

Software Factory

Workshop Organization Kit
User’s Guide

Version 6.3 / September 2008

Introduction & Glossary

 1

Copyright © 2007, by Open CASCADE S.A.S.

PROPRIETARY RIGHTS NOTICE: All rights reserved. No part of this material may be
reproduced or transmitted in any form or by any means, electronic, mechanical, or
otherwise, including photocopying and recording or in connection with any information
storage or retrieval system, without the permission in writing from Open CASCADE S.A.S.

The information in this document is subject to change without notice and should not be
construed as a commitment by Open CASCADE S.A.S. Open CASCADE S.A.S. assures
no responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or
copied only in accordance with the terms of such a license.

CAS.CADE and Open CASCADE are registered trademarks of Open CASCADE S.A.S.
Other brand or product names are trademarks or registered trademarks of their respective
holders.

NOTICE FOR USERS:

This User Guide is a general instruction for Open CASCADE study. It may be incomplete
and even contain occasional mistakes, particularly in examples, samples, etc.
Open CASCADE S.A.S. bears no responsibility for such mistakes. If you find any
mistakes or imperfections in this document, or if you have suggestions for improving this
document, please, contact us and contribute your share to the development of Open
CASCADE Technology: bugmaster@opencascade.com

Tour Opus 12

77, Esplanade du Général de Gaulle

92914 PARIS LA DEFENSE

FRANCE

mailto:bugmaster@opencascade.com

Introduction & Glossary

 2

Table of Contents
1. INTRODUCTION & GLOSSARY ...5

1.1. ABOUT THE DEVELOPMENT ENVIRONMENT ..5
1.2. BRIEF OVERVIEW OF OPEN CASCADE DEVELOPMENT..5
1.3. WOK COMPONENTS..6

1.3.1. Entities ..6
1.3.2. Files ..6

1.4. GLOSSARY...6
1.4.1. Development Units..6
1.4.2. Workbenches ...7
1.4.3. Workshops...7
1.4.4. Factories ...9

2. ELEMENTS OF THE PLATFORM...10
2.1. DEVELOPMENT UNITS..10

2.1.1. Directory Structure of a Development Unit ..10
2.1.2. Files in a Development Unit ...10
2.1.3. Package...11
2.1.4. Schema..12
2.1.5. Executable...13
2.1.6. Toolkit ...14
2.1.7. Nocdlpack ...14
2.1.8. Interface ..14
2.1.9. Jni ...15
2.1.10. Delivering Parcels ..16

2.2. WORKBENCHES ...16
2.2.1. Roots ...16
2.2.2. Directories ..17

2.3. WORKSHOPS..18
2.4. FACTORIES...19

3. DEVELOPMENT PROCESS..20
3.1. WOK ENVIRONMENT ..20
3.2. STEPS...20
3.3. GETTING STARTED ..21

3.3.1. Entity Names ...21
3.3.2. Entering the Factory ...21
3.3.3. Creating a New Workshop ..21
3.3.4. Selecting Parcels...21
3.3.5. Opening a Workshop...21
3.3.6. Creating a New Workbench ..22
3.3.7. Opening a Workbench...22
3.3.8. Using Existing Resources..22

3.4. CREATING SOFTWARE COMPONENTS ..22
3.4.1. Creating a Package...22
3.4.2. Creating a Nocdlpack ...25
3.4.3. Creating a Schema..26

3.5. BUILDING AN EXECUTABLE...27
3.5.1. Creating an Executable...27

3.6. TEST ENVIRONMENTS..29
3.6.1. Testing an Executable ...29

3.7. BUILDING A TOOLKIT ..31
3.7.1. Creating a Toolkit ...31

Introduction & Glossary

 3

3.8. BUILDING A DELIVERY UNIT ...33
3.8.1. Creating a Delivery Unit...33
3.8.2. Installing a Parcel...35

3.9. WORKING WITH RESOURCE ...35
3.10. JAVA WRAPPING...35

3.10.1. Creating an interface ..35
3.10.2. Creating a jni ..37

3.11. MORE ADVANCED USE..39
3.11.1. Default User Profile..39
3.11.2. Changing Parcel Configuration..39

4. AVAILABLE SERVICES..41
4.1. SYNOPSIS...41

4.1.1. Common Command Syntax ...41
4.2. GENERAL SERVICES...42

4.2.1. wokcd ..42
4.2.2. wokclose..43
4.2.3. wokenv ..44
4.2.4. wokinfo..44
4.2.5. woklocate ..45
4.2.6. wokparam..46
4.2.7. wokprofile ...47

4.3. SERVICES ASSOCIATED WITH FACTORIES ..48
4.3.1. fcreate ...48
4.3.2. finfo ...49
4.3.3. frm...49

4.4. SERVICES ASSOCIATED WITH WAREHOUSES ...49
4.4.1. Wcreate ...50
4.4.2. Winfo...51
4.4.3. Wrm...51
4.4.4. Wdeclare ...51

4.5. SERVICES ASSOCIATED WITH PARCELS ...52
4.5.1. pinfo ..52
4.5.2. pinstall ..53

4.6. SERVICES ASSOCIATED WITH WORKSHOPS ...53
4.6.1. screate...53
4.6.2. sinfo...54
4.6.3. srm ..54

4.7. SERVICES ASSOCIATED WITH WORKBENCHES...55
4.7.1. wcreate..55
4.7.2. w_info..56
4.7.3. wrm ...57
4.7.4. wmove ...57
4.7.5. wprocess..57

4.8. SERVICES ASSOCIATED WITH DEVELOPMENT UNITS ...58
4.8.1. ucreate ..58
4.8.2. uinfo ..59
4.8.3. urm..60
4.8.4. umake..60
4.8.5. Customizing umake ...63

4.9. SOURCE MANAGEMENT SERVICES...65
4.9.1. wprepare ...65
4.9.2. wstore..66
4.9.3. wintegre ..67
4.9.4. wnews..68
4.9.5. wget...70

Introduction & Glossary

 4

4.9.6. Installation Procedure ..71
4.9.7. Integration Procedure...72

4.10. SESSION SERVICES...72
4.10.1. 1 Sinfo ...73
4.10.2. Convenience Aliases ...73

5. USING THE GRAPHIC INTERFACE ..74
5.1. MAIN MENU BAR..74

5.1.1. Menus..74
5.1.2. Application icons ..74
5.1.3. Display management...74

5.2. POPUP MENUS ..75
6. APPENDIX A. USING THE EMACS EDITOR..77

6.1. ADDITIONAL MODE AVAILABLE UNDER THE EMACS EDITOR..77
7. APPENDIX B. PARAMETERS AND EDL FILES ...78

7.1. EDL OVERVIEW ..78
7.1.1. Key Concepts ..78
7.1.2. Syntax..79
7.1.3. EDL Actions ..79
7.1.4. EDL Conditions ..83

7.2. WOK PARAMETERS...84
7.2.1. Classes of WOK Parameters...84
7.2.2. Defining WOK Parameters ...84
7.2.3. Redefining Parameters..85

7.3. USING EDL TO DEFINE WOK PARAMETERS ...87
7.3.1. Example to Modify Link Options...87

8. APPENDIX C. TCL..89
8.1. TCL OVERVIEW ...89
8.2. TCL AND WOK..89
8.3. CONFIGURING YOUR ACCOUNT FOR TCL AND WOK...90

8.3.1. The .cshrc File ..90
8.3.2. The .tclshrc File ..90
8.3.3. The WOK_SESSIONID Variable ..90
8.3.4. Writing Tcl Steps for a WOK Build...90
8.3.5. msgprint ..90
8.3.6. stepoutputadd..91
8.3.7. stepaddexecdepitem ..92
8.3.8. Components of a Tcl UMake Step...92
8.3.9. Example Tcl Steps ...92

Introduction & Glossary

 5

1. Introduction & Glossary
1.1. About the Development Environment

The Open CASCADE development environment is able to accommodate large numbers
of developers working on a variety of products. Within this environment developers can
produce multiple versions of products for various hardware and software platforms,
including versions corresponding to particular marketing requirements. At the same time,
the Open CASCADE development environment enables the maximum possible reuse of
software components. In other words, the Open CASCADE development environment is
designed to facilitate industrial scale development.

1.2. Brief Overview of Open CASCADE Development
The following diagram shows the Open CASCADE tools and resources, the development
method, and the architecture of applications that Open CASCADE produces. For more
information on this aspect see the Open CASCADE Technical Overview document.

Figure 1. Schematic View of the Open CASCADE Development Platform Producing
an Open CASCADE Application

Introduction & Glossary

 6

The application developer goes about creating his application by editing his source code
and producing the final application using a set of intelligent construction tools. These tools
are available within a structured development environment called the software factory.

The developer defines new software components in CDL, Component Description
Language, and uses a CDL compiler to derive their C++ implementations. These
components are then compiled into packages.

1.3. WOK Components

1.3.1. Entities
The WOK environment is made up of entities, for example software factories and
development units. A full list of WOK entities is provided in the “Glossary” section.

1.3.2. Files
WOK manages two different types of files: user source files and WOK administration files.
To support this, each entity has a home directory, which contains its administration
directory. This is called adm and stores the administration files that WOK needs. In
addition development units have a source directory called src which contains both .cdl and
.cxx source files, and a header file directory called inc which contains .hxx files.

1.4. Glossary

1.4.1. Development Units
A development unit is the smallest unit that can be subject to basic development
operations such as modifying, compiling, linking and building.

The following list contains all types of development units. The letter in parentheses
indicates the letter key by commands such as ucreate and umake. In the rest of the
manual, this letter key is referred to as the “short key”.

package (p) A set of related classes and methods along with their CDL definitions.

schema (s) A set of persistent data types.

executable (x) An executable is used for unit and integration test purposes. It is based on
one or more packages.

nocdlpack (n) A package without a CDL definition. Used for low-level programming or for
incorporating foreign resources.

interface (i) A specific set of services available for wrapping (an interface contains
packages, classes, and methods).

jni (j) A development unit used to wrap C++ classes to Java. It is based on one or more
interfaces.

toolkit (t) A set of packages. Useful in grouping packages together when there is a large
number of packages based around a particular subject.

delivery (d) A development unit for publishing development units.

resource (r) A development unit containing miscellaneous files.

Introduction & Glossary

 7

1.4.2. Workbenches
A workbench is a specialized directory structure where the user creates, modifies, and
uses development units. A workbench is likely to be the personal property of one user or
at most a small team of developers.

Figure 2. Schema of a Workbench Containing three Development Units

1.4.3. Workshops
A workshop is a tree of workbenches. It provides the development team with an
independent workspace inside which the complete cycle of software production can be
carried out.

The root workbench is in a valid state and contains the working versions of the
development units.

Development units in a root workbench are visible in its child workbenches.

Figure 3. A Schema Showing a Workshop Containing Three Workbenches.
Workbenches B and C are the Children of Workbench A. Development Units in A
are Visible in both B and C

Introduction & Glossary

 8

Workshops are fully independent of each other. They are organized in such a way that
development units can be grouped into a delivery and placed in a warehouse.
Communication between workshops is carried out by means of these deliveries. A
warehouse belongs to a factory and is visible from all workshops in that factory. In this
way, development units can be shared between a group of development teams.

Figure 4. Two Workshops Delivering and Borrowing Parcels

Introduction & Glossary

 9

1.4.4. Factories
A factory is a set of workshops and their corresponding warehouse. There is a single
warehouse in any factory. The continuous upgrading and improvement of a product is
carried out in a specific factory.

To create a new version of an application within the factory, you establish a new workshop
dedicated to creation and support of the new version.

Figure 5. A Factory Contains Workshops and a Warehouse

Elements of the Platform

 10

2. Elements of the Platform
2.1. Development Units

A development unit is the basic element of WOK development. It includes the following
three entities:

• A directory structure (a minor component)

• Source files, also called primary files

• The result of the build process (compilation, etc.), also called derived files.

2.1.1. Directory Structure of a Development Unit
The directory structure of a development unit consists of a tree of directories, which are
created when the development unit is initialized. Refer to the “Workbenches” section for
further details on the workbench structure.

2.1.2. Files in a Development Unit
Source Files

Source files are written by the developer in the source section (the src directory) of the
development unit.

Each development unit maintains the description of its own source files, and this
description is stored in one or more files within the src directory. The details of how the
description is stored vary according to development unit type as shown below:

package (p) The names of all source files are worked out from the CDL description,
following the conventions described in the C++ Programming Guide. This list of files can
be supplemented by additional files listed in the file called FILES. This file must be stored
in the unit’s src directory.

Whenever header files are included in the src directory of a development unit, they must
be specified in FILES so that the C++ preprocessor will take them into account. This
reduces compilation time by 10 to 40 percent.

schema (s) No description of the source files is needed. There is a single source file:
<schema>.cdl.

executable (x) The names of all source files are worked out from the CDL description. The
format of this file is described in the “Building an Executable” section.

nocdlpack (n) The list of source files is contained in the FILES file stored in the unit’s src
directory.

interface (i). No description of the source files is needed. There is a single source file:
<interface>.cdl.

jni (j). No description of the source files is needed. There is a single source file: <jni>.cdl.

toolkit (t) The description is given by the file called PACKAGES which is stored in the
unit’s src directory. FILES must also exist in this directory, and must include PACKAGES
in its list of files.

delivery (d) The description is given by two files stored in the unit’s src directory: FILES

Elements of the Platform

 11

and a file called COMPONENTS. FILES must include COMPONENTS in its list of files.

resource (r) A resource unit is used in a delivery. FILES contains a list of the unit’s files,
one per line in the following format: <atype>:::<afilename>

Here, <filename> is the name of a file, which the compiler will look for in the src
directory of the unit, and <atype> is a WOK type. To display a list of all available WOK
types, use the command: wokinfo -T.

Derived files

Derived files created by compilation are automatically placed in the derived section of the
development unit. These may be executable files or archives of compilation results.

2.1.3. Package
A package is a development unit that defines a set of classes, which share a number of
common features such as similar data structure or a set of complementary algorithmic
services. Packages help to manage creation and the use of large hierarchies of software
components.

To create a package, you write a .cdl file describing it in the src directory of the package
development unit. The description includes classes and global methods, which comprise
it. Each class is also described in a separate .cdl file. The package .cdl file also lists the
packages used in the specification of its classes and methods.

C++ implementation files are also stored in the src subdirectory of the package
development unit. These implementation files are:

• .cxx for an ordinary class

• .lxx for any inline methods

• .pxx for any private declarations

• .gxx for a generic class

Creating the Development Unit Structure for a Package

You use the syntax below to create the Development Unit structure for a package:
ucreate –p MyPackage

CDL Syntax of a Package

The CDL syntax of a package description is as follows:
package <PackageName>

[uses AnotherPackage {‘,’ YetAnotherPackage}]

is

[{type-declaration}]

[{package-method}]

end [PackageName]’:’

Example
package CycleModel

uses

Pcollection

Tcollection

BREpPrimAPI

Elements of the Platform

 12

TopExp

Geom

Pgeom

is

deferred class Element;

class Wheel;

class Frame;

class LocalReference;

Adjust(awheel: wheel from CycleModel;

 aframe: Frame from CycleModel);

end CycleModel;

For full details on the CDL syntax, refer to the CDL User’s Guide.

2.1.4. Schema
A schema is a development unit that defines the set of all data types, which your
application is likely to need in order to read and write files. Such data types are
persistent.

To create a schema, write a .cdl file that lists all the packages, which contain all persistent
data types used by the application. Note that only persistent classes are taken into
account during compilation; transient classes are ignored.

Note that you don’t have to put dependencies in all packages and classes. You only have
to write the highest level dependencies. In other words, the uses keyword in the schema
file allows you to list packages. Any package similarly listed in the package files for these
packages are also incorporated into the schema.

Creating the Development Unit Structure for a Schema

You use the syntax below to create the Development Unit structure for a

schema:
ucreate –s MySchema

CDL Syntax of a Schema

The CDL syntax of a schema description is as follows:
schema <SchemaName>

is

<ListOfPackagesContainingPersistentClasses>;

<ListOfPersistentClasses>;

end;

Example
schema MyCycleSchema

is

class Wheel from package CycleModel;

class Frame from package CycleModel;

..

Elements of the Platform

 13

class Spanner from package CycleTools;

end;

For full details on the CDL syntax, refer to the CDL User’s Guide.

2.1.5. Executable
The purpose of an executable is to make executable programs. The executable can use
services from one or more packages and is described in a .cdl file as a set of packages.

To create an executable, you write one or more MyExe.cxx files in the src subdirectory of
the unit. This file will contain the main function.

You then compile the executable.

