

Object Libraries

Foundation Classes
User's Guide

Version 6.3 / September 2008

Introduction

2

Copyright © 2008, by Open CASCADE S.A.S.

PROPRIETARY RIGHTS NOTICE: All rights reserved. No part of this material may be
reproduced or transmitted in any form or by any means, electronic, mechanical, or otherwise,
including photocopying and recording or in connection with any information storage or retrieval
system, without the permission in writing from Open CASCADE S.A.S.

The information in this document is subject to change without notice and should not be construed
as a commitment by Open CASCADE S.A.S. Open CASCADE S.A.S. assures no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or copied
only in accordance with the terms of such a license.

CAS.CADE and Open CASCADE are registered trademarks of Open CASCADE S.A.S. Other
brand or product names are trademarks or registered trademarks of their respective holders.

NOTICE FOR USERS:

This User Guide is a general instruction for Open CASCADE study. It may be incomplete and
even contain occasional mistakes, particularly in examples, samples, etc.
Open CASCADE S.A.S. bears no responsibility for such mistakes. If you find any mistakes or
imperfections in this document, or if you have suggestions for improving this document, please,
contact us and contribute your share to the development of Open CASCADE Technology:
bugmaster@opencascade.com

Tour Opus 12

77, Esplanade du Général de Gaulle

92914 PARIS LA DEFENSE

FRANCE

mailto:bugmaster@opencascade.com

Introduction

3

Table of Contents
1. INTRODUCTION .. 6

1.1. FOUNDATION CLASSES OVERVIEW... 6
Root Classes .. 6
Strings.. 6
Collections... 6
Collections of Standard Objects... 7
Vectors and Matrices ... 7
Primitive Geometric Types.. 7
Common Math Algorithms.. 8
Exceptions ... 8
Quantities... 8
Application services... 8

1.2. FUNDAMENTAL CONCEPTS ... 9
1.2.1. Modules and toolkits... 9
1.2.2. Packages... 9
1.2.3. Classes.. 11

Categories of Classes... 11
1.2.4. Genericity ... 11

Declaring a Generic Class.. 11
Instantiation of a Generic Class ... 12
Nested Generic Classes.. 12

1.2.5. Inheritance.. 13
1.2.6. Categories of Data Types ... 13
1.2.7. Exceptions... 14
1.2.8. Persistence and Data Schema .. 14

2. BASICS ... 15
2.1. DATA TYPES... 15

2.1.1. Primitive Types ... 15
2.1.2. Types manipulated by value.. 17
2.1.3. Types manipulated by reference (handle)... 18
2.1.4. Summary of properties.. 19

2.2. PROGRAMMING WITH HANDLES ... 19
2.2.1. Handle Definition ... 19

Organization of Classes ... 19
Using a Handle .. 19

2.2.2. Type Management... 20
General .. 20
Type Conformity ... 20
Explicit Type Conversion .. 21

2.2.3. Using Handles to Create Objects ... 22
2.2.4. Invoking Methods ... 23

Invoking Class Methods .. 24
2.2.5. Handle de-allocation .. 24

Cycles .. 25
2.2.6. Creating Transient Classes without CDL... 25

2.3. MEMORY MANAGEMENT IN OPEN CASCADE... 26
2.3.1. Usage.. 26
2.3.2. Configuring memory manager.. 27
2.3.3. Implementation details ... 27

Introduction

4

Benefits and drawbacks ... 28
2.4. EXCEPTION HANDLING... 29

2.4.1. Raising an Exception .. 29
“C++ like” Syntax ... 29
Regular usage .. 30

2.4.2. Handling an Exception ... 31
Catching signals... 34

2.4.3. Implementation details ... 34
2.5. PLUG-IN MANAGEMENT ... 35

2.5.1. Distribution by Plug-Ins ... 35
C++ Plug-In Implementation ... 36
C++ Client Plug-In Implementation .. 37
Not Using the Software Factory .. 39

3. COLLECTIONS, STRINGS AND UNIT CONVERSION... 40
3.1. COLLECTIONS... 40

3.1.1. Overview... 40
3.1.2. Generic general-purpose Aggregates... 41
3.1.3. Generic Maps ... 44
3.1.4. Iterators .. 48

3.2. COLLECTIONS OF STANDARD OBJECTS... 49
3.2.1. Overview... 49
3.2.2. Description ... 49

3.3. STRINGS ... 50
3.3.1. Overview... 50
3.3.2. Strings... 51
3.3.3. Conversion.. 51

3.4. UNIT CONVERSION ... 52
3.4.1. Overview... 52

4. MATH PRIMITIVES AND ALGORITHMS .. 53
4.1. OVERVIEW.. 53
4.2. VECTORS AND MATRICES... 53
4.3. PRIMITIVE GEOMETRIC TYPES.. 55

