from the indicated layer.

Example

XUnSetLayer D 0:1:1:2 layerl

8.11 XDE property’s commands

8.11.1 XCheckProps

Syntax: XCheckProps <document> [{O|deflection} [<shape>|<label>]]

Gets properties for a given shape (volume, area and centroid) and compares them
with the results after internal calculations. If the second parameter is 0, the standard
Open CASCADE tool is used for the computation of properties. If the second
parameter is not O, it is treated as a deflection. If the deflection is positive the
computation is done by triangulations, if it is negative — meshing is forced.

Example

check properties for shapes at label 0:1:1:1 from
document using standard Open CASCADE tools
XCheckProps D 0 0:1:1:1

==> Label 0:1:1:1 "L-BRACKET”
==> Area defect: -0.0 ¢ 0O%)
==> Volume defect: 0.0 (O%)

==> (G defect: dX=-0.000, dY=0.000, dz=0.000

8.11.2 XGetArea

Syntax: XGetArea <document> {<shape>|<label>}

Returns the area of a given shape.

Example

XGetArea D 0:1:1:1
==> 24628.31815094999

8.11.3 XGetCentroid

Syntax: XGetCentroid <document> {<shape>|<label>}

183
Data Exchange commands

Returns the center of gravity coordinates of a given shape.

Example

XGetCentroid D 0:1:1:1

8.11.4 XGetVolume
Syntax: XGetVolume <document> {<shape>|<label>}

Returns the volume of a given shape.

Example

XGetVolume D 0:1:1:1

8.11.5 XSetArea
Syntax: XSetArea <document> {<shape>|<label>} <area>

Sets new area to attribute list ??? given shape.

Example

XSetArea D 0:1:1:1 2233.99

8.11.6 XSetCentroid
Syntax: XSetCentroid <document> {<shape>|<label>} <x> <y> <z>

Sets new center of gravity to the attribute list ??7? given shape.

Example

XSetCentroid D 0:1:1:1 0. 0. 100.

8.11.7 XSetMaterial

Syntax: XSetMaterial <document> {<shape>|<label>} <name>
<density(g/cu sm)>

Adds a new label with material into the material table in a document, and adds a link
to this material to the attribute list of agiven shape or a given label. The last
parameter sets the density of a pointed material.

184
Data Exchange commands

Example

XSetMaterial D 0:1:1:1 Titanium 8899.77

8.11.8 XSetVolume

Syntax: XSetVolume <document> {<shape>|<label>} <volume>

Sets new volume to the attribute list ??? given shape.

Example

XSetVolume D 0:1:1:1 444555.33

8.11.9 XShapeMassProps

Syntax: XShapeMassProps <document> [<deflection> [{<shape>|<label>}]]

Computes and returns real mass and real center of gravity for a given shape or for
all shapes in a document. The second parameter is used for calculation of the
volume and CG(center of gravity). If it is 0, then the standard CASCADE tool
(geometry) is used for computation, otherwise - by triangulations with a given
deflection.

Example

XShapeMassProps D

==> Shape from label : 0:1:1:1

==> Mass = 193.71681469282299

==> CenterOfGravity X = 14.594564763807696,Y =
20.20271885211281,Z = 49.999999385313245

==> Shape from label : 0:1:1:2 not have a mass

etc.

8.11.10 XShapeVolume

Syntax: XShapeVolume <shape> <deflection>

Calculates the real volume of a pointed shape with a given deflection.

Example

XShapeVolume a 0O

185

Shape Healing commands

9. Shape Healing commands

9.1 General commands
9.1.1 bsplres

Syntax: bsplres <result> <shape> <tol3d> <tol2d< <reqdegree>
<reqnbsegments> <continuity3d> <continuity2d> <PriorDeg> <RationalConvert>

Performs approximations of a given shape (BSpline curves and surfaces or other
surfaces) to BSpline with given required parameters. The specified continuity can be
reduced if the approximation with a specified continuity was not done successfully.
Results are put into the shape, which is given as a parameter <result>. For a more
detailed description see the ShapeHealing User's Guide (operator:
BSplineRestriction).

9.1.2 checkfclass2d

Syntax: checkfclass2d <face> <ucoord> <vcoord>

Shows where a point which is given by coordinates is located in relation to a given
face — outbound, inside or at the bounds.

Example

checkfclass2d ¥ 10.5 1.1
==> Point is OUT

9.1.3 checkoverlapedges
Syntax: checkoverlapedges <edge1> <edge2> [<toler> <domaindist>]
Checks the overlapping of two given edges. If the distance between two edges is

less than the given value of tolerance then edges are overlapped. Parameter
<domaindist> sets length of part of edges on which edges are overlapped.

Example

checkoverlapedges el e2

9.1.4 comtol
Syntax: comptol <shape> [nbpoints] [prefix]

Compares the real value of tolerance on curves with the value calculated by
standard (using 23 points). The maximal value of deviation of 3d curve from pcurve

186
Shape Healing commands

at given simple points is taken as a real value (371 is by default). Command returns
the maximal, minimal and average value of tolerance for all edges and difference
between real values and set values. Edges with the maximal value of tolerance and
relation will be saved if the ‘prefix’ parameter is given.