Creating the Development Unit Structure for an Executable

You use the syntax below to create the Development Unit structure for an executable:
ucreate –x MyExec

CDL Syntax of an Executable

The CDL syntax of an executable description is as follows:
executable <ExecName>

is

executable <BinaryFile>

uses

<LibFile> as external

is

<C++File>;

end;

end;

Example
executable MyExecUnit’

is

executable myexec

uses

Tcl_Lib as external

is

myexec;

end;

executable myex2

is

myex2;

end;

end;

Elements of the Platform

 14

For full details on the CDL syntax, refer to the CDL Reference Manual.

2.1.6. Toolkit
A toolkit is a development unit that groups a set of packages to create a shareable library.
An example of a toolkit is the ModelingData module. Toolkits serve for the following
purposes:

• Linking of large numbers of packages

• Faster loading of executable files that use toolkits such as test files.

A toolkit has no CDL definition. Creating a toolkit involves writing a PACKAGES file in the
src subdirectory of its development unit. This file lists all the packages needed in the
toolkit. You then create a definition of this file to the FILES.

You then compile the toolkit to create a shareable library.

2.1.7. Nocdlpack
A nocdlpack is a development unit that has no CDL definition. It is compiled directly from
source files written in C, C++, Fortran, or in sources to be treated by the lex or yacc tools.
A nocdlpack is useful when you write a low-level interface with another product, for
example, a network application.

To define a nocdlpack, you create a file called FILES in the src subdirectory of the
nocdlpack development unit. In this file, you list the Fortran, C, C++, lex, and yacc files
that compose the pack. You list the files one per line.

On compilation, the result is a shareable library.

2.1.8. Interface
An interface is a development unit that defines a set of services available for wrapping into
Java.

An interface is defined in a .cdl file as a list of packages, package methods, classes, and
methods. It makes these available to a jni unit.

Creating the Development Unit Structure for an Interface
ucreate -i MyInterface

CDL Syntax of an Interface

The CDL syntax of a package description is as follows:

interface <InterfaceName>

is

<ListOfPackages>

<ListOfClasses>

<ListOfMethods>

end;

Elements of the Platform

 15

Example

interface MyInterface

is

 package TopoDS;

 class Shape from ShapeFix;

end ;

2.1.9. Jni
A jni is a development unit that wraps declared services into Java using JNI (Java Native
Interface).

A jni creates Java classes that are used as C++ counterparts when developing in Java.

Creating the Development Unit Structure for a Jni

ucreate -j MyJni

CDL Syntax of a Jni

The CDL syntax of a jni description is as follows:

client <JniName>

is

{interface <InterfaceName>;}

end;

Example

client MyJni

is

 interface MyInterface;

 interface MyAnotherInterface;

end ;

Elements of the Platform

 16

2.1.10. Delivering Parcels
The delivery process lets you create parcels. These parcels group together the
development work done within a given workshop. You can ship these parcels to other
workshops called client workshops.

A delivery is autonomous. Once the delivery development unit is compiled, a parcel is
stored in the factory warehouse and has no more connection with the workshop where it
was created. A parcel has its own directory structure.

All Open CASCADE resources are seen as parcels.

You create a delivery unit under a specified workbench.

You are strongly advised to create delivery units under the root workbench of the
workshop. Child workbenches could be deleted in the future, whereas the root workbench
is likely to remain untouched. In other words, you safeguard the delivery by creating it in
the root workbench.

NOTE

If you do not specify a workbench when you make a delivery, it is created under the
current workbench.

2.2. Workbenches
A workbench is generally the place where one particular developer or a team of
developers works on a particular development. A workbench is composed of a public part
and a private part.

2.2.1. Roots
The roots used in the structure of a workbench are the following:

Home Workbench root containing various administration files of the workbench.

Src Root of the workbench sources, which facilitates the integration into WOK of version
management software such as CVS.

DBMS Root of the derived files dependent on the extraction profile (.hxx, _0.cxx files,
etc.).

DBMS_Station Roots of the derived files dependent on the extraction profile and on the
platform (.o, .so files, etc.).

Elements of the Platform

 17

Roots are defined for each profile and platform supported by the workbench. For example,
a workbench supporting the DFLT profile on Sun and SGI platforms, the roots are the
following:

Home Workbench root,

Src Root of the source files,

DFLT Root of the derived files,

DFLT_sun Root of the files built on Sun platforms,

DFLT_sil Root of the files built on SGI platforms,

For a workbench additionally supporting ObjectStore, the following additional roots are
also found: OBJS, OBJS_sun, OBJS_sil.

These roots are defined in the workbench definition file (MyWorkbench.edl) as the
parameter %MyWorkbench_RootName.

NOTE

Default values help to define the various roots.

2.2.2. Directories
Under each root, a hierarchy of directories allows to store various files.

Under the Home root are found:

• work, the private workbench directory reserved for the developer

• Adm, the directory reserved for administration files.

Src contains:

• src/MyUD, the directory containing the source files of the development unit MyUD.

DBMS contains:

• inc, containing the public header files of the workbench UDs

• drv/MyUD, containing the private extracted files of MyUD

• drv/MyUD/.adm, containing the administration files dependent on the extraction profile

• drv/MyUD/.tmp, containing the temporary files dependent on the extraction profile.

DBMS_Station contains:

• <station>/lib with all the libraries produced in the workbench

• <station>/bin with all the binaries produced in the workbench

• <station>/MyUD with all the station dependent files which are private to the development
unit such as objects

• <station>/MyUD/.adm with all the station dependent administration files

• <station>/MyUD/.tmp with all the temporary files constructed in the development unit.

Elements of the Platform

 18

Figure 6. Structure of the workbench Mywb

2.3. Workshops
A workshop is an independent workspace inside which the complete cycle of software
production is carried out. Workbenches inside a workshop are organized so that
development units can be shared either by being published in a father workbench or by
being placed in reference in the root workbench.

Figure 7. Visibility between Workbenches in a Workshop

In a large-scale development that involves one or more teams of developers, you should
decide how you are going to structure a workshop right at the beginning. If need be, you
can review your decision later.

Elements of the Platform

 19

An existing workshop can be duplicated and the original workshop can be used as the
basis for maintaining the present version of a product. The new workshop can then be
used to develop and maintain a new version of the product.

When creating a new workshop, you specify - in the form of parcels – which resources are
to be available within the workshop.

2.4. Factories
A factory contains a number of workshops and a warehouse. When Open CASCADE is
installed, the system administrator creates a single factory. This contains a single
workshop as well as the warehouse containing the Open CASCADE resources in the form
of parcels.

There is no theoretical limit to the number of workshops that can be added to a factory.
However, a single factory should be enough.

Development Process

 20

3. Development Process
3.1. WOK Environment

The WOK interface is based on tcl, a command language provided by the Regents of the
University of California and Sun Microsystems, Inc. The WOK development environment
is in fact a tcl session. Before you run a tcl session you must make sure that your account
is configured for using tcl, see the “Configuring Your Account for Tcl and WOK” section.

To start a tcl session use the command:
% tclsh

Within this session, all WOK commands are available as well as standard tcl commands.
You can also use tcl language extensions, if these are installed.

To exit from a tcl session use the command:
> exit

Online help is provided with tcl. To access this, use the following command:
% tclhelp &

Online help is also available for all WOK commands. To display help on a particular WOK
command, give the command name followed by the -h flag, as in the following example:
> wokcd -h

3.2. Steps
Implementation of an application is based on the following steps:

1. Enter the software factory using the command wokcd MyFactory

2. Enter a workshop using the command wokcd MyWorkshop

3. Open a workbench using the command wokcd MyWorkbench

4. Search for the data types required among the existing Open CASCADE libraries

5. Define one or more packages which will contain the classes

6. Define new data types as classes

7. Implement the methods of those classes in C++

8. Implement any package methods in C++

9. Unite the test packages

10. Define any nocdlpacks (if any)

11. Test the components

NOTE

Steps 1-3 can be performed in a single WOK command:
> wokcd MyFactory:MyWorkshop:MyWorkbench

Development Process

 21

3.3. Getting Started

3.3.1. Entity Names
Before you start, the following restrictions on WOK entity names must be noted:

• Entity names may only contain alphanumeric characters and dashes.

• Entity names must be unique within a hierarchy. For example, you must not have two
workbenches called MyBench in the same Workshop. Likewise, you may not have a
workshop called CSF in a factory of the same name.

• Do not use upper and lower case characters to distinguish between two entity names, for
example ENT1 and eNt1. This restriction is for reasons of portability.

• Parcel names must be unique.

3.3.2. Entering the Factory
When you start work you go to the factory using the following command:
> wokcd <MyFactory>

3.3.3. Creating a New Workshop
If you don’t want to work in a workshop already present in the factory, you can create a
new one. To do this, use the following command:
> screate –d <MyWorkshop>

This creates the new workshop <MyWorkshop> in the current factory. To create the
same workshop in a different factory use the syntax below:
> screate –d <MyFactory:MyWorkshp>

When you create a new workshop, it is empty.

3.3.4. Selecting Parcels
When you create a workshop, you select existing Open CASCADE resources, for
example, parcels, to use in it. To do this, you create the workshop and add the parcels
using the following syntax:
> screate –d <MyWorkshop> -DparcelConfig=Parcel1,Parcel2…

To display available Open CASCADE resources, in other words, to see what parcels are
available, you use the following command:
Winfo –p <WarehouseName>

NOTE

Parcel configuration rarely needs to change. If it does, only the workshop
administrator should make them.

3.3.5. Opening a Workshop
To open a workshop, you use the following command:
> wokcd <MyWorkshop>

Development Process

 22

3.3.6. Creating a New Workbench
When you create a new workshop, it is empty. In other words, it does not contain any
workbenches.

To create the root workbench of a new workshop, you use the following command:
> wcreate -d <MyWorkbench>

This creates a tree of workbench subdirectories.

If workbenches already exist in your workshop, but you do not want to work in any of
these, create a new workbench as a child of an existing one. You do this using the
following syntax:
> wcreate –d <MyWorkbench> -f <ParentWorkbench>

3.3.7. Opening a Workbench
To open a workbench, you use the command below:
> wokcd <MyWorkbench>

This automatically takes you to the root directory of the
workbench

3.3.8. Using Existing Resources
Before creating new data types, you should look for existing components that you can
reuse. In particular, you should look through the existing resources of your Open
CASCADE platform to see if any of the required components already exist, or if any
existing generic components can be suitably implemented. This search can be conducted
using the online documentation. You should note the packages and classes, which you
can reuse.

3.4. Creating Software Components

3.4.1. Creating a Package
To develop new software components, you usually need to create one or more packages.
You do this, by using the following command:
> ucreate –p <MyPackage>

Because the key -p defines the default value for the ucreate command, you do not
need to specify it. The following syntax, for example, will also create a package:
> ucreate <MyPackage>

Entering a Package or other Development Unit Structure

Enter the package or any other development unit structure using the wokcd command as
in the syntax below:
> wokcd <MyPackage>

The current directory is now:
<MyWorkbenchRoot>/src/<MyPackage>

Writing the Package and Class Specifications in CDL

Write the descriptions of the software components in CDL using an editor of your choice.
Write each class in its own .cdl file and write one .cdl file (<MyPackage.cdl>) to specify the

Development Process

 23

package that contains those classes.

CDL Compilation of the Package

Compile and check the package and its classes using:
> umake –e xcpp

This command also extracts the C++ header files (.hxx) and stores them in the derived
files directory.

Implementing Methods in C++

A package will contain methods, which may be:

• Instance methods

• Class methods

• Package methods.

Extract prototypes for the C++ methods using the following command:
> umake -o xcpp.fill -o xcpp.template

You should not confuse this syntax with the template feature of C++ used to implement
the genericity.

The umake -o xcpp.template command creates a skeleton C++ file for:

• Each class

• All the package methods.

The packages methods will be created in a file called <package>.cxx.template. This
command is not included in the umbrella command <MyPackage>.

You will need to use an editor to implement these methods in C++.

Compiling the Package

To compile the package, use the command:
 > umake -o obj <MyPackage>

If you do not specify a package, the current development unit is compiled.

Sample Construction of a Package

In the following example a workbench named MyWb is created as a child of an existing
workbench Topo. MyWb is used for working on the package MyPack. Commands
preceded by an asterisk below are used only once per session:

1. *Create the MyWb workbench as a child of Topo.
 > wcreate MyWb -f Topo -d

2. *Create MyPack in MyWb.
> ucreate MyPack

3. Move to the source directory of MyPack.
> wokcd MyPack

4. Edit the source files (MyPack.cdl etc.). You do this outside tcl, using the editor of your
choice.

5. Start the extraction of MyPack.
 > umake -e xcpp

6. Generate the .cxx templates for MyPack: MyPack.cxx.template

Development Process

 24

 > umake -o xcpp.fill -o xcpp.template -t

7. Edit the source files (MyPack.cxx etc). You do this outside tcl, using the editor of your
choice.

NOTE

The umake command used without arguments will carry out all the above umake
steps. You can also use it with specific arguments as above to go through the
development process step by step.

Package Files

Primary Files for a Package

<Package>.cdl Primary package file.

<Package>_<Class>.cdl Primary class file.

C++ Files for a Package

<Package>.cxx Primary package source file.

<Package>_[1..9[0..9]*].cxx Secondary package source files.

<Package>.lxx Inline package methods source file.

<Package>.pxx Private instructions source file.

C++ Files for a Class

<Package>_<Class>.cxx Primary class source file.

<Package>_<Class>_[1..9[0..9]*].cxx

Secondary class source files.

<Package>_<Class>.gxx Generic class methods source file. This is an alternative to the
.cxx file(s), you do not have both.

<Package>_<Class>.lxx Inline methods source file.

<Package>_<Class>.pxx Private instructions source file.

Derived C++ Files for a Package

<Package>.hxx User header file.

<Package>.ixx User header file included in <Package>.cxx.

<Package>.jxx User header file included in <Package>_[1-9].cxx.

Derived C++ files for a class

<Package>_<Class>.hxx User header file.

<Package>_<Class>.ixx User header file included in <Package>_<Class>.cxx.

<Package>_<Class>.jxx User header file in <Package>_<Class>_[1..9[0..9]*].cxx.

Handle_<Package>_<Class>.hxx Persistent or Transient class header file.

<Package>_<Class>_0.cxx For instantiated classes.

Umake Steps for a Package

The umake steps for development units of package type are explained below.

src Processes the file <MyPackage>.cdl to generate a list of all the CDL files in
the development unit. Processes FILES to list source files.

xcpp.fill Compiles the internal data structure to prepare for subsequent extractions.

Development Process

 25

xcpp.src Lists the source files (.cxx, .gxx, .lxx) deduced from the CDL files.

xcpp.header Extracts header files for the classes in the
development unit.

xcpp.template (Hidden step.) Extracts a template for implementation of methods.

obj.inc Based on the list of source files generated by the src and xcpp.src steps, this
step publishes the include files for the development unit so that other units can use them.

obj.cgen Processes the source files to generate code.

obj.comp Compiles each file that can be compiled.

obj.idep Generates dependency information for the unit. This
comprises:

- Includes performed by unit compilation (Unit.MakeState)

- Implementation dependencies in terms of the unit suppliers
(Unit.ImplDep)

obj.lib Generates the shared library for the development unit.

3.4.2. Creating a Nocdlpack
If your executable requires the use of a nocdlpack, create a development unit of
nocdlpack type and move to its structure using the commands below:

> ucreate -n <MyNoCDLPack>

 > wokcd <MyNoCDLPack>

Use an editor to write FILES. This file must list all the C, C++, Fortran, lex, and yacc
sources.

Build the nocdlpack using the following command:
 > umake [<MyNoCDLPack>]

NOTE

A nocdlpack unit is not intended to perform tests. Use an executable unit instead.

Nomenclature File for a Nocdlpack

FILES: A list of Fortran, C, C++, lex, and yacc files (one per line).

Sample Construction of a Nocdlpack

In the following example a nocdlpack, MyNocdlpack, is created. Commands preceded by
an asterisk below are used only once per session:

1. *Create MyNocdlpack in MyWb.
> ucreate -n <MyNoCDLPack>

2. Move to the source directory of MyNocdlpack.
> wokcd <MyNoCDLPack>

3. Write the FILES list. You do this outside tcl, using the editor of your choice.

4. Write the source code.

5. Build MyNocdlpack.
> umake [<MyNoCDLPack>]

Development Process

 26

Umake Steps for a Nocdlpack

The umake steps for development units of nocdlpack type are explained below.

src Processes FILES to list source files.

obj.cgen Processes the source files to generate code.

obj.inc Based on the list of source files, this step publishes the header files for the unit
so that other units can use them.

obj.comp Compiles each file that can be compiled.

obj.idep Generates dependency information for the unit. This comprises:

- Includes performed by unit compilation. (Unit.MakeState)

- Implementation dependencies in terms of the unit suppliers. (Unit.ImplDep)

obj.lib Generates the shared library for the unit.

3.4.3. Creating a Schema
If the application, which you intend to build, stores data in a file, you need to define a
schema for the persistent data types that are known.

You create a schema and go to its root directory using the commands:
> ucreate -n <MySchema>

> wokcd <MySchema>

Using the editor of your choice, write a .cdl file to define the schema. This schema file lists
all the packages that contain persistent data types used in the implementation of your
application. It has the following format:

schema MySchema

is

class <MyClass> from <Package>;

end;

Building a Schema

Compile and check the coherence of the CDL specification for the schema:

> umake -e xcpp.fill

Extract the C++ description:
> umake -o xcpp

Compile the C++ description of the schema:
> umake -o obj

Alternatively, the above three steps can all be carried out by one command:
> umake

Sample Construction of a Schema

In the following example the schema MySchema is created. It contains all the schemas of
the persistent classes of your own packages and the packages they depend on.
Commands preceded by an asterisk below are used only once per session:

1. *Create MySchema in MyWb.
> ucreate -s MySchema

Development Process

 27

2. Move to the source directory of MySchema.
> wokcd MySchema

3. Edit the source file MySchema.cdl. You do this outside tcl, using the editor of your
choice.

4. Derive implementation files.
 > umake -e xcpp.sch

5. Derive application schema files.
 > umake -o xcpp.ossg

6. Compile the schema.
 > umake -o obj

Schema Files

Primary Files for a Schema

<Schema>.cdl Primary schema file.

Derived C++ Files for a Schema

<Schema>.hxx User header files.

<Schema>.cxx Schema implementation files.

<Sch_MyPack_MyClass>.cxx Schema implementation files.

Umake Steps for a Schema

The umake steps for development units of schema type are explained below.

src Processes <MySchema>.cdl to generate a list of CDL files for the
development unit. Processes the FILES file to list source files.

xcpp.fill Compiles the internal data structure to prepare for subsequent extractions.

xcpp.sch Extracts the schema implementation code.

obj.comp Compiles the extracted files that can be compiled.

obj.lib Generates the shared library for the unit.

obj.idep Generates dependency information for the schema.

3.5. Building an Executable

3.5.1. Creating an Executable
To make an executable from one or more of the packages, which you have created, write
a .cdl file to specify the packages to use.

Writing an Executable

Refer to the CDL User’s Guide for full details. A simple example is given below.
executable <MyExec>

-- the executable unit

is

executable myexec

-- the binary file

Development Process

 28

uses

Tcl_Lib as external

is

myexec;

-- the C++ file

end;

-- several binaries can be specified in one .cdl file.

executable myex2

is

myex2;

end;

end;

Write the C++ file(s). For the example above you write the files: myexec.cxx and
myex2.cxx.

Building the Executable

To build the executable, use the command:
 > umake

Construction of an Executable

In the following example an executable, MyExec, is created in the workbench MyWb.
Commands preceded by an asterisk below are used only once per session:

1. *Create MyExec in MyWb.
 > ucreate -x MyExec

2. Move to the source directory of MyExec.
 > wokcd MyExec

3. Edit the cdl source file (MyExec.cdl). You do this outside tcl, using the editor of your
choice.

4. Edit the C++ files (AnExe.cxx etc.). You do this outside tcl, using the editor of your
choice.

5. Build MyExec.
 > umake

6. Run the executable file.
 > wokcd -PLib

> MyExec

Executable Files

Primary Files for an Executable

<Exec>.cdl Primary executable file

C++ Files for an Executable

<AnExe>.cxx Source file

<AnExe>_[1-9].cxx Other source files

Umake Steps for an Executable

Development Process

 29

The umake steps for development units of executable type are explained below.

src Processes <MyExe>.cdl to generate a list of CDL files for the development unit.
Processes FILES to list source files.

src.list Based on <MyExe>.cdl, works out the list of parts and the source files involved for
each part.

exec.comp Compiles the files that can be compiled for each part of the executable.

exec.idep Generates dependency information for each part of the executable.

exec.libs Computes full implementation dependency to prepare for linking for each part of
the executable.

exec.tks Performs toolkit substitution according to TOOLKITS for each part of the
executable.

exec.link Links each part of the executable.

3.6. Test Environments

3.6.1. Testing an Executable
To test an executable, you create an executable development unit and move to its
structure. See the “Building an Executable” section for details.

When you write the .cdl file for your test executable, specify the packages to test, for
example:

executable <MyTest>

-- the executable unit

is

executable mytest1

-- the binary file

is

mytest1;

-- the C++ file

end;

-- several binaries can be specified in one .cdl file.

executable mytest2

is

mytest2;

end;

end;

Write the C++ test file(s). For the example above you write the files:

mytest1.cxx and mytest2.cxx.

Building the Executable

To build the executable use the command:
> umake

Sample Construction of a Test Executable

Development Process

 30

The overall process of constructing a test executable is the same as for any other
executable. For a sample, refer to the “Construction of an Executable” section.

Setting up a Test Environment

To set up a test environment, move to the /drv subdirectory that corresponds to the
current profile (e.g. the directory: /MyExec/drv/DFLT/sun directory) and run the executable
test file.

> wokcd -PLib

> wokenv -s

> myApp

The command wokenv is used -s option to configure the test environment.

The command wokenv –s uses the current workbench to decide what actions are
needed to configure the tcl shell for use as your test environment.

WOK sets the following environment variables:

$STATION

The current station.

$TARGET_DBMS

The current database platform.

$PATH

The current path, plus the bin directories of the parcels.

$LD_LIBRARY_PATH

The current path, plus the lib directories of the parcels.

WOK then sets a variable for each parcel listed in the parcel configuration of the current
workshop. This variable is the original name of the delivery unit in the uppercase, with the
suffix HOME. $<ORIGDELIVUNIT>HOME is set as the root directory of the parcel.

WOK then sources the following files:

• <MyFactory>.tcl, found in the admin directory of the factory.

• <MyWorkshop>.tcl found in the admin directory of the workshop.

Then for each Workbench, WOK sources according to the hierarchy of the workbenches:

• <Workbench>.tcl, found in the /Adm directory of the workbench.

After the environment is set up, you are at a C shell prompt and can run the executable.

NOTE

Environment variables are only set when the command is used with the option -s.
Thus, if you change a workbench or a factory within WOK and then return to the
test environment you must use wokenv -s to ensure that the set environment
variables configuration is correct for the current WOK state.

The configuration actions that WOK performs can be written to a file and saved as a
script. You can then edit this script to suit it to your own needs, and generate a
personalized test environment. To create the script file use the following command:

> wokenv -f <ScriptFile> -t csh

This commands generates a file, <ScriptFile>, which configures a C shell to mirror the
current WOK environment. An example script file is given below.

Development Process

 31

Example

Example
setenv STATION “sil”

setenv TARGET_DBMS “DFLT”

setenv KERNELHOME “/adv_22/WOK/BAG/KERNEL-K1-2-WOK”

setenv LD_LIBRARY_PATH “/adv_22/WOK/BAG/wok-K1-
2/lib/sil:/adv_22/WOK/BAG/KERNEL-K1-2-WOK/sil/lib/”

setenv PATH
“/usr/tcltk/bin:/usr/bin:/bin:/usr/bin/X11:/lib:.:/SGI_SYSTEM/util
_MDTV/factory_proc:/adv_22/WOK/BAG/KERNEL-K1-2-WOK/sil/bin/”

source /adv_22/WOK/BAG/KERNEL-K1-2-WOK/adm/Kernel.csh

3.7. Building a Toolkit

3.7.1. Creating a Toolkit
You create and enter a toolkit development unit using the following commands:
 > ucreate -t <TKMyToolkit>

 > wokcd <TKMyToolkit>

Write the Nomenclature File for the Toolkit

Using an editor, write a nomenclature file called PACKAGES which lists all the packages,
one per line, that make up the toolkit. Add PACKAGES to FILES.

Build the shareable library for this toolkit as follows:
> umake [<TKMyToolkit>]

NOTE

When one of the packages in the toolkit is modified, recompile the toolkit. A
package should belong to one toolkit only.

Sample Construction of a Toolkit

In the following example, the toolkit TKMyToolkit is created. Commands preceded by an
asterisk below are used only once per session:

1. *Create MyToolkit in MyWb.
> ucreate -t TKMyToolkit

2. Move to the source directory of MyToolkit.
> wokcd TKMyToolkit

3. Edit the nomenclature files, PACKAGES and FILES. You do this outside tcl,

using the editor of your choice.

4. *Create the library for MyToolkit
 > umake TKMyToolkit

Umake Steps for a Toolkit

The umake steps for development units of toolkit type are explained below.

src Processes FILES to list source files.

Development Process

 32

lib.list Works out the objects and archive library to add to the toolkit shared
library.

lib.limit Manages the build process strategy within the limitations of a
particular platform.

lib.arch Builds archives according to the building strategy.

lib.uncomp Uncompresses third party archives.

lib.arx Extracts object files from archives.

lib.build Generates the shared library for the toolkit.

Building strategy depends on the platform. The following step sequences apply:

• sun (Solaris):

src

lib.list

lib.arx

lib.build

• sil (IRIX):

src

lib.list

lib.uncomp

lib.build

The TOOLKITS File

When executables are compiled, a TOOLKITS file is used to determine which toolkits are
included. This file is located in the src directory of the entity being compiled. The process
is as follows:

No TOOLKITS file found:

All toolkits are candidates for substitution. To find out which toolkits are candidates,
use the command: w_info -k.

Empty TOOLKITS file found:

No toolkit is a candidate for substitution.

Non-empty TOOLKITS file found:

Only those toolkits listed in the TOOLKITS file are candidates for substitution.

Toolkit Substitution

Toolkit substitution is performed as follows:

MyEngine uses:

A, B and C

The toolkit TK provides:

A and D

D uses: E

Compilation of MyEngine includes:

TK, B C and E

Development Process

 33

Here, for simplicity, assume that additional toolkits are not substituted for B, C and E.

3.8. Building a Delivery Unit

3.8.1. Creating a Delivery Unit
> ucreate -d <MyDeliveryUnit>

Writing the COMPONENTS File

Create a file named COMPONENTS in the src subdirectory of the delivery development
unit. List in this file the prerequisites of the delivery and the components that are part of
the delivery. Use the syntax shown below.

Note that keywords and default options are shown in bold.

Syntax for a COMPONENTS File

Name ParcelName

Put path

Put include

Put lib

Requires DeliveryName*

Package MyPack [CDL][LIBRARY][INCLUDES][SOURCES]

Nocdlpack MyNcdl [LIBRARY][INCLUDES][SOURCES]

Executable MyExec [CDL][DYNAMIC][SOURCES]

Interface MyIntf [CDL][STUB_SERVER][SOURCES]

Client MyClient [CDL][STUB_CLIENT][SOURCES]

Engine MyEng [CDL][DYNAMIC][SOURCES]

Schema MyShma [CDL][LIBRARY][SOURCES][DOC]

Toolkit MyTk [LIBRARY][SOURCES]

Get DevelopmentUnitName::Type:::File

* Without mention of the version

If no keywords are specified then all the default arguments shown in bold are taken into
account. To select arguments, list the ones required explicitly. The arguments are
explained below:

Name The full name of the current delivery, including a version number. This is the
name of the parcel.

Put path Requires that the delivery be inserted in the user path (bin directory).

[CDL] Copy the cdl files to the delivery.

[LIBRARY] Generate the static library.

Copy the shareable library to the delivery.

Copy the list of objects of the library.

 [INCLUDES] Generate includes.origin.

Copy the includes to the delivery.

Development Process

 34

Copy the ddl to the delivery.

[DYNAMIC] Select to copy the static or dynamic executable file.

[SOURCES] Copy the source files.

Build the Delivery

To build the delivery unit, use the command:
> umake <MyDeliveryUnit>

The result of building a delivery unit is a parcel, which can be installed in a warehouse
and used by other workbenches.

Sample Delivery of a Parcel

In the following example a delivery is created, compiled and made into a parcel.
Commands preceded by an asterisk below are used only once per session:

1. Move to the root workbench under which the parcel is to be made.
> wokcd MyRootWb

2. *Create MyDelivery in MyRootwb.
> ucreate -d MyDelivery

3. Move to the source directory of MyDelivery.
> wokcd MyDelivery

4. Use an editor to list all the prerequisites and components of the delivery in the
COMPONENTS files using the appropriate syntax.

5. Build MyDelivery.
> umake MyDelivery

The output of the umake process is a parcel

Umake Steps for a Delivery Unit

The umake steps for development units of type delivery are explained below.

src Processes FILES to list source files.

base Creates directories, defines the list of units, copies the parcels and the release
notes.

get.list Lists files to get (using Get, Resource).

get.copy Copy the files listed by get.list.

cdl.list Lists CDL files to copy.

cdl.copy Copies the files listed by cdl.list.

source.list Lists units from which sources are to be copied.

source.build Creates a file for sources (in the format: <unit>.<type>.Z).

inc.list Lists includes to copy.

inc.copy Copies files listed by inc.list.

lib.shared Works out the inputs for building or copying shareable libraries.

lib.shared.build Copies or builds (depending on the platform) the shareable libraries.

lib.server.list Lists interface files to copy.

exec.list Lists inputs for executable delivery.

Development Process

 35

exec.build Creates executable in the parcel.

files Works out the list of files delivered in the parcel.

3.8.2. Installing a Parcel
You open the root workbench of the workshop where you want to install the parcel using
the following command:

> wokcd <MyWorkshop>

To install the parcel, use the following syntax:
> pinstall <MyParcel>

3.9. Working with Resource
Building a Resource

Umake Steps for a Resource Unit

There is a single umake step for development units of resource type.

src Processes FILES to list source files.

3.10. Java wrapping

3.10.1. Creating an interface

To create an interface development unit and move to its structure, use commands:

> ucreate -i <MyInterface>

> wokcd <MyInterface>

Writing an Interface

Having created the interface, you select the classes and packages that you wish to make
available for Java wrapping in the jni units. Use an editor of your choice to write a .cdl
interface file that specifies these exported services. This file has the format:

interface <MyInterface>

uses

 <ListOfPackages>;

is

 <ListOfPackages>;

 <ListOfClasses>;

 <ListOfMethods>;

end;

Development Process

 36

Building an Interface

To make the services of the interface available for further wrapping, build the interface,
using the command:

> umake [<MyInterface>] -o src

Sample Construction of an Interface

In the following example a workbench, MyWb, is used for working on the interface
MyInterface. Commands preceded by * (asterisk) are used only once during a session.

1. *Create MyInterface in MyWb.

>ucreate -i MyInterface

2. Move to the source directory of MyInterface.

>wokcd MyInterface

3. Edit the source file MyInterface.cdl. You do this outside tcl, using an editor of your choice.

4. Build the interface.

> umake -o src

Interface Files

Primary files for an interface

<Interface>.cdl Primary interface file

Umake Steps for an Interface

The umake steps for development units of type interface are explained below.

src Processes <MyInt>.cdl to list the CDL files for the development unit.
Processes the FILES file to list source files.

NOTE

Development Process

 37

Make sure you only use the "src" step of umake. Using umake without arguments will lead
to an attempt of launching other steps relevant to the interface unit. However these steps
will fail and anyway are not required for use in Java wrapping.

3.10.2. Creating a jni
To create a development unit of type jni and move to its structure, use commands:

> ucreate -j <MyJni>

> wokcd <MyJni>

Writing a Jni

Use an editor to write a .cdl file that specifies the interface or interfaces required by the jni.
This file has the following format:

client <MyJni>

is

{interface <MyInterface>;}

{interface <YourInterface>;}

end;

Building a Jni

To wrap services exported by the interfaces to Java, build the jni, using the command:

> umake [<MyJni>]

Sample Construction of a Jni

In the following example a workbench, MyWb, is used for working on the jni, MyJni.
Commands preceded by * (asterisk) are used only once during a session.

1. *Create MyJni in MyWb.
> ucreate -j MyJni

2. Move to the source directory of MyJni.
> wokcd MyJni

3. Edit the source file MyJni.cdl. You do this outside tcl, using an editor of your choice.

4. Derive Java files (.java and .class files) and C++ files (.h and .cxx) used for wrapping.
> umake -e xcpp

Development Process

 38

5. Compile the sources.
> umake -o obj

6. Link the object files.
> umake -o exec

Jni Files

Primary files for a Jni

<Jni>.cdl Primary jni file.

Derived Java files for a Jni

<Package>_<Class>.java Java source file of the class to be
wrapped.

<Package>_<Class>.class Compiled java source file.

Derived C++ files for a Jni

<Jni>_<Package>_<Class>_java.h Include file for the C++ implementation of JNI.

<Jni>_<Package>_<Class>_java.cxx C++ implementation of JNI.

Umake Steps for a Jni

The umake steps for development units of type jni are explained below.

src Processes <MyJni>.cdl to list the CDL files for the development unit.
Processes the FILES file to list source files.

xcpp.fill Compiles the internal data structure to prepare for subsequent extractions.

xcpp.client Extracts the services declared in included interface unit(s) into Java
and creates .java and *_java.cxx files.

xcpp.javac Compiles .java files into .class files.