Example

comptol h 871 t

==> Edges tolerance computed by 871 points:

==> MAX=8.0001130696523449e-008 AVG=6.349346868091096e-009
MIN=0

==> Relation real tolerance / tolerance set iIn edge

==> MAX=0.80001130696523448 AVG=0.06349345591805905 MIN=0

==> Edge with max tolerance saved to t_edge_tol

==> Concerned faces saved to shapes t 1, t 2

9.1.5 convtorevol
Syntax: convtorevol <result> <shape>

Converts all elementary surfaces of a given shape into surfaces of revolution.
Results are put into the shape, which is given as the<result> parameter.

Example

convtorevol r a

9.1.6 directfaces
Syntax: directfaces <result> <shape>

Converts indirect surfaces and returns the results into the shape, which is given as
the <result> parameter.

Example

directfaces r a

9.1.7 expshape
Syntax: expshape <shape> <maxdegree> <maxseg>

Gives statistics for a given shape. This test command is working with Bezier and
BSpline entities.

Example

expshape a 10 10

187
Shape Healing commands

==> Number of Rational Bspline curves 128
==> Number of Rational Bspline pcurves 48

9.1.8 fixsmall

Syntax: fixsmall <result> <shape> [<toler>=1.]

Fixes small edges in given shape by merging adjacent edges with agiven tolerance.
Results are put into the shape, which is given as the <result> parameter.

Example

fixsmall r a 0.1

9.1.9 fixsmalledges
Syntax: fixsmalledges <result> <shape> [<toler> <mode> <maxangle>]

Searches at least one small edge at a given shape. If such edges have been found,
then small edges are merged with a given tolerance. If parameter <mode> is equal
to Standard_True (can be given any values, except 2), then small edges, which can
not be merged, are removed, otherwise they are to be kept (Standard_False is used
by default). Parameter <maxangle> sets a maximum possible angle for merging two
adjacent edges, by default no limit angle is applied (-1).Results are put into the
shape, which is given as parameter <result>.

Example

Ffixsmalledges r a 0.1 1

9.1.10 fixshape

Syntax: fixshape <result> <shape> [<preci> [<maxpreci>]] [{switches}]

Performs fixes of all sub-shapes (such as Solids, Shells, Faces, Wires and Edges)
of a given shape. Parameter <preci> sets a basic precision value, <maxpreci> sets
the maximal allowed tolerance. Results are put into the shape, which is given as
parameter <result>.
{switches} allows to tune parameters of ShapeFix
The following syntax is used: <symbol><parameter>
- symbol may be - to set parameter off, + to set on or * to set default
- parameters are identified by letters:

| - FixLackingMode

0 - FixOrientationMode

h - FixShiftedMode

m - FixMissingSeamMode

d - FixDegeneratedMode

s - FixSmallMode

i - FixSelflntersectionMode

188
Shape Healing commands

n - FixNotchedEdgesMode
For enhanced message output, use switch '+?'

Example

fixshape r a 0.001

9.1.11 fixwgaps
Syntax: fixwgaps <result> <shape> [<toler>=0]
Fixes gaps between ends of curves of adjacent edges (both 3d and pcurves) in

wires in a given shape with a given tolerance. Results are put into the shape, which
is given as parameter <result>.

Example

fixwgaps r a

9.1.12 offsetcurve, offset2dcurve

Syntax: offsetcurve <result> <curve> <offset> <direction(as point)>
offset2dcurve <result> <curve> <offset>

Both commands are intended to create a new offset curve by copying the given
curve to distance, given by parameter <offset>. Parameter <direction> defines
direction of the offset curve. It is created as a point. For correct work of these
commands the direction of normal of the offset curve must be perpendicular to the
plane, the basis curve is located there. Results are put into the curve, which is given
as parameter <result>. offsetcurve works with the curve in 3d space,
offset2dcurve in 2d space accordingly.

Example

point pp 10 10 10
offsetcurve r ¢ 20 pp

9.1.13 projcurve
Syntax: projcurve <edge>|<curve3d>|<curve3d first last> <X> <Y> <Z>
projcurve returns the projection of a given point on a given curve. The curve may

be defined by three ways: by giving the edge name, giving the 3D curve and by
giving the unlimited curve and limiting it by pointing its start and finish values.

Example

projcurve k1 0 1 5
==>Edge k 1 Params from O to 1.3

189
Shape Healing commands

==>Precision (BRepBuilderAPl) : 9.9999999999999995e-008
==>Projection : 0 1 5

==>Result : 0 1.1000000000000001 O

==>Param = -0.20000000000000001 Gap = 5.0009999000199947

9.1.14 projface
Syntax: projface <face> <X> <Y> [<Z>]

Returns the projection of a given point to a given face in 2d or 3d space. If two
coordinates (2d space) are given then returns coordinates projection of this point in
3d space and vice versa.

Example

projface a_1 10.0 0.0
==> Point UV U=10 V=0
==> => proj X=-116 Y =-45 Z =0

9.1.15 scaleshape

Syntax: scaleshape <result> <shape> <scale>

Returns a new shape, which is the result of scaling of a given shape with a
coefficient equal to the parameter <scale>. Tolerance is calculated for the new
shape as well.