Development Process

 39

xcpp.javah Creates .h header files.

obj.comp Compiles generated C++ files.

obj.idep Generates dependency information for the unit.

exec.libs Computes full implementation dependency to prepare for linking.

exec.tks Performs toolkit substitution.

exec.link Generates the shared library for the development unit.

3.11. More Advanced Use

3.11.1. Default User Profile
There is a default user profile. If you wish to change this profile the command
wokprofile is available.

You display the current profile using the following command:

> wokprofile

An example profile is given below.

Figure 8. Profile Message Displayed when Opening a Workbench

3.11.2. Changing Parcel Configuration
Reserved for Advanced Users

Parcel configuration rarely needs to change. However, if you do need to modify the list of

Development Process

 40

resources, you can do so by editing the admin parameter file of the factory. This file is
found in the admin directory of the factory and is named after the workshop. It has the
suffix .edl. Its full name has the following format:

Info : Profile in : WOK:k1dev:ref

Info : Extractor : DFLT

Info : Compile Mode : Optimized

Info : Station Type : sil

<MyWorkshop>.edl.

Move to the admin directory of the factory:
> wokcd <MyFactory> -PAdm

Then use the editor of your choice to edit the admin parameter file, <MyWorkshop>.edl.

In this file, the parcel configuration is defined by an entry of the form:
@set %<MyWorkshop>_ParcelConfig = “Parcel1

Parcel2...Parceln”;

The resources are listed within quotation marks. They are separated by spaces.

Edit this list as required. Save the file and close it.

To validate and take into account your changes use the command:
> wokclose -a

This command closes and reopens all the entities. Without the -a option, wokclose
only applies to the current entity.

Available Services

 41

4. Available Services
4.1. Synopsis

WOK provides sets of services, which can be grouped according to the entity they apply
to:

• General Services

• Factories

• Warehouses

• Parcels

• Workshops

• Workbenches

• Development Units

• Source Management Services

• Session Services

4.1.1. Common Command Syntax
Command Names

All WOK commands follow a common naming convention. This is based on a set of
common command names and a group of prefixes, which denote entity type. The
command name takes a prefix representing the entity to which it applies.

The following prefixes exist:

• f: for factories

• s: for workshops

• w: for workbenches

• u: for development units

• W: for warehouses

• p: for parcels

• wok: for commands that apply to any type of entity

These prefixes are followed by a command that determines the action to be executed.
Examples of such commands are:

• create: create an entity

• rm: delete an entity

• info: request information

Consequently, the command ucreate creates a development unit. The command wrm
removes a workbench.

Command Options

All command options are expressed using a dash (-) followed by one or more key letters
and, if applicable, an argument. For example:

Available Services

 42

> umake -f -o <argument> MyUnit

The compact version of this syntax is also valid:
> umake -fo <argument> MyUnit

This syntax conforms to the POSIX recommendations for UNIX commands.

For all commands, there is a –h option, which displays help on usage.

Presentation of Commands

The general syntax of the commands is presented in this document as follows:
CommandName [option(s) [<argument(s)>] [<Entity>]]

Consequently, there are four general cases for a command:
CommandName <Entity>

CommandName <option(s)> [<argument(s)>] <Entity>

CommandName <option(s)> [<argument(s)>]

CommandName

NOTE

A few commands described in this chapter do not completely respect this syntax;
for example, create and rm.

As a rule, where an <EntityPath> is given as an argument it specifies which entity the
command applies to. Where no <EntityPath> is specified, the command applies to the
nearest appropriate entity. The create and rm commands are notable exceptions: you
must specify an entity path with these commands.

4.2. General Services
General services are commands that apply to any entity manipulated by WOK.

This includes commands for:

• Navigation

• Managing parameters

• Managing profiles.

wokcd Navigates between different WOK entities.

wokclose Closes and reopens entities.

wokenv Gets information about the current WOK environment.

wokinfo Displays information common to all entities.

woklocate Locates files within the development units.

wokparam Queries parameters.

wokprofile Modifies the parameters of the session.

4.2.1. wokcd
wokcd

wokcd <EntityPath>

wokcd -P <ParamSuffix> [<EntityPath>]

Available Services

 43

Navigates between different WOK entities and changes the current working directory.
Without any arguments wokcd lists the current position (the WOK equivalent of ‘pwd’).
With an argument, wokcd moves to the specified location.

Options:

<EntityPath> Moves to the home directory of the entity specified by <EntityPath>,
i.e. moves to the location given by the parameter: %wokcd <EntityPath>_Home.

-P <ParamSuffix> [<EntityPath>]

Moves to the <ParamSuffix> directory of the entity specified by <EntityPath>. i.e.
moves to the location given by the parameter: %<EntityPath>_<ParamSuffix>. If no
entity path is specified, this command moves to the <ParamSuffix> directory of the
current entity.

Possible values for <ParamSuffix> are: Home, Adm and Src.

Use the following commands to change directories within a development unit:

wsrc To access the source files.

winc To access the include files.

wobj To access objects.

wlib To access shareable libraries.

wbin To access executables.

wadm To access the workbench administration files.

Examples
wokcd

Lists the current position.
wokcd MODEL:GTI:gti:gp

Moves to the home directory of the gp package of the gti workbench in the GTI
workshop in the MODEL factory.

wokcd -P Adm

Moves to the administration directory of the current entity.

4.2.2. wokclose
wokclose [-a]

Closes and reopens entities, i.e. reloads them into memory thus taking any changes into
account.

Options:

-a Closes and reloads all entities.

Examples
wokclose

Closes and reopens the current entity.
wokclose -a

Closes and reopens all the entities.

Available Services

 44

4.2.3. wokenv
wokenv -f <ScriptFile> -t csh

Creates the file <ScriptFile>. This file is a script, which configures a C shell to mirror the
current WOK environment. See the “Test Environments” section for more details.

Options:

-f <ScriptFile>

Specifies the name of the file to produce.

-t csh

Produces a file for configuring a C shell.

-s

Setting up environment variables for application launching.

Example
> wokenv -f MyTestEnvScript -t csh

Generates the shell script MyTestEnvScript to configure a C shell so that it mirrors the
current WOK environment.

4.2.4. wokinfo
wokinfo -<option> [<EntityPath>]

wokinfo -<option> <argument> [<EntityPath>]

Displays information about <EntityPath>. The information displayed is common to all the
entities. If no <EntityPath> is specified, information about the current entity is returned.

This command can be used to find the path of a file.

Options:

-t

Returns the type of entity (factory, warehouse, parcel, workbench, development unit).

-T

Lists the types of files known in the entity.

-f

Gets factory from path.

-N

Gets nesting path, i.e. where the current entity is nested.

-n

Gets entity name.

-P

Gets parcel from path.

-s

Gets workshop from path.

-u

Gets development unit from path.

Available Services

 45

-W

Gets warehouse from path.

-w

Gets workbench from path.

-x

Tests if entity exists.

-d <type>

Gets type definition.

-a <type>

Gets type arguments.

-p <type>:<filename>

Gets the path for a file, which is of the type <type> that depends on %File. In other
words, the path for a file of this type depends on the file name, <filename>.

-p <type>

Gets the path for a file, which is of the type <type> that is not %File dependent, for
example EXTERNLIB.

Examples
wokinfo -p source:gp.cdl MODEL:GTI:gti:gp

Returns the path of the source file gp.cdl in the MODEL:GTI:gti:gp.
wokinfo -t MODEL:GTI:gti:gp

Returns the development unit.

4.2.5. woklocate
woklocate -<option> <argument> [<WorkbenchPath>]

woklocate -P [<WorkbenchPath>]

Using <WorkbenchPath> as the starting point, this command locates files associated with
the development unit and specified by the argument <argument>.

Options are:

-f <Unit:Type:File>

Locates a file and gives its ID.

-p <Unit:Type:File>

Locate a file and give its path.

-u <Unit>

Locates a development unit.

-P

Displays all available WOK public types.

Example
woklocate <MyFile>

Displays the location of the file, MyFile.

Available Services

 46

4.2.6. wokparam
wokparam -<option> [<EntityPath>]

wokparam -<option> <argument> [<EntityPath>]

Queries system parameters such as variables and templates. For more information about
parameters refer to the appendix “Parameters and EDL Files” at the end of this User’s
Guide. If an <EntityPath> is specified this indicates the entity to which the command
applies.

Options:

-L

Lists the directories used to search for the parameter files.

-C

Displays the subclasses list.

-a <TemplateName>

Gets arguments for the template <TemplateName>.

-e <ParamName>

Evaluates the parameter <ParamName>.

-F <ClassName>

Displays the files comprising the definition of the class <ClassName>.

-l <Class>

Lists parameters concerning class (prefix) class.

-S <FileName>

Finds the first file <FileName> in the list of directories cited afterwards.

-t <Name>

Tests if the variable <Name> is set.

-v <ParamName>

Displays the value of the parameter <ParamName>.

-s <Name>=<Value>

Reserved for advanced use. Sets the variable <Name> to value <Value>.

-u <Name>

Reserved for advanced use. Unsets the variable <Name>.

Examples
wokparam -L MODEL:GTI:gti

Returns a list of directories used for parameters by the gti workbench.
wokparam -S CSF.edl

Locates the nearest CSF.edl file used by the current entity.
wokparam MODEL:GTI:gti:gp -e %WOKUMake_Steps

Displays the value of the %WOKUMake_Steps parameter in the gp package.
The %WOKUMake_Steps parameter contains a description of the steps used
by umake.

Available Services

 47

4.2.7. wokprofile
wokprofile

wokprofile -<option> [<argument>]

Modifies session parameters. This command changes the mode of the current compilation
and the profile of the current database. It also displays the current value of the session
parameters. If no argument is specified, it displays the values of different parameters in
the current session as well as the current position (wokprofile -v).

Options:

-b

Returns the current database profile (OBJS, DFLT).

-d

Switches to compilation with debug.

-m

Returns the current compilation mode.

-o

Switches to optimized compilation.

-s

Returns the current station type

-v

Switches to wokprofile verbose mode. In this mode all the parameters of the session
are displayed. Running this command displays the current/changed profile.

-B <DB>

Do not use this option. Changes the current database to <DB>. DB is one of the
following: DFLT|OBJS. -S <Station>

-S <Station>

Do not use this option. Sets the station type.

Examples
wokprofile

Displays all the session parameters.
wokprofile -b

Displays the current database profile.
wokprofile -v -o

Switches to optimized compilation and displays the parameters of the current session
after the change has been made.

wokprofile -o -v

Switches to optimized compilation and displays the parameters of the current session
after the change has been made. Note that the order in which these options are
specified does not affect the result.

Available Services

 48

4.3. Services Associated with Factories
There is a dedicated list of commands for the management of factories. The commands to
create and destroy factories are reserved for the exclusive use of the site administrator.

fcreate Creates a factory.

finfo Displays information about the factory.

frm Deletes a factory if it is empty.

4.3.1. fcreate
Reserved for administrator’s use
fcreate -<option> [-D <Suffix>=<Value>]* <EntityPath>

Creates a factory. The name of the factory to create is specified by <EntityPath>. You can
also specify the entity that will contain the entity to be created.

Once the creation is completed, a file containing the parameters of the creation of the
factory is created in the administration directory of the container to which the factory
belongs.

Parameters:

The following parameters are mandatory when a factory is created:

Adm

Path name for administration directory

Home

Path name for home directory

Stations

List of supported stations

DBMSystems

List of supported dbms

Warehouse

Name of factory warehouse.

Options:

-P

(Propose defaults.) Returns a list of default values for the parameters necessary for
the creation of the factory. No entity is created if this option is used.

-d

(Use default) Uses default values to create the factory.

-D <Suffix>=<Value>

Defines parameter(s). Specifies the value to use for the given parameter(s) explicitly.
This option can be used in conjunction with the –d option to take default values for all
the mandatory parameters except the parameter(s) explicitly specified here.

Examples
fcreate -P NewFactoryName

Available Services

 49

Returns a list of default values for the parameters that are mandatory when
creating a factory.

fcreate MyFactory -d -DHome=/fred/myfactory

Creates the factory MyFactory using default values for all mandatory parameters, except
for Home, which is set to: /fred/myfactory

4.3.2. finfo
finfo -<option> [<EntityPath>]

Displays details about the factory. If an <EntityPath> is specified this determines the
factory to apply to. If no entity path is given, the command applies to the nearest factory.

Options:

-s

Displays a list of workshops in the factory.

-W

Displays the name of the warehouse in the factory.

-S

Displays the name of the source repository.

Examples
finfo -s

Displays a list of workshops in the nearest factory.
finfo MyFactory -W

Displays the name of the warehouse in MyFactory.

4.3.3. frm
Reserved for administrator’s use
frm <EntityPath>

Deletes the factory specified by <EntityPath> if it is empty. You must not be in the factory
you intend to destroy.

Example
frm MyFactory

Deletes the factory MyFactory provided that it is empty.

4.4. Services Associated with Warehouses
A warehouse contains the parcels that are available in a factory. There is a dedicated list
of commands for management of warehouses.

The commands you use to create and destroy the warehouses are reserved for the
exclusive use of the site administrator.

Wcreate

Creates a warehouse.

Winfo

Available Services

 50

Displays information about the warehouse

Wrm

Deletes a warehouse if it is empty.

Wdeclare

Declares a parcel in the warehouse.

4.4.1. Wcreate
Reserved for administrator’s use.
Wcreate [-<option>] -D<Suffix>=<Value>* <WarehouseName>

Wcreate -<option> [-D <Suffix>=<Value>]* <WarehouseName>

Creates a warehouse. The name of the warehouse to create is given by
<WarehouseName>. You can also specify the factory that will contain the warehouse.

Once the creation is completed, a file containing the parameters of warehouse creation is
in its turn created in the administration directory of the factory to which the warehouse
belongs.

Parameters:

The following parameters are mandatory when a warehouse is created:

Adm

Path name for administration directory.

Home

Path name for home directory.

Stations

List of supported stations.

DBMSystems

List of supported dbms.

Options:

-P

(Propose defaults.) Returns a list of default values for the parameters necessary for
the creation of a warehouse. No entity is created if this option is used.

-d

(Use defaults.) Uses default values to create the warehouse.

-D <Suffix>=<Value>

(Define parameter.) Explicitly specifies the value to use for this parameter. This option
can be used in conjunction with the –d option to take default values for all the
mandatory parameters except the parameter(s) explicitly specified here.

Examples
Wcreate -P MyWarehouse

Returns a list of default values for the parameters that are mandatory when
creating a warehouse.

Wcreate MyWarehouse -d

Available Services

 51

Creates the warehouse MyWarehouse using default values for all mandatory
parameters.

4.4.2. Winfo
Winfo -p [<EntityPath>]

Displays details about the warehouse and its contents. If an <EntityPath> is specified, this
determines the warehouse to apply to.

Options:

-p

Displays the parcels in the warehouse.

Example
Winfo -p

Displays a list of parcels in the current warehouse.

4.4.3. Wrm
Reserved for Administrator’s Use.
Wrm <EntityPath>

Deletes the warehouse specified by <EntityPath> if it is empty. You should not be in the
warehouse you intend to destroy.

Example
Wrm MyWarehouse

Deletes the warehouse MyWarehouse provided that it is empty.

4.4.4. Wdeclare
Reserved for administrator’s use
Wdeclare -p<Parcel> [-d] [-D<ParamName>=<Value>]* <House>

Declares the parcel, <Parcel>. This command adds the parcel to the list of parcels
available in the warehouse <House>.

Note that a factory has a default list of deliveries (which are represented by parcels)
available to it. This list only needs to be modified when moving to a new version of the
delivery. This is done using the Wdeclare command, and then by editing the .edl file of
the appropriate workshop.

Parameters:

The following parameters are mandatory when declaring parcels:

Adm

Path name for administration directory of a parcel.

Home

Path name for home directory of a parcel.

Stations

List of available stations.

Available Services

 52

DBMSystems

List of available dbms.

Delivery

Delivery name.

Options:

-p <Parcel>

Defines the name of the parcel to declare. This name must be given with the option.

-d

Creates a parcel using defaults.

-P

Proposes defaults.

Example
Wdeclare -pMyParcel -d MyWarehouse

Adds the parcel MyParcel to the warehouse MyWarehouse.

4.5. Services Associated with Parcels
A parcel is a receptacle for development units. You use it to group together the units,
which comprise a delivery unit. There is a dedicated list of commands for management of
parcels. Only the site administrator should perform installation of parcels in a warehouse.

pinfo Displays information about the contents of the parcel

pinstall Installs the parcel in a Warehouse.

4.5.1. pinfo
pinfo -<option> [<ParcelPath>]

Displays details about the contents of the parcel. If <ParcelPath> is specified this
determines the parcel to apply to. If no parcel path is specified the command applies to
the nearest parcel.

Options:

-d

Displays the delivery contained in the parcel.

-l

Displays the development units in the parcel.

-a

Lists the development units in the parcel together with their types.

Examples
pinfo -l MyParcel

Displays a list of units in the parcel MyParcel.

Available Services

 53

4.5.2. pinstall
Reserved for administrator’s use
pinstall <ParcelName>

Installs the parcel <ParcelName> in the current warehouse. The process of installing a
parcel sets up various paths and variables to ensure that the application can locate
necessary resources and so on.

The administrator must perform pinstall for each platform used.

Example
pinstall MyParcel

Installs the parcel MyParcel in the current warehouse.

4.6. Services Associated with Workshops
A workshop is a tree of workbenches using the same parcel configuration. There is a
dedicated list of commands for management of workshops. The commands to create and
destroy workshops are reserved for the exclusive use of the site administrator.

screate Creates a workshop.

sinfo Displays information about the workshop

srm Deletes a workshop if it is empty.

4.6.1. screate
Reserved for administrator’s use
screate [-<option>] {-D<Suffix>=<Value>}* <WorkshopName>

screate -<option> <WorkshopName>

Creates a workshop, <WorkshopName>. You can also specify the factory that contains
this workshop.

Once the creation is completed, a file containing the parameters for the creation of the
workshop is generated in the administration directory of the factory to which it belongs.

Parameters:

The following parameters are mandatory when creating a workshop:

Adm

Path name for administration directory.

Home

Path name for home directory.

Stations

List of supported stations.

DBMSystems

List of supported dbms.

ParcelConfig

List of parcels used.

Available Services

 54

Workbenchlist

Path name for the list of workbenches.

Options:

-P

(Propose defaults.) Returns a list of default values for the parameters necessary for
the creation of a workshop. No entity is created if this option is used.

-d

(Use defaults.) Uses default values to create the workshop.

-D <Suffix>=<Value>

(Define parameter.) Specifies the value to use for this parameter explicitly. This option
can be used in conjunction with the –d option to accept default values for all the
mandatory parameters except the parameter(s) explicitly specified here.

Examples
screate -P <WorkshopName>

Returns a list of default values for the parameters that are mandatory for
creating a workshop.

screate MyFactory:MyWorkshop -d

Creates the workshop MyWorkshop in the factory MyFactory, using default
values for all mandatory parameters.

screate -DParcelConfig=Parcel1,Parcel2 MyFactory:MyWorkshop -d

Creates the workshop MyWorkshop in the factory MyFactory, using default
values for all mandatory parameters except for ParcelConfig, which is set to
“Parcel1 Parcel2”.

4.6.2. sinfo
sinfo -<option> [<WorkshopName>]

Displays details about the workshop. If <WorkshopName> is specified this determines the
workshop this command is applied to.

If no workshop is specified the command applies to the nearest workshop.

Options:

-w

Displays a list of workbenches in the workshop.

-p

Displays the parcel configuration of the workshop.

Example
sinfo -w

Displays a list of workbenches in the nearest workshop.

4.6.3. srm
Reserved for administrator’s use
srm <WorkshopName>

Available Services

 55

Deletes the workshop <WorkshopName> if it is empty. You must not be in the workshop
you intend to destroy.

Example
srm MyWorkshop

Deletes the workshop MyWorkshop provided that it is empty.

4.7. Services Associated with Workbenches
A workbench is the place where a developer (or a team of developers) works on a
particular product. There is a dedicated list of commands for management of
workbenches.

wcreate Creates a workbench.

w_info Displays information about a workbench.

wrm Deletes a workbench if it is empty.

wmove Moves a workbench to a new location.

4.7.1. wcreate
wcreate -f <ParentWB> [-D <Suffix>=<Value>]* <WBName>

wcreate -f <ParentWB> -P|d [-D <Suffix>=<Value>]* <WBName>

wcreate -f <ParentWB> -P|d <WBName>

Creates the workbench <WBName> as a child of the workbench <ParentWB>. The result
of this creation is a directory structure.

Compared to the creation of other entities, creating a workbench requires an additional
piece of information: you must specify the parent of the workbench to create.

Once the creation is completed, a file containing the parameters of the creation of this
workbench is created in the administration directory of the workshop that contains it.

Parameters:

The following parameters are mandatory when creating a workbench:

Adm Path name for administration directory.

Home Path name for home directory.

Stations List of supported stations.

DBMSystems List of supported dbms.

Options:

-f

Specifies the parent workbench.

-P

(Propose defaults.) Returns a list of default values for the parameters necessary for
the creation of the workbench. No entity is created if this option is used.

-d

(Use defaults.) Uses default values to create the workbench.

-D <Suffix>=<Value>

Available Services

 56

(Define parameter.) Specifies the value to use for this parameter explicitly. This option
can be used in conjunction with the –d option to take default values for all the
mandatory parameters except the parameter(s) explicitly specified here.

Example
wcreate -P <WorkBenchName>

Returns a list of default values for the mandatory parameters to create a
workbench.

wcreate MyWorkbench -d

Creates the workbench MyWorkbench using default values for all mandatory
parameters.

NOTE

The –f option of this command is not obligatory. The system administrator can
create the root workbench of a workshop without specifying a parent workbench.

4.7.2. w_info
w_info -<option>[<Workbench>]

w_info -<option> <argument>[<Workbench>]

The w_info command is the one exception to the common command syntax. The form
w_info is used instead of winfo because the latter already exists as a tcl/tk command
and cannot be reused as a name by WOK. If <Workbench> is specified, this determines
the workbench to apply to. If no <Workbench> is specified, the nearest workbench is
used.

Using the tcl winfo command by mistake generates an error message, but does not
cause any damage.

Options:

-l

Lists the development units in the workbench.

-a

Lists the development units in the workbench along with their respective types.

-f

Displays the parent workbench.

-A

Lists all the ancestors of the workbench.

-k

Lists visible toolkits.

-S <arg>

Lists suppliers of the unit <arg> within the visibility of the workbench.

-S <execname:partname>

Lists the suppliers of the component executable <partname> within an executable
development unit <execname>.

-I <arg1, arg2 ... argN>

Available Services

 57

Lists the development units, sorted by order of implementation dependency.

Example
w_info -S MyDevUnit

Returns a list of suppliers of the development unit MyDevUnit within the
visibility of the current workbench.

4.7.3. wrm
wrm <Workbench>

Deletes the workbench <Workbench>, provided that it is empty and has no children. You
must not be in a workbench you intend to destroy.

Example
wrm MyWorkbench

Deletes MyWorkbench, provided that it is empty and has no children.

4.7.4. wmove
Reserved for advanced use
wmove -f <NewParentWorkbench> <Workbench>

Moves the workbench <Workbench> (and its children), to a different parent workbench
<NewParentWorkbench> within the same workshop.

Options:

-f <argument> Specifies the new parent workbench.

Example
wmove -f MyOtherWorkbench MyWorkbench

Moves the workbench MyWorkbench to be under MyOtherWorkbench.

4.7.5. wprocess
wprocess <WorkbenchName> <options>

Allows automatic reconstruction of a workbench.

Options:

-DGroups=Obj,Lib,Exec

Selects groups Obj, Lib and Exec.

-DUnits = MyUd1,MyUd2,...

Selects the development units MyUd1, MyUd2 etc.

-DXGroups =Src,Deliv

Excludes groups Obj and Deliv.

-DXUnits=MyUd1,MyUd2,...

Excludes units MyUd1, MyUd2 etc.

-B <Profile>

Selects the extraction profile.

Available Services

 58

-f

Forces all selected steps.

-d | -o

Switches between debug and optimized modes.

-P

Prints out the selected steps.

-S

Silent mode (no print of the banner).

-L

Logs output to MyUD_<step code>. Log in step administration directory.

Valid group names are: Src, Xcpp, Obj, Dep, Lib, Exec, Deliv.

Example
wprocess -DGroups=Src,Xcpp,Obj,Lib,Exec

Compiles the whole workbench

4.8. Services Associated with Development Units
The development unit is the basic building block of development work in the WOK
environment. It is the base component of the Open CASCADE architecture. For a list of
available types of development unit refer to the “Development Units” section. There is a
dedicated list of commands for management of development units.

ucreate Creates a development unit.

uinfo Displays information about the development unit.

urm Deletes a development unit.

umake Builds a development unit.

4.8.1. ucreate
ucreate [-<TypeCode>] <UnitName>

ucreate -P

Creates a development unit. This unit is named <UnitName> and it is of type
<TypeCode>.

Once the creation is completed, a file containing the parameters of the creation of the
development unit is generated in the administration directory of the workbench to which
the development unit belongs.

TypeCodes:

-p

Creates a development unit of type package. This is the default option. Where no
option is specified, a development unit of type package is created.

-n

Creates a development unit of type nocdlpack.

-s

Available Services

 59

Creates a development unit of type schema.

-t

Creates a development unit of type toolkit.

-d

Creates a development unit of type delivery.

-x

Creates a development unit of type executable.

-f

Creates a development unit of type frontal.

-r

Creates a development unit of type resource.

-P

Displays ucreate creation possibilities in format: <TypeCode> <TypeName>

Examples
ucreate -p MyWorkbench:MyPackage

Creates the development unit MyPackage in the workbench MyWorkbench.
The unit is of package type.

4.8.2. uinfo
uinfo -t|c [<UnitPath>]

uinfo -f|F|p [-<FilterOption> [<Type>]]* [<UnitPath>]

Displays details about the development unit. Where no <UnitPath> is specified, details of
the current unit are displayed. Filter options are available for use in conjunction with the
options -f, -F, -p to filter the file list. Combinations of filter options can be used.

Note that the uinfo command is based on the results of construction using umake. As a
consequence, the list of files displayed by uinfo is only valid if the construction has
completed normally. Similarly, the list of files derived from the CDL is only valid if the
CDLs of the unit have been translated successfully.

Options:

-t

Displays the type of the development unit as a string.

-c

Displays the typecode of the development unit, i.e. a single character, as used by
ucreate to indicate package (p), schema (s) and so on.

-f

Displays a list of file names associated with the unit.

-F

Displays a list of file names associated with the unit, together with their respective
types. Types of files include for example: source, library, executable, and pubinclude.
To display a full list of file types, use the command: ucreate.

-p

Available Services

 60

Displays the full paths of the files associated with the unit.

FilterOptions:

-T <Type>

Displays files of type <Type> only.

-i

Displays only “independent” files, i.e. files that are not specific to a DBMS, for example
sources.

-s

Displays only station dependent files.

-b

Displays only DBMS dependent files.

-B

Displays only files that are dependent on both DBMS and Station.

-l

Displays only files that are local to the workbench.

-m

Displays only missing files, i.e. files that are listed, but not found.

-e

Displays only existing files, i.e. files that are listed and found.

Examples
uinfo -Fp

Displays the types, paths and names of all files associated with the unit.
uinfo -f -Tpubinclude MyWorkbench:MyUnit

Lists the names of the header files associated with the unit MyUnit which is in
MyWorkbench.

4.8.3. urm
urm <UnitPath>

Deletes the development unit <UnitPath> along with its directory structure and its files,
even if the unit is referenced by another one.

Example
urm MyBench:MyPack

Deletes the development unit MyPack found in the workbench MyBench.

4.8.4. umake
umake -S [<UnitPath>]

umake [-f][<UnitPath>]

umake [-f]-o<step> [-t<target>]* [-o<step> [-
t<target>]*]*[<UnitPath>]

umake [-f][-s <step>] [-e <step>][<UnitPath>]

Available Services

 61

umake

Builds a development unit. The build process includes compilations, links, and various
other actions, which make the development unit usable. The build process is specific for
each type of development unit, refer to chapter 3 for details.

The following properties apply:

1. There are steps identified by a keyword.

2. The steps involved and their content depends on the type of development unit being
treated.

3. You can ask for single step execution using the -o option.

4. Unless explicitly requested using the –f option, the operations are carried out in those
steps where necessary.

5. Only the development unit being treated is modified.

Used without any arguments the umake command carries out all of the steps appropriate
for the development unit to be constructed. Using keywords and arguments you can
perform the build process step by step.

Options:

-S

Displays the list of steps.

-s <step>

Starts the build process at the step specified.

-e <step>

Ends the build process at the step specified.

-o <step>

Only executes the step specified.

-t <target>

Specifies the target to build.

-f

Forces the build process, skipping the verification of dependencies.

Example
umake gp

Builds the gp package.

Specifying Targets (-t)

The umake command is also used to specify build targets and extract C++ method
prototypes. The following units can be targeted: src, xcpp and obj. The syntax is explained
below.

For delivery units (for all options apart from *.list) the syntax is as follows:
-*.* -t MyDU

umake MyDeliv -olib.shared.build -tMyUD.

src

This target computes a source file list as in the example below:

Available Services

 62

umake -o src MyUnit

xcpp

Extracts C++ header files. For -xcpp.* (with the exception of *.fill), the syntax is

as follows:
umake -o -xcpp.* -t MyPack_MyClass

You extract the method prototypes using the following command:
umake -o xcpp.template [-t<class>|-t<package>]

This syntax of the umake command is only used with packages. It extracts the C++
prototypes of the methods of the classes contained in the package.

The generated files are placed in the src directory of the current package. These files
always have a .template suffix. With each extraction of a class, these files will contain all
the methods of the class.

Prototypes are extracted for:

• Ordinary classes (non-instantiated)

• Generic classes (including nested generic classes)

• Package methods

Classes, which are instantiations of generic classes, are not extracted. Nor are other CDL
types (exceptions, alias, etc.) which have no user implementation.

For each class, we extract the prototypes of:

• Instance methods

• Class methods

• Constructors

The extracted files are the following:

• for an ordinary class C

• C.cxx.template for the non-inline class methods.

• C.lxx.template for the inline class methods.

• for a generic class G

• G.gxx.template for the non-inline class methods.

• G.lxx.template for the inline class methods.

• for a package method P

• P.cxx.template for the non-inline package methods.

• P.lxx.template for the inline package methods.

obj

Specifying the target, obj compiles the object files for one or more files. The syntax for
-obj.* is as follows:
umake -o -obj.* -t MyPack_MyClass.cxx

In a package, the following command executes all construction steps up to and including
obj, doing for each of them only what is strictly necessary:
umake -s obj

The following command will recompile all the primary sources of a package which are out

Available Services

 63

of date:
umake -o obj

4.8.5. Customizing umake
You can use three levels of umake customization for a development unit.

• Compiler and link options, EXTERNLIB

• Step definition

• Tcl umake step implementation

These different levels of complexity correspond to the needs of regular users and more
advanced users.

Modification of Compiler and Link Options and EXTERNLIB

Customization at this level involves setting parameters of existing umake steps using an
.edl file. This file is taken into account each time umake is performed. It contains a series
of assignments or appended variables used when creating the development unit. These
commands can be preceded by instructions dedicated to the preprocessor in order to
adjust its behavior within the actual context.

EXTERNLIB uses resources contained in the Open CASCADE prerequisites. To avoid
referencing the path of these resources more than one time, the user may use the
component EXTERNLIB to include these resources automatically via the link. The file
contains the name of parameters, which are set independently.

The umake command does not generate actual dependencies. To avoid any cumbersome
dependencies, for example, if you do not want the shareable library file for a package but
the package enumeration only, use the INTERNLIB component listed in FILES, to get only
the given dependencies.

In practice, the generated file, <myUD>.ImplDep, in the /drv/adm directory, is copied into
INTERNLIB. INTERNLIB contains lines of enumerations, as below:
Dependence 1

Dependence 2

...

The example below illustrates how you can modify your WOK compiler options. Refer to
“Using EDL to Define WOK Parameters” for an example of how to set link options as well
as for more details about available parameters and .edl files.

Example
-- File Name: Kernel_CMPLRS.edl

-- Copyright: Matra Datavision 1996

#---------------------------------

#// First, ensure that we only execute this file once

@ifnotdefined (%Kernel_CMPLRS_EDL) then

@set %Kernel_CMPLRS_EDL = ““;

#// Then set C++ compilation options,

#// based on workstation type:

@if(%Station == “sil”) then

@set %ModeOpt = “ “;

Available Services

 64

@endif;

@if(%Station == “ao1”) then

@set %ModeOpt = “-g “;

@endif;

@if(%Station == “hp”) then

@string %CMPLRS_C_Options += “ -Aa -D_HPUX_SOURCE +e”;

@endif;

@endif;

Step Definition

The WOK umake command uses a dependency tree. This dependency tree is a graph
that shows the umake steps, their inputs and their dependencies. You use it to perform
the build, for example to ensure that only files, which have changed, and the files, which
depend on these modified files, are recompiled.