Example

scaleshape r a_1 0.8

9.1.16 settolerance

Syntax: settolerance <shape> [<mode>=v-e-w-f-a] <val>(fix value) or
<tolmin> <tolmax>

Sets new values of tolerance for a given shape. If the given second parameter
(mode) is given, then the atolerance value is set only for these sub shapes.

Example

settolerance a 0.001

9.1.17 splitface

Syntax: splitface <result> <face> [u usplit1 usplit2...] [v vsplit1 vsplit2 ...]

190
Shape Healing commands

Splits a given face in parametric space and puts the result into the given parameter
<result>.
Returns the status of split face.

Example

split face f by parameter u = 5
splitface r f u 5

==> Splitting by U :)

==> Status: DONE1l

9.1.18 statshape

Syntax: statshape <shape> [particul]

Returns the number of sub-shapes, which compose the given shape. For example,
the number of solids, number of faces etc. It also returns the number of geometrical
objects or sub-shapes with a specified type, example, number of free faces, number
of CO surfaces. The last parameter becomes out of date.

Example
statshape a
==> Count Item
== ————— —_—
==> 402 Edge (oriented)
==> 402 Edge (Shared)
==> 74 Face
==> 74 Face (Free)
==> 804 Vertex (Oriented)
==> 402 Vertex (Shared)
==> 78 Wire
=> 4 Face with more than one wire
==> 34 bspsur : BSplineSurface

9.1.19 tolerance
Syntax: tolerance <shape> [<mode>:D v e f c] [<tolmin> <tolmax>:real]

Returns tolerance (maximal, avg and minimal values) of all given shapes and
tolerance of their Faces, Edges and Vertices. If parameter <tolmin> or <tolmax> or
both of them are given, then sub-shapes are returned as a result of analys of this
shape, which satisfy the given tolerances. If a particular value of entity (all shapes
(D) (v) vertices (e) edges (f) faces (c) combined (faces)) is given as the second
parameter then only this group will be analyzed for tolerance.

Example
tolerance a
==> Tolerance MAX=0.31512672416608001
AVG=0.14901359484722074 MIN=9.9999999999999995e-08
==> FACE : MAX=9.9999999999999995e-08

AVG=9.9999999999999995e-08 MIN=9.9999999999999995e-08

191
Shape Healing commands

==> EDGE : MAX=0.31512672416608001
AVG=0.098691334511810405 MIN=9.9999999999999995e-08

==> VERTEX : MAX=0.31512672416608001 AVG=0.189076074499648
MIN=9.9999999999999995e-08

tolerance a v 0.1 0.001

=> Analysing Vertices (gives 6 Shapes between
tol1=0.10000000000000001 and tol2=0.001 , named tol 1 to
tol_6

9.2 Convertion commands

More detailed information about using here classes can be found into Shape Healing
documentation. All this commands are created for testing.

9.2.1 DT _ClosedSplit

Syntax: DT_ClosedSplit <result> <shape>

Divides all closed faces in the shape (for example cone) and returns result of given
shape into shape, which is given as parameter result. Number of faces in resulting
shapes will be increased.

Note: Closed face — it's face with one or more seam.

Example

DT_ClosetSplit r a

9.2.2 DT _ShapeConvert, DT_ShapeConvertRev

Syntax: DT_ShapeConvert <result> <shape> <convert2d> <convert3d>
DT_ShapeConvertRev <result> <shape> <convert2d> <convert3d>

Both commands are intended for the conversion of 3D, 2D curves to Bezier curves
and surfaces to Bezier based surfaces. Parameters convert2d and convert3d take
on a value 0 or 1. If the given value is 1, then the conversion will be performed,
otherwise it will not be performed. The results are put into the shape, which is given
as parameter Result. Command DT _ShapeConvertRev differs from
DT_ShapeConvert by converting all elementary surfaces into surfaces of revolution
first.

Example

DT_ShapeConvert r a 1 1
==> Status: DONE1l

9.2.3 DT_ShapeDivide

192
Shape Healing commands

Syntax: DT_ShapeDivide <result> <shape> <tol>

Divides the shape with C1 criterion and returns the result of geometry conversion of
a given shape into the shape, which is given as parameter result. This command
illustrates how class ShapeUpgrade_ShapeDivideContinuity works. This class
allows to convert geometry with a continuity less than the specified continuity to
geometry with target continuity. If conversion is not possible then the geometrical
object is split into several ones, which satisfy the given tolerance. It also returns the
status shape splitting:

OK :no splitting was done

Done1 : Some edges were split

Done2 : Surface was split

Faill : Some errors occurred

Example

DT_ShapeDivide r a 0.001
==> Status: OK

9.2.4 DT_SplitAngle
Syntax: DT_SplitAngle <result> <shape> [MaxAngle=95]

Works with all revolved surfaces, like cylinders, surfaces of revolution etc. This
command divides given revolved surfaces into segments so that each resulting
segment covers not more than the given MaxAngle degrees and puts the result of
splitting into the shape, which is given as parameter result. Values of returned status
are given above.

This command illustrates how class ShapeUpgrade ShapeDivideAngle works.