This dependency tree is defined in an .edl file. The steps are listed in an order. Each is
assigned a name and has its inputs specified. The output of one or more steps is the input
to another step.

The following steps are standard for WOK umakes: src, src.list, exec.comp and exec.link.
Any new step that you insert into the tree must be associated with a tcl program, which
will be responsible for performing the step. You supply these tcl programs. For more
details of tcl programming refer to the examples below and also to the “Tcl Overview”
section.

The following example defines a umake dependency tree and introduces two new steps:
exec.kerobj and exec.core. Each of these steps is then associated with a tcl program.

Example
-- File Name: DCube_WOKSteps.edl

--

@ifnotdefined (%DCube_WOKSteps_EDL) then

@set %DCube_WOKSteps_EDL = ““;

@string %WOKSteps_ObjGroup += “obj.libs obj.arx obj.objs “;

---@set %WOKUmake_Steps =”*src obj.inc(src) objc.cgen(src)
obj.comp(src, obj.cgen) obj.libs(src) obj.arx(obj.libs)
obj.objs(obj.arx) obj.lib(obj.comp, obj.objs)
obj.idep(obj.comp,src)”;

@set %WOKSteps_obj_libs = “DCube_Libs(src)”;

@set %WOKSteps_obj_arx = “WOKStep_LibExtract(obj.libs)”;

@set %WOKSteps_obj_objs = “DCube_Objs(obj.arx)”;

@set %WOKSteps_obj_lib = “WOKStep_DynamicLibrary(obj.comp,
obj.objs)”;

@set %WOKSteps_toolkit_ListWith = “obj.comp obj.objs”;

@endif;

Tcl Step Implementation

Customization at the tcl step level requires an understanding of the build process and the
WOK dependency tree. Modification at this level is generally used to add elements to the
build which are not described in the CDL. For example one possible use is to include
external libraries or files into the final shareable library. Refer to “Writing Tcl Steps for a

Available Services

 65

WOK Build” for more details.

4.9. Source Management Services
You use the source management services to integrate source files between a root
workbench and one of its children. The services are related to a particular workshop.

wprepare Displays a report of the files state in the current workbench (as compared with
the files in the root workbench).

wstore Queues a report for further integration and stores the related files.

wintegre Performs check-in operations for requested files and updates the root
workbench.

wnews Allows management and use of data stored in the integration journal.

wget Imports source files to the current workbench.

4.9.1. wprepare
wprepare –wb <father workbench> [-ud <ud1,ud2,...,udN>] -o
[<filename>]

wprepare –wb <father workbench> [-ref][-ud <ud1,ud2,...,udN>] -o
[<filename>]

Prepares a report for integration to a reference (root) Workbench. This command prints a
comparison of the state of source files contained in the specified units, <ud1,ud2,...,udN>,
of the current workbench.

This workbench must be a direct descendant of the root workbench. If no unit names are
specified, all the units in the workbench are processed. By default, the results of the
comparison are printed to the standard output. The differences are computed in relation to
the root workbench.

For each file, the status is indicated as follows:

The file has been modified.

= The file was found in the current workbench but was not modified.

- The file has been removed. In other words, the entry was deleted from FILES).

+ The file has been added. In other words, the entry has been added in FILES).

Options:

-ref

Creates a report that is used to initialize a base of source files. This report is used with
the wintegre -ref command.

-ud <ud1>, <ud2>,...,<udN>

Specifies the list of development units to prepare for integration. Separate the unit
names with a comma. If no unit names are specified, all the units in the workbench are
processed.

-o <fileName>

Writes the integration report to the specified file. By default, the report is displayed (i.e.
written to standard output).

-wb <The name of target workbench>

Available Services

 66

Specifies the name of target workbench. It should be one of father workbenches with
attached integration queue.

4.9.2. wstore
wstore –ls –wb <MasterWb>

wstore -cat <ID>

wstore [-trig] -rm <ID> [-f] –wb <MasterWb>

wstore –create –wb <MasterWb>

wstore [<FileName>]

This command manages the queue of pending reports. When a report is queued it is
given a unique number also called a report-ID.

Options:

<FileName>

Adds a report from the file <FileName> to the report queue.

-trig

Calls a tcl procedure after the report has been processed. This tcl procedure must be
located in the admin directory of the workshop and the file must be named
wstore_trigger.tcl. An example of a trigger can be found in the file:
$env(WOK_LIBRARY)/wstore_trigger.example

-ls

Lists pending reports, together with their owners and their IDs. This is a default option.
If two files are found with the same name in the same development unit in two different
reports the full path of each of these files is displayed.

-cat <Report_ID>

Displays the contents of the report <Report_ID>.

-rm

Removes a report from the report queue.

-f

Forces deletion. This option must be used with the -rm option when you delete a
report that you do not own.

-param

List queue parameters associated with the workbench.

-create –wb <MasterWb> -queue <any/dir> -type SCCS

Creates an integration queue associated with MasterWb workbench, queue should be
located at any/dir and specify SCCS type of database.

Possible options for –create are:

-queue

Specify the name of directory under which queue is created

-type

Specify the type of database (can be SCCS or RSC, SCCS by default)

-base

Available Services

 67

Specify the location where to put the repository (only for SCCS
database). Default behavior: creates repository in the adm directory of
the master workbench.

-counter

Specify the name of directory where the integration counter is located.
Default behavior: creates subdirectory adm in directory created using
–base option

-journal

Specify the location of integration journal. Default behavior: : creates
subdirectory adm in directory created using –base option

-welcome

If increment contains new development units, by default store will
refuse such increment. If you want to be able to add new units to
MasterWb through integration mechanism use – welcome option.

Example
wstore ReportName –wb MasterWb

Queues the report ReportName and saves a copy of the files
mentioned in the report. This copy will be used when the report is
actually processed by the command wintegre

wstore –wb MasterWb -f -rm Report_ID

Removes the report Report_ID from the queue, even if you do not own
it.

4.9.3. wintegre
wintegre [<reportID>] –wb <MasterWb>

Processes a report and removes it from the queue in the current workshop.

Parameters:
<reportID>

Number indicating the rank of the report in the integration queue. Use the command
wstore –l to get this number.

Options:

-ref <BaseNumber>

Initializes the version of the elements in the repository.

-all

Processes all the reports in the integration queue.

-wb

Specify the integration queue of which workbench should be used

-norefcopy

Updates the repository but not the target workbench.

-nobase

Updates the target workbench but not the repository. This option is rather useful when
copying a set of UDs from a workbench into another.

Available Services

 68

-param

Shows the parameters’ current value.

NOTE

The -nobase and -norefcopy options are mutually exclusive.

Examples
wintegre -ref 2 1 –wb ref

Uses the report whose ID is 1 to initialize the ref workbench with BaseNumber
equal to 2.

wintegre 1 –wb ref

Integrates the report whose ID is 1 to ref workbench.
wintegre -f 8 –wb ref

Forces the integration of report 8. Use the –f option if you want report 8 to be
processed first.

Example
wprepare -MyWb -o/tmp/MyReport

edit the comment and modify /tmp/MyReport if required
wstore /tmp/MyReport (GetID say 3) –wb ref

wintegre –wb ref -nobase 3

with current workbench ancessed from ref workbench.

You may use the -nobase option adding the following line in the VC.edl file (Adm of the
concerned file):
@set %VC_TYPE = “NOBASE”;

4.9.4. wnews
The command has the following syntax:
wnews [-x] [-from p1 -to p2] [-headers|-units|-comments|- all] [-
command TclCmd]

wnews -set markname [-at p]

wnews -ls [-bydate]

wnews -rm markname

wnews -admin

wnews -purge

The wnews command allows you to manage and use the data stored in the integration
journal.

The integration journal is updated via the command wintegre each time an integration is
performed; it contains all the UDs and files concerned with the integration, as well as the
comments provided by the developers (reports).

Every integration is numbered and the associated files are archived with a specific version
number.

Marks can be set on specific zones of the integrations via the wnews command. A mark is
a character string which does not contain any dash character (-) and is associated with an
integration number. Several marks may point to the same number, but one mark may only

Available Services

 69

point to one number.

NOTE

BEGIN and END are reserved mark names. You cannot use them.

Options:

-from p1 -to p2

Extracts a portion of the journal file between index p1 and p2, with p1 and p2
integration numbers or marks. If p1 is not specified, reports are extracted from the
beginning of the journal file. If p2 is not specified, reports are extracted up to the end of
the journal file.

-at p

Places a mark at index p, with p being an integration number. If p is not specified, the
mark is placed at the end of the journal.

-ls [-bydate]

Lists the marks. If -bydate is specified mark are listed in the order they were
created. Otherwise, they are listed in order according to their place in the journal file.

-rm <markname>

Removes the mark markname.

-admin

Displays the journal location, date and other information.

-purge

Saves the journal file and creates a new empty one.

Additional options:

-o file <name>

Redirects output in file. This option is ignored if -command is specified.

-ws <shop>

Uses journal of <shop> instead of the current one. <shop> must belong to the current
factory.

-command <MyCommand>

Runs the command Tcl MyComm on the specified part of the journal. The syntax is the
following: proc MyComm { comments table args } { ...} with comments
being a string containing all the comments on the integration between n1 and n2, and
table, a table indexed with the names of the concerned uds (each element of the table
is a list of UD files with definition of their status and version). Additional arguments
may be passed using userdata with the argument args containing “mydata1,
mydata2”. Wok provides a similar procedure which allows to copy UDs from one
workbench into another: wnews:cpwb.

NOTE

You may access the associated code of this command by typing: tclsh>cat
$env(WOK_LIBRARY)/news_cpwb.tcl

Example

Add the following to file Me.tcl:
proc MyComm {comments table args} {

Available Services

 70

puts “comments = $comments”

parray table

puts “args = $args”

return

}

Then type the following commands:
> source Me.tcl

> wnews -x -from n1 -to n2 -command MyComm -userdata wb1 wb2

Examples
wnews -set BETA_V1.1 -at 345

Sets a mark on integration number 345
wnews -set RELEASED_V1.1_CLOSED

Sets a mark after the last integration performed
wnews -ls

Lists all the marks set in the journal
wnews -x -from INT_DEB -to INT_END -units

Gets all the UDs modified between integrations INT_DEB and INT_END.
Integration numbers and marks may be mixed as in the following:

wnews -x -from INT_DEB -to 856 -comments

wnews -x -from INT_DEB -to INT_END -comments

Gets all the comments from the integrations between INT_DEB and INT_END
source Mycommand.tcl

wnews -x -from INT_DEB -to INT_END -command Mycommand

In a more elaborate way, a Tcl process may be called to get all information on the reports
between INT_DEB and INT_END
wnews -x -from n1 -to n2 -command wnews:cpwb –userdata
w1,w2,[ulist, notes]

All the modified files between n1 and n2 are copied from workbench w1 into
workbench w2. New UDs are created in w2 if required If ulist is specified, only
the UDs contained in this list are Processed. If notes is specified, all
comments between n1 and n2 are written into this file

4.9.5. wget
wget [-l] –wh <MasterWb>

wget [-f] –wb <MasterWb> [-ud <UnitName>] <SourceFile> [-v
<Version>]

wget [-f] –wb <MasterWb> [-ud <UnitName>]
<SourceFile1>...<SourceFileN>

The wget command allows you to import source files into your workbench. These files
are fetched from the SCCS database of the factory. This operation is known as a check-
out operation. You can specify one or more files or a unit name. By default, the latest
version of the files is fetched.

Options:

Available Services

 71

<SourceFile>

Fetches a copy of the file specified.

-ud <UnitName>

Fetches all the source files of the development unit you specified.

-f

Forces existing files to be overwritten.

-v <Version>

Fetches version <Version> of the file you specified.

-l

Lists the files of the development unit that can be copied (i.e. that you can “get”). This
is a default option.

Example
wget –wb MasteWb –ud MyUd File1.cxx File2.hxx

Fetches the latest version of File1.cxx and File2.hxx

4.9.6. Installation Procedure
In the new WOK model:

• each workbench can have its own database

• the version control environment variables are relative to the workbench.

 Figure 9. Workshop Installation Model

The following enumeration explains how to set up the source management environment
for a workshop.

1. Open the factory and the workshop.
> wokcd <factory:workshop> -P Adm

2. Define the environment variables for version control by editing the file VC.edl. Your
entries should respect the following syntax:

Available Services

 72

A separate SCCS database

WORKBENCH2

SCCS2

WORKBENCH1

SCCS1

associated with each workbench
@set %VC_TYPE=”SCCS”

@set %VC_ROOT=”/dirA/dirB/.../<MyDir>”

3. Reopen the workbench that you want to connect to the database.
> wokcd <factory:workshop:workbench>

4. Create SCCS database associated with workbench.
> wstore –create –wb <factory:workshop:workbench> -queue
<PathToQueue>

5. Create a report associated with the root workbench.
> wprepare –wb <workbench> -o ref.report

6. Queue this report.
> wstore –wb <workbench> ref.report

7. Perform the actual creation of the SCCS database.
> wintegre –wb <workbench> < BaseNumber >

Here <BaseNumber> is the first digit of the SCCS version numbers.

8. At this stage, the installation is complete.

4.9.7. Integration Procedure
To integrate, proceed as follows:

1. Create the report for the current workbench.
> wprepare –wb MasterWb -o MyReport

2. If necessary, edit this report to remove lines and append comments. Comments should
begin with -- (double hyphen).

3. Queue the report and store the files.
> wstore –wb MasterWb MyReport

By this step, all the files you have modified have been stored and the report has been
queued. You can continue with modifying these files.

4. Examine the state of the integration queue to get the ID of your report.
> wstore –wb MasterWb -ls

5. Perform the integration and be sure you can write in the root workbench. This operation
is usually reserved for the workshop administrator.
> wintegre –wb MasterWb [ID]

4.10. Session Services
A single session service is also available to allow you to query WOK.

Available Services

 73

Sinfo Get WOK session details

4.10.1. 1 Sinfo
Returns details of the WOK session.
Sinfo -<option>

Options:

-F

Gets factory list

-f

Gets current factory

-s

Gets current workshop

-w

Gets current workbench

-u

Gets current development unit

-t <entity_path>

Gets the entity type

-E

Reserved for internal use. Gets known Entity List

-N

Reserved for internal use. Gets known Entity Names

Example
Sinfo -F

Returns a list of WOK factories.

4.10.2. Convenience Aliases
To ease the upgrade to the new version of WOK a number of aliases, compatible with the
old version, have been set up. These convenience aliases include:

fcd Moves to the specified factory.

scd Moves to the specified workshop.

wcd Move to the src directory of the specified development unit.

wdrv Move to the drv/<DBMS>/<Station> directory of the current
development unit.

wls List the development units in the current workbench.

wsrc Move to the src directory of the current development unit.

Using the Graphic Interface

 74

5. Using the Graphic Interface
The following is an overall description of the IWOK main menu bar. Please, refer to the
on-line help to get more detailed information on the various applications accessed via the
graphic interface.

5.1. Main menu bar

5.1.1. Menus
The main menu bar contains three menus:

• File to exit the iwok session,

• Windows to display all the windows created in the session,

• Help to display the associated on-line help.

5.1.2. Application icons
The four icons on the left are used to access applications:

• wprepare, to prepare the integration, the integration queue being associated with a
given workshop,

• umake, with all the available umake options plus compilation options,

• CDL browser, providing information on the class structure or translated classes,

• parameters, to display and edit all EDL files.

NOTE

For further information on CDL, refer to the CDL Reference Manual.

5.1.3. Display management
Click on the Matra Datavision logo to either display or not the session in a window just
below the main menu bar.

Using the Graphic Interface

 75

You may choose to display icons in the window, either in columns, with the last modified
first, by date and size, or in rows.

Use the go up icon to navigate through the session and wokcd to update the window
where the session was started.

The field Location gives the exact address of the item in the session. Use the arrow on
the right to select already visited addresses.

5.2. Popup menus
Two types of popup menus may be accessed according to the context. Just click MB3 to
display the popup menu.

Click on an item in the left window to get the popup menu providing access to
applications.

Using the Graphic Interface

 76

In the right window you get the selection popup menu for the item types:

Appendix A. Using the Emacs Editor

 77

6. Appendix A. Using the Emacs Editor
6.1. Additional Mode Available under the Emacs Editor

Using WOK requires using the editor Emacs. Emacs is not provided in the Open
CASCADE distribution but is available by FTP transfer from ftp://
ftp.gnu.ai.mit.edu/pub/gnu/emacs.

A CDL mode has been created for Emacs. The .el file for this mode is not provided in the
distribution, but is available on request from Open CASCADE.

List of Keys and their Bindings in cdl Mode C-c Command prefix
TAB cdl-tab

DEL backward-delete-character-untabify

ESC Command prefix

C-c C-x cdl-new-exception

C-c C-e cdl-new-enumeration

C-c C-b cdl-new-buffer

C-c C-p cdl-new-package

C-c C-r cdl-new-rubric

C-c C-c cdl-new-class

C-c f cdl-fill-mode

C-c s cdl-structure

C-c t cdl-tabsize

C-c e cdl-comment-end

ESC k cdl-find-class

ESC q cdl-comment-fill

ESC TAB cdl-untab

ESC-RET cdl-raw-newline

Appendix B. Parameters and EDL Files

 78

7. Appendix B. Parameters and EDL
Files

7.1. EDL Overview
EDL is a script-like programming language.

7.1.1. Key Concepts
Comments

Comments are text, preceded by two hyphens
-- Comment text....

Identifiers

An identifier is made up of any combination of characters in the ranges A-Z, az, 0-9 and _
(underscore).

Variables

A variable is an identifier preceded by % (percent sign).

Actions

The following actions are available:
@string

@set

@apply

Execution

The following execution operators are provided:
@uses

Input/Output

The following i/o operators are provided:
@file

@write

@close

@cout

Conditional Operators

The following conditional operators are provided:
@iffile

@ifdefined

@ifnotdefined

@ifnotfile

@if

then

Appendix B. Parameters and EDL Files

 79

@else

@endif

Operators

The following operators are available:
==

!=

||

&&

file

notfile

defined

notdefined

Templates

The following template commands/keywords are available:
@template

is

@end

@addtotemplate

@cleartemplate

Miscellaneous

The following miscellaneous commands exist:
@verboseon

@verboseoff

7.1.2. Syntax
The following conventions are used in the explanations below:

<Variable> refers to a variable, for example: %myvariable

 <Id> refers to an identifier, for example: myidentifier

“String” refers to a string of characters, for example: “my string of characters”

<Condition> refers to a condition, for example: (%mytest == “ok”) ||
(%mytest == “good”)

<Template> refers to the name of a template, for example: mytemplate.

{} indicates possible repetition of what is within the curly brackets.

7.1.3. EDL Actions
@string

syntax:
@string <Variable> = {<Variable> or “String”} ;

@string <Variable> += {<Variable> or “String”} ;

Appendix B. Parameters and EDL Files

 80

Concatenates the contents of the variables and strings on the right of the equals sign and
assigns the result to the variable situated on the left. Using the operator ‘+=’ instead of ‘=’
adds the concatenation to the current contents of the variable on the left.

@set

syntax:
@set <Variable> = “ String” ;

Sets <Variable> to the value “String”

@apply

syntax:
@apply <Variable> = <Template> ;

Evaluates the template, <Template>, and sets <Variable> equal to this.

@uses

syntax:
@uses <Variable>;

@uses “ String”;

Runs an EDL file. The name of this file is either contained in the variable <Variable> or is
given as a string, <String>.

@file

syntax:
@file <Id> <Variable> ;

@file <Id> “String” ;

Opens a file and associates it with the identifier <Id>. This <Id> identifies the file until it is
closed. The name of the file is given as a string <String>, or using a variable <Variable>.

@write

syntax:
@write <Id> <Variable> ;

Writes the contents of the variable out to a file indicated by the file <Id>. This

<Id> is the identifier allocated to the file when is opened using @file.

@close

syntax:
@close <Id> ;

Closes the file identified by <Id>. This <Id> is the identifier allocated to the file when is
opened using @file.

@cout

syntax:
@cout {<Variable> or “String”} ;

Concatenates the contents of the variables and strings and displays the result on standard
out.

@iffile

syntax:

Appendix B. Parameters and EDL Files

 81

@iffile (<Variable> or “String”) then

@endif ;

@iffile (<Variable> or “String”) then

@else

@endif ;

Checks for the existence of a file, the name of which is given in the string ‘String”, or else
contained in the variable <Variable>.

If the file exists, the instructions contained in the ‘then’ loop are executed up to the
@endif, (or an @else if one is found before the @endif).

If the files do not exist, the ‘else’ loop is executed (if one exists).

@ifnotfile

syntax:
@ifnotfile (<Variable> or “String”) then

@endif ;

@ifnotfile (<Variable> or “String”) then

@else

@endif ;

Checks for the existence of a file, the name of which is given in the string ‘String”, or else
contained in the variable <Variable>.

If the file does not exist, the instructions contained in the ‘then’ loop are executed up to
the @endif, (or an @else if one is found before the @endif).

If the file does exist, the ‘else’ loop is executed (if one exists).

@ifdefined

syntax:
@ifnotdefined (<Variable> or <Template>) then

@endif ;

@ifnotdefined (<Variable> or <Template>) then

@else

@endif ;

Checks for the existence of a variable or template, the name of which is given by
<Template>, or else contained in the variable <Variable>.

If a variable or a template by this name exists the instructions contained in the ‘then’ loop
are executed up to the @endif, (or an @else if one is found before the @endif).

If neither a variable nor a template exists, the ‘else’ loop is executed (if one exists).

@ifnotdefined

syntax:
@ifnotdefined (<Variable> or <Template>) then

@endif ;

@ifnotdefined (<Variable> or <Template>) then

@else

@endif ;

Appendix B. Parameters and EDL Files

 82

Checks for the existence of a variable or template, the name of which is given by
<Template>, or else contained in the variable <Variable>.

If neither a variable nor a template by this name exists the instructions contained in the
‘then’ loop are executed up to the @endif, (or an @else if one is found before the
@endif).

If a variable or a template does exist, the ‘else’ loop is executed (if one exists).

@if

syntax:
@if (<Condition>) then

@endif ;

@if (<Condition>) then

@else

@endif ;

Tests a condition.

If the condition is true the instructions in the ‘then’ loop are executed up to the @endif,
(or an @else if one is found before the @endif).

If the condition is false, the ‘else’ loop is executed (if one exists).

@template

syntax:
@template <Template> (<Variable>, ... , <Variable>) is

$ text...

.

.

.

$ text...

@end;

Creates a template.

A template is a definition that contains variables. The variables on which a template relies
are given in parentheses, following the name of the template. These variables are used to
evaluate the template, and are referred to as ‘variables of evaluation’. When a template is
evaluated (see @apply) the variables in its definition are replaced by the current values of
the ‘variables of evaluation’.

A template is re-evaluated each time it is used.

@addtotemplate

syntax:
@addtotemplate <Template> is

$ text

.

.

.

$ text

Appendix B. Parameters and EDL Files

 83

@end;

Adds the lines specified to an existing template.

@cleartemplate

syntax:
@cleartemplate <Template> ;

Removes all the lines of a template.

@verboseon

syntax:
@verboseon ;

Turns on the verbose mode, such that lines of text are displayed on standard out when
you run EDL files.

@verboseoff

syntax:
@verboseoff ;

Turns off the verbose mode, such that lines of text are not displayed on standard out
when you run EDL files.

7.1.4. EDL Conditions
Conditions are used with @if commands. Complex and simple conditions are available.
The syntax is similar to C++.

Simple Conditions

Simple conditions test for equality, the existence of a particular file and so on. The general
format is:

@if(<Condition>) then>

...

The syntax of simple conditions is given below.
<Variable> == “String” -- (equals)

<Variable> != “String” -- (does not equal)

defined(<Variable>) -- (see @ifdefined)

defined(<Template>) -- (see @ifdefined)

notdefined(<Variable>) -- (see @ifnotdefined)

notdefined(<Template>) -- (see @ifnotdefined)

file(<Variable>) -- (see @iffile)

file(“String”) -- (see @iffile)

notfile(<Variable>) -- (see @ifnotfile)

notfile(“String”) -- (see @ifnotfile)

Complex Conditions

Complex conditions are those which consider the results of other conditions. Complex
conditions use the operators || (logical OR) or the operator && (logical AND). There are no
restrictions on the formulation of these conditions:

 (Simple condition) operator (Simple condition)

Appendix B. Parameters and EDL Files

 84

 (Complex condition) operator (Simple condition)

 (Simple condition) operator (Complex condition)

 (Complex condition) operator (Complex condition)

Example
@if ((%a == “0” && %b == “1” && %c == “1”) || %d == “1” && ((%a ==
“1”) && %b == “1”)) then

@cout “CONDITION TRUE”;

@else

@cout “CONDITION FALSE”;

@endif;

7.2. WOK Parameters
WOK parameters are defined using EDL. Two types of EDL parameters exist:

Variables

Templates

Variables have a ‘fixed’ value. By contrast a template relies on the values of other
variables, and must re-evaluate itself each time it is used.

7.2.1. Classes of WOK Parameters
WOK parameters are grouped according to their class. The following classes exist:

CODEGEN Code generator options, for example options for lex and yacc.

CMPLRS Compiler options.

LDAR Archive creation options.

ARX Archive extraction options.

LDEXE Executable linker options.

LDSHR Shared linker options.

7.2.2. Defining WOK Parameters
The WOK distribution includes a base configuration for each class of parameters. This
base configuration is provided in the form of EDL files, one file per a class of parameters.
Each file is named according to the parameter class:

<ParamClassName>.edl

This configuration file sets the values of all the parameters in the class.

For example, consider a parameter class FOO. There are two variable parameters in this
class: FOO_Shared and FOO_Name. These two parameters are assigned a value in the
FOO.edl file. The file is given as an example below:

Example
-- File: FOO.edl

-- Copyright: Matra Datavision 1996

Appendix B. Parameters and EDL Files

 85

-- standard protection against multiple execution

@ifnotdefined (%FOO_EDL) then

@set %FOO_EDL = ““;

-- set %FOO_Shared according to the platform

@if (%LocalArch != “hp”) then

@set %FOO_Shared = “libCPPExt.so”;

@endif;

@if (%LocalArch == “hp”) then

@set %FOO_Shared = “libCPPExt.sl”;

@endif;

-- set the FOO_Name parameter to FOO

@set %FOO_Name = “FOO”;

@endif;

Note that all the parameters in a class take the name of the class as a prefix to their own
name. Parameters of type variable are also prefixed by % (percent symbol):

%ClassName_VariableParamName

ClassName_TemplateParamName

A simplified template definition is given as an example below. This definition is based on
the FOO parameters set in the previous example above.

Example
-- define the variable parameter(s) to use in template

@set %FOO_Shared = “libCPPExt.so”;

@set %FOO_Name = “FOO”;

-- define the template

@template FOO_Load (%FOO_Shared, %FOO_Name) is

$ %FOO_Load_%FOO_Shared %FOO_Name

@end;

7.2.3. Redefining Parameters
Occasionally you may want to redefine WOK parameters. For example, you can change
the compiler options to force ANSI mode compilation, or redefine how external libraries
are referenced.

Before You Start

Before redefining anything, decide on the scope of the redefinition. Is the redefinition to
apply to the whole factory, a single workshop, a workbench, or just a development unit? In
some cases you may want to redefine parameters within a delivery unit, so that a parcel is
delivered with particular options.

NOTE

The order in which redefinitions are applied (order of precedence) may mean your options

Appendix B. Parameters and EDL Files

 86

are overwritten by subsequent redefinitions. See “Order of Precedence for Parameter
Redefinitions” for details.

Redefinition Files

Each entity can have an associated redefinition file for each class of parameters. A
redefinition file is an EDL file. It always takes the name of the entity to which it belongs,
followed by the name of the class of parameters that it applies to:

<EntityName>_<ParamClassName>.edl

For example, the file MyFactory_CMPLRS.edl redefines one of more of the parameters in
the CMPLRS class. The scope of this redefinition is MyFactory. To be taken into account
by WOK, this redefinition file must be created in the administration directory of the entity to
which it belongs. To find out the pathname of this directory, use the command:
wokinfo -p admfile:<EntityName>_<ParamClassName>.edl <EntityPath>

To test whether the file exists actually, use the command:
wokinfo -p adminfile:WOK_LDAR.edl WOK=> /adv22/wok/adm

There is one exception to this rule for file placement. For a development unit, the
redefinition file is treated as a source file, and consequently it must be located in the src
directory of the unit. To find out the path of this directory, use the command:
wokinfo -p source:<UnitName>_<ParamClassName>.edl <UnitPath>

Example to Add a Compile Option

One of the most common reasons to redefine WOK parameters is to modify compiler
options. To do this, for example to add a compile option to the package MyPack:

1. In the source directory of MyPk, create the file MyPk_CMPLRS.edl

2. In this file add the definition:
@string %CMPLRS_CXX_Options += “ -DMyDefine=string ”;

Order of Precedence for Parameter Redefinitions

WOK takes parameter (re)definitions into account in the following order.

WOK

Factory

Workshop

Parcels (within the Workshop configuration, in the order in which they are declared in
the parcel configuration).

Workbench (in order of inheritance)

Development unit

WOK provides commands that you can use to find out what parameters definitions (and
redefinitions) are being used, and in what order. For example, to see what compiler
parameters are used by WOK consult the CMPLRS.edl

file. To find this file, use the command:
> wokparam -S CMPLRS.edl

Then run the command.
> wokparam -F CMPLRS <EntityPath>

This command displays a list of all the definition files, for parameters of type compiler, that
are taken into account for <EntityPath>. These file are listed in the order in which they are
taken into account. The last definition is the one that is used.

Appendix B. Parameters and EDL Files

 87

7.3. Using EDL to Define WOK Parameters

7.3.1. Example to Modify Link Options
Example 1: Adding a define to the compilation
In order to add a define for all the C++ files compiled in the
package MyPackage, a file MyPackage_CMPLRS.edl is declared in the
development unit MyPackage This file contains:

@string %CMPLRS_CXX_Options =

%CMPLRS_CXX_Options “ -DMYDEFINE”;

Example 2: Using a code generator

In this example, a C code generator is used, which takes the input file <file>.mygen and
generates a file <file>.c. The step obj.cgen automatically recognizes all files with the
extension mygen and uses the generator on these files. The resulting .c files are compiled
by the step obj.comp.

The file MyUnit_CODEGEN.edl is written in a nocdlpack development unit MyUnit. This
file contains the following code:
-- list of tools recognized by the step obj.cgen

-- the tool MYGEN is added

@ string %CODEGEN_Tools = %CODEGEN_Tools “ CODEGEN_MYGEN”;

-- the tool MYGEN is called via the template CODEGEN_MYGEN_CmdLine

@set %CODEGEN_MYGEN_Template = “CODEGEN_MYGEN_CmdLine”;

-- the extension of files processed by MYGEN is mygen

@set %CODEGEN_MYGEN_Extensions = “foo.mygen”;

-- the tool MYGEN is the executable /usr/local/bin/mygen

@set %CODEGEN_MYGEN_Tool = “ /usr/local/bin/mygen”;

-- the tool MYGEN produces a .c file

@template CODEGEN_MYGEN_Production (%BaseName) is

$%BaseName.c

@end;

-- the command executed to construct the .c file is:

@template CODEGEN_MYGEN_CmdLine (%CODEGEN_MYGEN_Tool,

Appendix B. Parameters and EDL Files

 88

%Source, %BaseName, %OutputDir) is

$cd %OutputDir

$%CODEGEN_MYGEN_Tool -f %Source -o %BaseName.c

@end;

Appendix C. Tcl

 89

8. Appendix C. Tcl
8.1. Tcl Overview

Tcl stands for ‘‘tool command language” and is pronounced ‘‘tickle”. It is actually two
things: a language and a library.

As a simple textual language, tcl is intended primarily for issuing commands to interactive
programs such as text editors, debuggers, illustrators, and shells. It has a simple syntax
and is also programmable, so tcl users can write command procedures to provide more
powerful commands than those in the built-in set.

As a library package, tcl can be embedded in application programs. The tcl library
consists of a parser for the cl language, routines to implement the tcl builtin commands,
and procedures that allow each application to extend tcl with additional commands
specific to that application. The application program generates tcl commands and passes
them to the tcl parser for execution. Commands may be generated by reading characters
from an input source, or by associating command strings with elements of the
application's user interface, such as menu entries, buttons, or keystrokes.

Both tcl and the extension toolkit, Tk, originated with Dr. John Ousterhout from the
University of California, Berkeley, California. Dr. Ousterhout now works for SunLabs,
where tcl and tk are being developed as a universal scripting platform for the Internet. His
home ftp site for the tcl source code is:

ftp://ftp.sunlabs.com/pub/tcl.

The tcl/tk sources come with comprehensive manual pages. These man pages are also
available on the internet:

http://www.sunlabs.com/research/tcl/man.

A help application, tclhelp, is also provided with tcl. To run tclhelp, use the command:
> tclhelp &

1.Tcl is software copyrighted by the Regents of the University of California, and Sun
Microsystems,

Inc.

8.2. Tcl and WOK
The tcl interpreter offers WOK the following advantages:

an environment in which both WOK and UNIX commands are available,

dynamic loading of WOK as it is needed,

a high performance portable environment, in which the user can write customized
procedures.

The tcl commands most commonly used with WOK are:
expr

foreach

glob

if

package

Appendix C. Tcl

 90

proc

puts

set

source

unlink

Refer to the tcl documentation, or the tcl help application, for details of these and other tcl
commands.