Example

DT _SplitAngle r a
==> Status: DONE2

9.2.5 DT_SplitCurve
Syntax: DT_SplitCurve <curve> <tol> <split(0[1)>

Divides the 3d curve with C1 criterion and returns the result of splitting of the given
curve into a new curve. If the curve had been divided by segments, then each
segment is put to an individual result. This command can correct a given curve at a
knot with the given tolerance, if it is impossible, then the given surface is split at that
knot. If the last parameter is 1, then 5 knots are added at the given curve, and its
surface is split by segments, but this will be performed not for all parametric spaces.

Example

DT _SplitCurve r c

193
Shape Healing commands

9.2.6 DT _SplitCurve2d

Syntax: DT_SplitCurve2d Curve Tol Split(0/1)

Works just as DT_SplitCurve (see above), only with 2d curve.

Example

DT_SplitCurve2d r c

9.2.7 DT _SplitSurface
Syntax: DT_SplitSurface <result> <Surface|GridSurf> <tol> <split(0|1)>

Divides surface with C1 criterion and returns the result of splitting of a given surface
into surface, which is given as parameter result. If the surface has been divided into
segments, then each segment is put to an individual result. This command can
correct a given CO surface at a knot with a given tolerance, if it is impossible, then
the given surface is split at that knot. If the last parameter is 1, then 5 knots are
added to the given surface, and its surface is split by segments, but this will be
performed not for all parametric spaces.

Example

split surface with name “su’

DT_SplitSurface res su 0.1 1

==> single surf

==> appel a SplitSurface::Init

==> appel a SplitSurface::Build

==> appel a SplitSurface::GlobalU/VKnots

==> nb GlobalU;nb Globalv=7 2 0 1 2 3 4 5 6.2831853072 0 1
==> appel a Surfaces

==> transfert resultat

==>resl 1 1 resl 2 1 resl 31 resl 41 resl 51 vresl 61

9.2.8 DT _ToBspl

Syntax: DT_ToBspl <result> <shape>

Converts a surface of linear extrusion, revolution and offset surfaces into BSpline
surfaces. Returns the result into the shape, which is given as parameter <result>.

Example

DT_ToBspl res sh
==> error = 5.20375663162094e-08 spans = 10
==> Surface is aproximated with continuity 2

194
Shape Healing commands

195

Extending Test Harness with custom commands

10. Extending Test Harness with
custom commands

The following chapters explain how to extend Test Harness with custom commands
and how to activate them using a plug-in mechanism.

10.1 Custom command implementation

Custom command implementation has not undergone any changes since the
introduction of the plug-in mechanism. The syntax of every command should still be
like in the following example.

Example

static Standard_Integer myadvcurve(Draw_Interpretoré& di,
Standard_Integer n,
char** a)

{

For examples of existing commands refer to Open CASCADE (e.g.
GeomliteTest.cxx).

10.2 Registration of commands in Test Harness

To become available in the Test Harness the custom command must be registered
in it. This should be done as follows.

Example

void MyPack: :CurveCommands(Draw_Interpretor& theCommands)

{

char* g = "Advanced curves creation';

theCommands.Add ("myadvcurve', "myadvcurve name pl p2 p3 -
Creates my advanced curve from points",
__FILE__, myadvcurve, Qg);

10.3 Creating a toolkit (library) as a plug-in

196
Extending Test Harness with custom commands

All custom commands are compiled and linked into a dynamic library (.dll on
Windows, or .so on Unix/Linux). To make Test Harness recognize it as a plug-in it
must respect certain conventions. Namely, it must export function
PLUGINFACTORY() accepting the Test Harness interpreter object
(Draw_Interpretor). This function will be called when the library is dynamically
loaded during the Test Harness session.

This exported function PLUGINFACTORY() must be implemented only once per
library.

For convenience the DPLUGIN macro (defined in the Draw_PluginMacro.hxx file)
has been provided. It implements the PLUGINFACTORY () function as a call to the
<Package>: :Factory() method and accepts <Package> as an argument.
Respectively, this <Package>: :Factory() method must be implemented in the
library and activate all implemented commands.

Example

#include <Draw_PluginMacro.hxx>

void MyPack: :Factory(Draw_Interpretor& theDIl)
{

7/
MyPack: : CurveCommands(theDl) ;

}

// Declare entry point PLUGINFACTORY
DPLUGIN(MyPack)

10.4 Creation of the plug-in resource file

As mentioned above, the plug-in resource file must be compliant with Open
CASCADE requirements (see Resource_Manager.cdl file for details). In particular, it
should contain keys separated from their values by a colon (":").

For every created plug-in there must be a key. For better readability and
comprehension it is recommended to have some meaningful name.

Thus, the resource file must contain a line mapping this name (key) to the library
name. The latter should be without file extension (.dll on Windows, .so on
Unix/Linux) and without the "lib" prefix on Unix/Linux.

For several plug-ins one resource file can be created. In such case, keys denoting
plug-ins can be combined into groups, these groups - into their groups and so on
(thereby creating some hierarchy). Any new parent key must have its value as a
sequence of child keys separated by spaces, tabs or commas. Keys should form a
tree without cyclic dependencies.

Examples (file MyDrawPlugin):

! Hierarchy of plug-ins

ALL > ADVMODELING, MESHING
DEFAULT > MESHING
ADVMODELING : ADVSURF, ADVCURV

I Mapping from naming to toolkits (libraries)
ADVSURF : TKMyAdvSurf

197
Extending Test Harness with custom commands

ADVCURV : TKMyAdvCurv
MESHING : TKMyMesh

For other examples of the plug-in resource file refer to the "Plug-in resource file"
chapter above or to the $CASROOT/src/DrawPlugin file shipped with Open
CASCADE.

10.5 Dynamic loading and activation

Loading a plug-in and activating its commands is described in the "Activation of
the commands implemented in the plug-in" chapter.

The procedure consists in defining the system variables and using the pload
commands in the Test Harness session.

Example

Draw[]1> set env(CSF_MyDrawPluginDefaults) /users/test
Draw[]> pload -MyDrawPlugin ALL

	Version 6.2.1 / November 2007
	1. Introduction
	1.1 Overview
	
	1.2 Contents of this documentation
	1.3 Getting started
	1.3.1 Launching DRAW Test Harness
	1.3.2 Plug-in resource file
	1.3.3 Activation of commands implemented in the plug-in
	1.3.4 Mapping between former separate Test Harness executables and the new plug-ins

	2. The Command Language
	1.4 Overview
	1.5 Syntax of TCL
	1.6 Accessing variables in TCL and Draw
	1.6.1 set, unset
	NOTE

	1.6.2 dset, dval
	NOTE

	1.7 lists
	1.7.1 Control Structures
	3.1.1 if
	3.1.2 while, for, foreach
	3.1.3 break, continue

	3.2 Procedures
	3.2.1 proc
	3.2.2 global, upvar
	NOTE

	3. Basic Commands
	3.1 General commands
	3.1.1 help
	3.1.2 source
	3.1.3 spy
	3.1.4 cpulimit
	3.1.5 wait
	
	Example

	3.1.6 chrono

	3.2 Variable management commands
	3.2.1 isdraw, directory
	3.2.2 whatis, dump
	NOTE

	3.2.3 rename, copy
	3.2.4 datadir, save, restore

	3.3 User defined commands
	3.3.1 set
	3.3.2 get

	4. Graphic Commands
	4.1 Axonometric viewer
	4.1.1 view, delete
	4.1.2 axo, pers, top, ...
	4.1.3 mu, md, 2dmu, 2dmd, zoom, 2dzoom
	4.1.4 pu, pd, pl, pr, 2dpu, 2dpd, 2dpl, 2dpr
	4.1.5 fit, 2dfit
	4.1.6 u, d, l, r
	4.1.7 focal, fu, fd
	4.1.8 color
	NOTE

	4.1.9 dtext
	4.1.10 hardcopy, hcolor, xwd
	NOTE

	4.1.11 wclick, pick
	4.1.12 autodisplay
	4.1.13 display, donly
	4.1.14 erase, clear, 2dclear
	4.1.15 repaint, dflush

	4.2 AIS viewer – view commands
	4.2.1 vinit
	4.2.2 vhelp
	4.2.3 vtop
	
	4.2.4 vaxo
	4.2.5 vsetbg
	4.2.6 vclear
	4.2.7 vrepaint
	4.2.8 vfit
	4.2.9 vzfit

	4.3 AIS viewer – display commands
	4.3.1 vdisplay
	4.3.2 vdonly
	4.3.3 vdisplayall
	
	4.3.4 verase
	
	4.3.5 veraseall
	4.3.6 vsetdispmode
	
	4.3.7 vdisplaytype
	4.3.8 verasetype
	4.3.9 vtypes
	4.3.10 vsetcolor
	4.3.11 vunsetcolor
	4.3.12 vsettransparency
	4.3.13 vunsettransparency
	4.3.14 vsetmaterial
	4.3.15 vunsetmaterial
	4.3.16 vsetwidth
	4.3.17 vunsetwidth
	4.3.18 vsetshading
	
	4.3.19 vunsetshading
	4.3.20 vsetam
	
	4.3.21 vunsetam
	4.3.22 vdump
	4.3.23 vdir
	4.3.24 vsub
	4.3.25 vardis
	4.3.26 varera
	4.3.27 vsensdis
	4.3.28 vsensera
	4.3.29 vperf
	
	4.3.30 vr
	
	4.3.31 vstate

	4.4 AIS viewer – object commands
	4.4.1 vtrihedron
	4.4.2 vplanetri
	4.4.3 vsize
	4.4.4 vaxis
	4.4.5 vaxispara
	4.4.6 vaxisortho
	4.4.7 vpoint
	4.4.8 vplane
	4.4.9 vplanepara
	4.4.10 vplaneortho
	4.4.11 vline
	4.4.12 vcircle
	4.4.13 vtri2d

	4.5 AIS viewer – Mesh Visualization Service
	4.5.1 meshfromstl
	4.5.2 meshdispmode
	4.5.3 meshselmode
	4.5.4 meshshadcolor
	4.5.5 meshlinkcolor
	4.5.6 meshmat
	4.5.7 meshshrcoef
	4.5.8 meshshow
	4.5.9 meshhide
	4.5.10 meshhidesel
	4.5.11 meshshowsel
	4.5.12 meshshowall
	4.5.13 meshdelete