8.3. Configuring Your Account for Tcl and WOK
To have access to WOK you must modify the configuration files of your account as
described below.

8.3.1. The .cshrc File
To allow the C shell session to configure tcl add the following line to your .chsrc file:
source/<sun|ao1|sgi|hp>_SYSTEM/util_LOG/cshrc_TCL

To configure your account to allow access to WOK add the following line to your .cshrc
file:
if(!$?WOKHOME) then

setenv WOKHOME /YOURCONTAINER/wok-<version of wok>

source /<sun|ao1|sgi|hp>_SYSTEM/util_LOG/cshrc_Wok

8.3.2. The .tclshrc File
To enable configuration of the tcl interpreter, add the following line to your .tclshrc if it
exists (if not create one):
source $env(WOKHOME)/site/tclshrc_Wok

8.3.3. The WOK_SESSIONID Variable
The WOK_SESSIONID environment variable ensures that you start a new WOK session
in the same state and with the same parameter values as your previous WOK session.
This continuity is provided by using the same WOK_SESSIONID. Note that your
WOK_SESSIONID does not change, unless you change it manually.

Make sure WOK_SESSIONID points to (a subdirectory of) your home directory.

8.3.4. Writing Tcl Steps for a WOK Build
Three advanced WOK commands are available for writing umake steps in tcl:

• msgprint

• stepoutputadd

• stepaddexecdepitem

8.3.5. msgprint
msgprint [-i|-w|-e|-v|-V Class]

Appendix C. Tcl

 91

Prints a message. Output is directed to a WOK internal process that is in charge of
printing messages.

Options:

-i Prints an information message.

-w Prints a warning message.

-e Prints an error message.

-v Prints a verbose message.

-V <Class> Prints a verbose message for class <Class>.

-c Internal use. Prints context of message, i.e. the procedure that called
it.

Example
msgprint -e -c “CCLKernel_GetObjects::Execute” “Cannot locate
object file : “ $file;

Writes an error message, with the format:

ERROR: CCLKernel_GetObjects::Execute - Cannot locate object file : <MyFile>

8.3.6. stepoutputadd
Adds an output file to the outputs of the step. This file is treated by subsequent steps in
the same way as all the other output files of the step.

.stepoutputadd <options> <OutputFileID> [<filepath>]

Options:

-p <path> Specifies the path where the file is located.

-L Output can be located (default).

-N Not a WOK file. Cannot be located.

-F Physical file (i.e. resides on a disk somewhere).

-M File is a member of the unit being built (default).

-X File is not a member of the unit being built. Not a WOK file. Cannot be located.

-P File is produced by this umake step (i.e. WOK can delete it because it will be
regenerated).

-R File is not produced by this umake step (i.e. WOK must not delete it because
it can not be regenerated).

-S <StepID> Reserved for advanced use. Specify stepID.

-V Reserved for advanced use. Virtual ‘file’ (i.e. an MSEntity). This option is used for
passing keywords between steps for example.

Example
stepoutputadd -X -R -N -F /usr/myfiles/res.o -p /usr/myfiles/res.o

Adds the file /usr/myfiles/res.o to the outputs of this step. Specifies that this file is not a
WOK file, cannot be located automatically by WOK, and is not generated by this step.
Here the full file path is used as the unique file identifier. This appears to be duplicated
when it is also given as the physical location of the file.

Appendix C. Tcl

 92

8.3.7. stepaddexecdepitem
stepaddexecdepitem <options> <InputFileID> <OutputFileID>

Adds a dependency between one file and another. Typically when introducing external
object libraries the files are set to be dependent on the CDL file. We do this because the
CDL file changes rarely, so the external files are not needlessly reprocessed, but they are
always included in the final executable.

Options:

-d Adds a direct dependency (default).

-i Adds an indirect dependency.

Example
stepaddexecdepitem -d MyInFile MyOutFile

States that the file MyOutFile depends directly on the file MyInFile.

8.3.8. Components of a Tcl UMake Step
Each tcl umake step has the following components:

HandleInputFile

A filter: for each input file this component decides whether or not to accept the file.
Argument: a file ID.

OutputDirTypeName

Returns one of three strings, according to the dependency of the file:

tmpfile => file is independent (i.e. dependent only on its source).

dbtmpdir => file is dependent on the database profile

sttmpdir => file is dependent on the station profile

Argument: none.

AdmFileType

Returns one of three strings, according to the dependency of the file:

admfile => file is independent (i.e. dependent only on its source).

Dbadmfile => file is dependent on the database profile

stadmfile => file is dependent on the station profile

Argument: none.

Execute

Processes each input file that is out of date (i.e. has changed since it was last processed,
or depends on a file that has changed since it was last processed). Typically this
procedure takes the form of a foreach loop. Argument: a development unit to process
and a list of one or more arguments.

8.3.9. Example Tcl Steps
Example1
CCLKernel_GetObjects.tcl

Appendix C. Tcl

 93

Copyright: Matra Datavision 1996

proc CCLKernel_GetObjects::AdmFileType {} {

return stadmfile;

}

proc CCLKernel_GetObjects::OutputDirTypeName {} {

return sttmpdir;

}

proc CCLKernel_GetObjects::HandleInputFile { ID } {

scan $ID “%\[^:\]:%\[^:\]:%\[^:\]” unit type name

return 1;

switch [file extension $name] {

.cdl {

return 1;

}

default {

return 0;

}

}

}

proc CCLKernel_GetObjects::Execute { unit args } {

msgprint -i -c “CCLKernel_GetObjects::Execute”

“Processing unit : $unit”;

msgprint -i -c “CCLKernel_GetObjects::Execute”

set failed 0;

set inid [lindex $args 0]

foreach file { Frontal_Ccal_Init_Request.o
Frontal_Ccal_Send_Request.o \

Frontal_Ccal_sd.o Frontal_Get_Response.o Frontal_Ccal_Connect.o
} {

set resid “Frontal:object:$file”

set path [woklocate -p $resid]

if { $path == ““ } {

msgprint -e -c “CCLKernel_GetObjects::Execute”

“Cannot locate object file : “ $file;

set failed 1;

} else {

msgprint -i -c “CCLKernel_GetObjects::Execute” “Add

object $file at “ $path

stepoutputadd -X -R -L -F $resid

Appendix C. Tcl

 94

stepaddexecdepitem -d $inid $resid

}

}

if { [wokparam -e %Station] == “sun” } {

set file “risc_return.o”

set resid “CCLKernel:source:$file”

set path [woklocate -p $resid]

set path “/adv_23/wb/kl/Kernel7/prod/EngineStarter/

src/risc_return.o”

msgprint -i -c “CCLKernel_GetObjects::Execute” “Add

object $file at “ $path

stepoutputadd -X -R -N -F $path -p $path

stepaddexecdepitem -d $inid $path

}

set home [wokparam -e %Ilog_Home]

if { $home == ““ } {

msprint -c “CCLKernel_GetObjects::Execute” -e “Cannot

evaluate parameter : %Ilog_Home

return 1;

}

foreach file { llstdio.o llfloat.o llfloat31.o cfix.o

lelisp.o getgloba.o cload.o } {

set path “$home/o/$file”

msgprint -i -c “CCLKernel_GetObjects::Execute” “Add

object $file at “ $path

stepoutputadd -X -R -N -F $path -p $path

stepaddexecdepitem -d $inid $path

}

set file “lelisp31bin.o”

set path “$home/lelisp31bin.o”

msgprint -i -c “CCLKernel_GetObjects::Execute” “Add

object $file at “ $path

stepoutputadd -X -R -N -F $path -p $path

stepaddexecdepitem -d $inid $path

if { $failed } {return 1;}

return 0;

}

Example2
File Name: CCLKernel_core.tcl

Copyright: Matra Datavision 1996

Appendix C. Tcl

 95

proc CCLKernel_core::AdmFileType {} {

return stadmfile;

}

proc CCLKernel_core::OutputDirTypeName {} {

return sttmpdir;

}

proc CCLKernel_core::HandleInputFile { ID } {

scan $ID “%\[^:\]:%\[^:\]:%\[^:\]” unit type name

switch $type {

executable {

return 1;

}

}

switch $name {

CCL_lelisp.ll {

return 1;

}

}

return 0;

}

proc CCLKernel_core::Execute { unit args } {

global WOK_GLOBALS env

msgprint -i -c “CCLKernel_core::Execute” “Processing unit :
$unit”;

msgprint -i -c “CCLKernel_core::Execute”

set workbench [wokinfo -N $unit]

set unitname [wokinfo -n $unit]

set failed 0;

set lispbin ““

set lispfile ““

set lispbinid ““

set lispfileid ““

foreach ID $args {

scan $ID “%\[^:\]:%\[^:\]:%\[^:\]” Unit type name

switch $type {

executable {

set lispbinid $ID

set lispbin [stepinputinfo -p $ID]

}

}

Appendix C. Tcl

 96

switch $name {

CCL_lelisp.ll {

set lispfileid $ID

set lispfile [stepinputinfo -p $ID]

}

}

}

if { $lispfile == ““} {

set lispfileid “CCLKernel:source:CCL_lelisp.ll”;

set lispfile [woklocate -p $lispfileid $workbench]

}

if { $lispbin == ““} {

msgprint -e -c “CCLKernel_core::Execute” “Cannot find lelispbin
in input”

return 1;

}

msgprint -i -c “CCLKernel_core::Execute” “Using lelisp.bin
at “ $lispbin

msgprint -i -c “CCLKernel_core::Execute”

set config “[wokparam -e %Ilog_Home]/config”

set tmpdir [wokinfo -p sttmpdir:. $unit]

set output [wokinfo -p executable:. $unit]

set lelisppointbin [wokinfo -p executable:lelisp.bin $unit]

unlink -nocomplain $lelisppointbin

link -sym $lispbin $lelisppointbin

msgprint -i -c “CCLKernel_core::Execute” “Setting
Environment”

set WOK_GLOBALS(setenv_proc,tcl) 1

wokenv -s

set WOK_GLOBALS(setenv_proc,tcl) 0

set olddir [pwd]

cd [wokinfo -p source:. $unit]

set FrontSIZE “-stack 12 -code 1500 -heap 2048 -number 0 -
vector 32 -string 50 -symbol 30 -float 0 -cons “

msgprint -i -c “CCLKernel_core::Execute” “Exec : $config
$tmpdir $lispbin $lispfile $output $FrontSIZE 8”

puts “exec /bin/env \\

COREDIR=$output \\

WBPACKAGE=[wokinfo -n $unit] ILOG_LICENSE_FILE=[wokparam -e
%Ilog_LicenseFile] \\

CSF_EngineStarterList=/usr/local/etc/

EngineStarter.Hosts \\

ILOG_LICENSE_FILE=[wokparam -e %Ilog_LicenseFile] \\

Appendix C. Tcl

 97

\”FrontSIZE=$FrontSIZE\” \\

$config $tmpdir $lispbin $lispfile $output $FrontSIZE 8”

msgprint -i -c “CCLKernel_core::Execute” [eval “exec
/bin/env \\

COREDIR=$output \\

WBPACKAGE=[wokinfo -n $unit] \\

ILOG_LICENSE_FILE=[wokparam -e %Ilog_LicenseFile] \\

CSF_EngineStarterList=/usr/local/etc/ EngineStarter.Hosts \\

\”FrontSIZE=$FrontSIZE\” \\

$config $tmpdir $lispbin $lispfile $output $FrontSIZE 8”]

stepoutputadd -P $unitname:corelisp:$unitname.core

stepaddexecdepitem -d $lispbinid
$unitname:corelisp:$unitname.core

stepaddexecdepitem -d $lispfileid

$unitname:corelisp:$unitname.core

cd $olddir

return 0;

}

	Version 6.3 / September 2008
	1. Introduction & Glossary
	1.1. About the Development Environment
	1.2. Brief Overview of Open CASCADE Development
	1.3. WOK Components
	1.3.1. Entities
	1.3.2. Files

	1.4. Glossary
	1.4.1. Development Units
	1.4.2. Workbenches
	1.4.3. Workshops
	1.4.4. Factories

	2. Elements of the Platform
	2.1. Development Units
	2.1.1. Directory Structure of a Development Unit
	2.1.2. Files in a Development Unit
	2.1.3. Package
	2.1.4. Schema
	2.1.5. Executable
	2.1.6. Toolkit
	2.1.7. Nocdlpack
	2.1.8. Interface
	Example

	2.1.9. Jni
	2.1.10. Delivering Parcels

	2.2. Workbenches
	2.2.1. Roots
	2.2.2. Directories

	2.3. Workshops
	2.4. Factories

	3. Development Process
	3.1. WOK Environment
	3.2. Steps
	NOTE

	3.3. Getting Started
	3.3.1. Entity Names
	3.3.2. Entering the Factory
	3.3.3. Creating a New Workshop
	3.3.4. Selecting Parcels
	NOTE

	3.3.5. Opening a Workshop
	3.3.6. Creating a New Workbench
	3.3.7. Opening a Workbench
	3.3.8. Using Existing Resources

	3.4. Creating Software Components
	3.4.1. Creating a Package
	Compiling the Package
	NOTE
	Package Files

	3.4.2. Creating a Nocdlpack
	NOTE

	3.4.3. Creating a Schema

	3.5. Building an Executable
	3.5.1. Creating an Executable

	3.6. Test Environments
	3.6.1. Testing an Executable
	NOTE

	3.7. Building a Toolkit
	3.7.1. Creating a Toolkit
	NOTE

	3.8. Building a Delivery Unit
	3.8.1. Creating a Delivery Unit
	3.8.2. Installing a Parcel

	3.9. Working with Resource
	3.10. Java wrapping
	3.10.1. Creating an interface
	3.10.2. Creating a jni

	3.11. More Advanced Use
	3.11.1. Default User Profile
	3.11.2. Changing Parcel Configuration

	4. Available Services
	4.1. Synopsis
	4.1.1. Common Command Syntax
	Presentation of Commands
	NOTE

	4.2. General Services
	4.2.1. wokcd
	4.2.2. wokclose
	4.2.3. wokenv
	4.2.4. wokinfo
	4.2.5. woklocate
	4.2.6. wokparam
	4.2.7. wokprofile

	4.3. Services Associated with Factories
	4.3.1. fcreate
	4.3.2. finfo
	4.3.3. frm

	4.4. Services Associated with Warehouses
	4.4.1. Wcreate
	4.4.2. Winfo
	4.4.3. Wrm
	4.4.4. Wdeclare

	4.5. Services Associated with Parcels
	4.5.1. pinfo
	4.5.2. pinstall

	4.6. Services Associated with Workshops
	4.6.1. screate
	4.6.2. sinfo
	4.6.3. srm

	4.7. Services Associated with Workbenches
	4.7.1. wcreate
	NOTE

	4.7.2. w_info
	4.7.3. wrm
	4.7.4. wmove
	4.7.5. wprocess

	4.8. Services Associated with Development Units
	4.8.1. ucreate
	4.8.2. uinfo
	4.8.3. urm
	4.8.4. umake
	4.8.5. Customizing umake

	4.9. Source Management Services
	4.9.1. wprepare
	4.9.2. wstore
	4.9.3. wintegre
	4.9.4. wnews
	NOTE

	4.9.5. wget
	4.9.6. Installation Procedure
	4.9.7. Integration Procedure

	4.10. Session Services
	4.10.1. 1 Sinfo
	4.10.2. Convenience Aliases

	5. Using the Graphic Interface
	5.1. Main menu bar
	5.1.1. Menus
	5.1.2. Application icons
	
	NOTE

	5.1.3. Display management

	5.2. Popup menus

	6. Appendix A. Using the Emacs Editor
	6.1. Additional Mode Available under the Emacs Editor

	7. Appendix B. Parameters and EDL Files
	7.1. EDL Overview
	7.1.1. Key Concepts
	7.1.2. Syntax
	7.1.3. EDL Actions
	7.1.4. EDL Conditions
	Complex Conditions

	7.2. WOK Parameters
	7.2.1. Classes of WOK Parameters
	7.2.2. Defining WOK Parameters
	7.2.3. Redefining Parameters
	NOTE

	7.3. Using EDL to Define WOK Parameters
	7.3.1. Example to Modify Link Options

	8. Appendix C. Tcl
	8.1. Tcl Overview
	8.2. Tcl and WOK
	8.3. Configuring Your Account for Tcl and WOK
	8.3.1. The .cshrc File
	8.3.2. The .tclshrc File
	8.3.3. The WOK_SESSIONID Variable
	8.3.4. Writing Tcl Steps for a WOK Build
	8.3.5. msgprint
	8.3.6. stepoutputadd
	8.3.7. stepaddexecdepitem
	8.3.8. Components of a Tcl UMake Step
	8.3.9. Example Tcl Steps