	4.6 AIS viewer – 2D viewer – view commands
	4.6.1 v2dinit
	4.6.2 v2dsetbg
	4.6.3 v2dfit
	4.6.4 v2drepaint
	4.6.5 v2dclear
	4.6.6 v2dtext
	
	4.6.7 v2dsettextcolor
	
	4.6.8 v2dpick
	4.6.9 v2dgrid
	
	4.6.10 v2rmgrid
	4.6.11 v2dpickgrid
	4.6.12 v2dpsout
	4.6.13 v2ddir

	4.7 Ais viewer – 2D viewer – display commands
	4.7.1 v2ddisplay
	
	4.7.2 v2ddonly
	
	4.7.3 v2ddisplayall
	
	4.7.4 v2derase
	
	4.7.5 v2deraseall
	
	4.7.6 v2dsetcolor
	
	4.7.7 v2dunsetcolor
	
	4.7.8 v2dsetbgcolor
	
	4.7.9 v2dsetwidth
	
	4.7.10 v2dunsetwidth

	5. OCAF commands
	5.1 Application commands
	5.1.1 NewDocument
	5.1.2 IsInSession
	5.1.3 ListDocuments
	5.1.4 Open
	5.1.5 Close
	5.1.6 Save
	5.1.7 SaveAs

	5.2 Basic commands
	5.2.1 Label
	5.2.2 NewChild
	5.2.3 Children
	5.2.4 ForgetAll

	5.3 Application commands
	5.3.1 Main
	5.3.2 UndoLimit
	5.3.3 Undo
	5.3.4 Redo
	5.3.5 OpenCommand
	5.3.6 CommitCommand
	5.3.7 NewCommand
	5.3.8 AbortCommand
	5.3.9 Copy
	5.3.10 UpdateLink
	5.3.11 CopyWithLink
	5.3.12 UpdateXLinks
	5.3.13 DumpDocument

	5.4 Data Framework commands
	5.4.1 MakeDF
	5.4.2 ClearDF
	5.4.3 CopyDF
	5.4.4 CopyLabel
	5.4.5 MiniDumpDF
	5.4.6 XDumpDF

	5.5 General attributes commands
	5.5.1 SetInteger
	5.5.2 GetInteger
	5.5.3 SetReal
	5.5.4 GetReal
	5.5.5 SetIntArray
	5.5.6 GetIntArray
	5.5.7 SetRealArray
	5.5.8 GetRealArray
	5.5.9 SetComment
	5.5.10 GetComment
	5.5.11 SetExtStringArray
	5.5.12 GetExtStringArray
	5.5.13 SetName
	5.5.14 GetName
	5.5.15 SetReference
	5.5.16 GetReference
	5.5.17 SetUAttribute
	5.5.18 GetUAttribute
	5.5.19 SetFunction
	5.5.20 GetFunction
	5.5.21 NewShape
	5.5.22 SetShape
	5.5.23 GetShape2

	5.6 Geometric attributes commands
	5.6.1 SetPoint
	5.6.2 GetPoint
	5.6.3 SetAxis
	5.6.4 GetAxis
	5.6.5 SetPlane
	5.6.6 GetPlane
	5.6.7 SetGeometry
	5.6.8 GetGeometryType
	5.6.9 SetConstraint
	5.6.10 GetConstraint
	5.6.11 SetVariable
	5.6.12 GetVariable

	5.7 Tree attributes commands
	5.7.1 RootNode
	5.7.2 SetNode
	5.7.3 AppendNode
	5.7.4 PrependNode
	5.7.5 InsertNodeBefore
	5.7.6 InsertNodeAfter
	5.7.7 DetachNode
	5.7.8 ChildNodeIterate
	5.7.9 InitChildNodeIterator
	5.7.10 ChildNodeMore
	5.7.11 ChildNodeNext
	5.7.12 ChildNodeValue
	5.7.13 ChildNodeNextBrother

	5.8 Standard presentation commands
	5.8.1 AISInitViewer
	5.8.2 AISRepaint
	5.8.3 AISDisplay
	5.8.4 AISUpdate
	5.8.5 AISErase
	5.8.6 AISRemove
	5.8.7 AISSet
	5.8.8 AISDriver
	5.8.9 AISUnset
	5.8.10 AISTransparency
	5.8.11 AISHasOwnTransparency
	5.8.12 AISMaterial
	5.8.13 AISHasOwnMaterial
	5.8.14 AISColor
	5.8.15 AISHasOwnColor

	6. Geometry commands
	6.1 Overview
	6.2 Curve creation
	6.2.1 point
	Example

	6.2.2 line
	6.2.3 circle
	6.2.4 ellipse
	Example

	6.2.5 hyperbola
	6.2.6 parabola
	6.2.7 beziercurve, 2dbeziercurve
	6.2.8 bsplinecurve, 2dbsplinecurve, pbsplinecurve, 2dpbsplinecurve
	NOTE

	6.2.9 uiso, viso
	6.2.10 to2d, to3d
	6.2.11 project

	6.3 Surface creation
	6.3.1 plane
	6.3.2 cylinder
	6.3.3 cone
	6.3.4 sphere
	6.3.5 torus
	6.3.6 beziersurf
	6.3.7 bsplinesurf, upbsplinesurf, vpbsplinesurf, uvpbsplinesurf
	6.3.8 trim, trimu, trimv
	NOTE

	6.3.9 offset
	6.3.10 revsurf
	6.3.11 extsurf
	6.3.12 convert
	NOTE

	6.4 Curve and surface modifications
	6.4.1 reverse, ureverse, vreverse
	6.4.2 exchuv
	6.4.3 segment, segsur
	6.4.4 iincudeg, incvdeg
	NOTE

	6.4.5 cmovep, movep, movecolp, moverowp
	6.4.6 insertpole, rempole, remcolpole, remrowpole
	6.4.7 insertknot, insertuknot, insertvknot
	6.4.8 remknot, remuknot, remvknot
	6.4.9 setperiodic, setnotperiodic, setuperiodic, setunotperiodic, setvperiodic, setvnotperiodic
	6.4.10 setorigin, setuorigin, setvorigin

	6.5 Transformations
	6.5.1 translate, 2dtranslate
	6.5.2 rotate, 2drotate
	6.5.3 pmirror, lmirror, smirror, 2dpmirror, 2dlmirror
	6.5.4 pscale, 2dpscale

	6.6 Curve and surface analysis
	6.6.1 coord
	6.6.2 cvalue, 2dcvalue
	Example

	6.6.3 svalue
	6.6.4 localprop, minmaxcurandinf
	6.6.5 parameters
	6.6.6 proj, 2dproj
	6.6.7 surface_radius

	6.7 Intersections
	6.7.1 intersect
	6.7.2 2dintersect

	6.8 Approximations
	6.8.1 appro, 2dapprox
	6.8.2 surfapp, grilapp

	6.9 Constraints
	6.9.1 cirtang
	6.9.2 lintan

	6.10 Display
	6.10.1 dmod, discr, defle
	6.10.2 nbiso
	6.10.3 clpoles, shpoles
	6.10.4 clknots, shknots

	7. Topology commands
	7.1 Basic topology
	7.1.1 isos, discretisation
	NOTE
	Don’t confuse “isos” and “discretisation” with the geometric

	7.1.2 orientation, complement, invert, normals, range
	7.1.3 explode, exwire, nbshapes
	7.1.4 emptycopy, add, compound
	7.1.5 checkshape
	NOTE

	7.2 Curve and surface topology
	7.2.1 vertex
	7.2.2 edge, mkedge, uisoedge, visoedge
	7.2.3 wire, polyline, polyvertex
	7.2.4 profile
	Suffix

	7.2.5 bsplineprof
	7.2.6 mkoffset
	NOTE

	7.2.7 mkplane, mkface
	7.2.8 mkcurve, mksurface
	7.2.9 pcurve
	7.2.10 chfi2d
	7.2.11 nproject
	Example

	7.3 Primitives
	7.3.1 box, wedge
	7.3.2 pcylinder, pcone, psphere, ptorus
	7.3.3 halfspace

	7.4 Sweeping
	7.4.1 prism
	7.4.2 revol
	7.4.3 pipe
	7.4.4 mksweep, deletesweep, buildsweep, simulsweep
	7.4.5 thrusections

	7.5 Topological transformation
	7.5.1 tcopy
	7.5.2 tmove, treset
	7.5.3 ttranslate, trotate
	7.5.4 tmirror, tscale

	7.6 Old Topological operations
	7.6.1 fuse, cut, common
	7.6.2 section, psection
	7.6.3 sewing

	7.7 New Topological operations
	7.7.1 bop, bopfuse, bopcut, boptuc, bopcommon,
	7.7.2 bopsection
	7.7.3 bopcheck, bopargshape

	7.8 Drafting and blending
	7.8.1 depouille
	7.8.2 chamf
	Example

	7.8.3 blend
	7.8.4 fubl
	7.8.5 mkevol, updatevol, buildevol

	7.9 Topological analysis
	7.9.1 lprops, sprops, vprops
	7.9.2 bounding
	7.9.3 distmini

	7.10 Surface creation
	7.10.1 gplate,
	
	Example

	7.10.2 filling, fillingparam

	7.11 Complex Topology
	7.11.1 offsetshape, offsetcompshape
	7.11.2 featprism, featdprism, featrevol, featlf, featrf
	7.11.3 draft
	NOTE

	7.11.4 deform, nurbsconvert

	7.12 Texture Mapping to a Shape
	7.12.1 vtexture
	7.12.2 vtexscale
	7.12.3 vtexorigin
	7.12.4 vtexrepeat
	7.12.5 vtexdefault

	8. Data Exchange commands
	8.1 General
	8.2 IGES commands
	8.2.1 igesread
	Example

	8.2.2 tplosttrim
	Example

	8.2.3 brepiges

	8.3 STEP commands
	8.3.1 stepread
	Example

	8.3.2 stepwrite
	Example

	8.4 General commands
	8.4.1 count
	Example

	8.4.2 data
	Example

	8.4.3 elabel
	Example

	8.4.4 entity
	Example

	8.4.5 enum
	Example

	8.4.6 estatus
	Example

	8.4.7 fromshape
	Example

	8.4.8 givecount
	Example

	8.4.9 givelist
	Example

	8.4.10 listcount
	Example

	8.4.11 listitems
	Example

	8.4.12 listtypes
	Example

	8.4.13 newmodel
	Example

	8.4.14 param
	Example

	8.4.15 sumcount
	Example

	8.4.16 tpclear
	Example

	8.4.17 tpdraw
	Example

	8.4.18 tpent
	Example

	8.4.19 tpstat
	Example

	8.4.20 xload
	Example

	8.5 Overview of XDE commands
	8.6 XDE translation commands
	8.6.1 ReadIges
	Example

	8.6.2 ReadStep
	Example

	8.6.3 WriteIges
	Example

	8.6.4 WriteStep
	Example

	8.6.5 XFileCur
	Example

	8.6.6 XFileList
	Example

	8.6.7 XFileSet
	Example

	8.6.8 XFromShape
	Example

	8.7 XDE general commands
	8.7.1 XNewDoc
	Example

	8.7.2 XShow
	Example

	8.7.3 XStat
	Example

	8.7.4 XWdump
	Example

	8.7.5 Xdump
	Example

	8.8 XDE shape’s commands
	8.8.1 XAddComponent
	Example

	8.8.2 XAddShape
	Example

	8.8.3 XFindComponent
	Example

	8.8.4 XFindShape
	Example

	8.8.5 XGetFreeShapes
	Example

	8.8.6 XGetOneShape
	Example

	8.8.7 XGetReferredShape
	Example

	8.8.8 XGetShape
	Example

	8.8.9 XGetTopLevelShapes
	Example

	8.8.10 XLabelInfo
	8.8.11 XNewShape
	Example

	8.8.12 XRemoveComponent
	Example

	8.8.13 XRemoveShape
	Example

	8.8.14 XSetShape
	Example

	8.9 XDE color’s commands
	8.9.1 XAddColor
	Example

	8.9.2 XFindColor
	Example

	8.9.3 XGetAllColors
	Example

	8.9.4 XGetColor
	Example

	8.9.5 XGetObjVisibility
	Example

	8.9.6 XGetShapeColor
	Example

	8.9.7 XRemoveColor
	Example

	8.9.8 XSetColor
	Example

	8.9.9 XSetObjVisibility
	Example

	8.9.10 XUnsetColor
	Example

	8.10 XDE layer’s commands
	8.10.1 XAddLayer
	Example

	8.10.2 XFindLayer
	Example

	8.10.3 XGetAllLayers
	Example

	8.10.4 XGetLayers
	Example

	8.10.5 XGetOneLayer
	Example

	8.10.6 XIsVisible
	Example

	8.10.7 XRemoveAllLayers
	Example

	8.10.8 XRemoveLayer
	Example

	8.10.9 XSetLayer
	Example

	8.10.10 XSetVisibility
	Example

	8.10.11 XUnSetAllLayers
	Example

	8.10.12 XUnSetLayer
	Example

	8.11 XDE property’s commands
	8.11.1 XCheckProps
	Example

	8.11.2 XGetArea
	Example

	8.11.3 XGetCentroid
	Example

	8.11.4 XGetVolume
	Example

	8.11.5 XSetArea
	Example

	8.11.6 XSetCentroid
	Example

	8.11.7 XSetMaterial
	Example

	8.11.8 XSetVolume
	Example

	8.11.9 XShapeMassProps
	Example

	8.11.10 XShapeVolume
	Example

	9. Shape Healing commands
	9.1 General commands
	9.1.1 bsplres
	9.1.2 checkfclass2d
	Example

	9.1.3 checkoverlapedges
	Example

	9.1.4 comtol
	9.1.5 convtorevol
	Example

	9.1.6 directfaces
	Example

	9.1.7 expshape
	Example

	9.1.8 fixsmall
	Example

	9.1.9 fixsmalledges
	Example

	9.1.10 fixshape
	Example

	9.1.11 fixwgaps
	Example

	9.1.12 offsetcurve, offset2dcurve
	Example

	9.1.13 projcurve
	9.1.14 projface
	Example

	9.1.15 scaleshape
	Example

	9.1.16 settolerance
	Example

	9.1.17 splitface
	Example

	9.1.18 statshape
	Example

	9.1.19 tolerance
	Example

	9.2 Convertion commands
	9.2.1 DT_ClosedSplit
	Example

	9.2.2 DT_ShapeConvert, DT_ShapeConvertRev
	Example

	9.2.3 DT_ShapeDivide
	Example

	9.2.4 DT_SplitAngle
	Example

	9.2.5 DT_SplitCurve
	Example

	9.2.6 DT_SplitCurve2d
	Example

	9.2.7 DT_SplitSurface
	9.2.8 DT_ToBspl

	10. Extending Test Harness with custom commands
	10.1 Custom command implementation
	10.2 Registration of commands in Test Harness
	10.3 Creating a toolkit (library) as a plug-in
	10.4 Creation of the plug-in resource file
	10.5 Dynamic loading and activation