4.3.1. Overview... 55
4.3.2. gp .. 55

4.4. COLLECTIONS OF PRIMITIVE GEOMETRIC TYPES.. 56
4.4.1. TColgp .. 56

4.5. BASIC GEOMETRIC LIBRARIES.. 56
4.5.1. EICLib .. 56
4.5.2. EISLib... 56

4.6. COMMON MATH ALGORITHMS... 57
4.6.1. Implementation of Algorithms .. 57

4.7. PRECISION .. 60
4.7.1. The Precision package.. 61
4.7.2. Standard Precision values .. 62

5. DATA STORAGE .. 65
5.1. SAVING AND OPENING FILES .. 65
5.2. BASIC STORAGE PROCEDURES ... 66

5.2.1. Saving ... 66
5.2.2. Opening .. 67

5.3. METHODS USED ... 68
5.3.1. Write ... 68

Introduction

5

5.3.2. Read.. 68

Introduction

6

11.. IInnttrroodduuccttiioonn

1.1. Foundation Classes Overview
This manual explains how to use the Open CASCADE Foundation Classes. It
provides basic documentation on foundation classes. For advanced information on
foundation classes and their applications, see our offerings on our web site at
www.opencascade.org/support/training.html

Foundation Classes provide a variety of general-purpose services such as
automated dynamic memory management (manipulation of objects by handle),
collections, exception handling, genericity by downcasting and plug-in creation.

Foundation Classes include the following:

Root Classes
They are the basic data types and classes on which all the other classes are built.
They provide:

• fundamental types such as Boolean, Character, Integer or Real,

• safe handling of dynamically created objects, ensuring automatic deletion
of unreferenced objects (see the Standard_Transient class),

• configurable optimized memory manager increasing the performance of
applications that intensively use dynamically created objects,

• extended run-time type information (RTTI) mechanism facilitating the
creation of complex programs,

• management of exceptions,

• encapsulation of C++ streams.

Root classes are mainly implemented in the Standard and MMgt packages.

Strings
Strings are classes that handle dynamically sized sequences of characters based on
both ASCII (normal 8-bit character type) and Unicode (16-bit character type).

Strings may also be manipulated by handles, and consequently be shared.

Strings are implemented in the TCollection package.

Collections
Collections are the classes that handle dynamically sized aggregates of data.

http://www.opencascade.org/support/training.html

Introduction

7

Collection classes are generic, that is, they define a structure and algorithms
allowing to hold a variety of objects which do not necessarily inherit from a unique
root class (similarly to C++ templates). When you need to use a collection of a given
type of object, you must instantiate it for this specific type of element. Once this
declaration is compiled, all functions available on the generic collection are available
on your instantiated class.

Collections include a wide range of generic classes such as run-time sized arrays,
lists, stacks, queues, sets and hash maps.

Collections are implemented in the TCollection and NCollection packages.

Collections of Standard Objects
The TColStd package provides frequently used instantiations of generic classes
from the TCollection package with objects from the Standard package or strings
from the TCollection package.

Vectors and Matrices
These classes provide commonly used mathematical algorithms and basic
calculations (addition, multiplication, transposition, inversion, etc.) involving vectors
and matrices.

Primitive Geometric Types
Open CASCADE primitive geometric types are a STEP-compliant implementation of
basic geometric and algebraic entities.

They provide:

• Descriptions of elementary geometric shapes:

• Points,

• Vectors,

• Lines,

• Circles and conics,

• Planes and elementary surfaces,

• Positioning of these shapes in space or in a plane by means of an axis or

a coordinate system,

• Definition and application of geometric transformations to these shapes:

• Translations

• Rotations

• Symmetries

Introduction

8

• Scaling transformations

• Composed transformations

• Tools (coordinates and matrices) for algebraic computation.

Common Math Algorithms
Open CASCADE common math algorithms provide a C++ implementation of the
most frequently used mathematical algorithms.

These include:

• Algorithms to solve a set of linear algebraic equations,

• Algorithms to find the minimum of a function of one or more independent

variables,

• Algorithms to find roots of one, or of a set, of non-linear equations,

• Algorithms to find the eigen-values and eigen-vectors of a square matrix.

Exceptions
A hierarchy of commonly used exception classes is provided, all based on class
Failure, the root of exceptions.

Exceptions describe exceptional situations, which can arise during the execution of a
function. With the raising of an exception, the normal course of program execution is
abandoned. The execution of actions in response to this situation is called the
treatment of the exception.

Quantities
These are various classes supporting date and time information and fundamental
types representing most physical quantities such as length, area, volume, mass,
density, weight, temperature, pressure etc.

Application services
Foundation Classes also include implementation of several low-level services that
facilitate the creation of customizable and user-friendly applications with Open
CASCADE. These include:

• Unit conversion tools, providing a uniform mechanism for dealing with
quantities and associated physical units: check unit compatibility, perform
conversions of values between different units and so on (see package
UnitsAPI).

• Basic interpreter of expressions that facilitates the creation of customized
scripting tools, generic definition of expressions and so on (see package
ExprIntrp)

Introduction

9

• Tools for dealing with configuration resource files (see package Resource)
and customizable message files (see package Message), making it easy to
provide a multi-language support in applications

• Progress indication and user break interfaces, giving a possibility even for
low-level algorithms to communicate with the user in a universal and
convenient way.

For a detailed description of all the Foundation Classes, see the Foundation Classes
Reference Manual.

1.2. Fundamental Concepts
An object-oriented language structures a system around data types rather than
around the actions carried out on this data. In this context, an object is an instance
of a data type and its definition determines how it can be used. Each data type is
implemented by one or more classes, which make up the basic elements of the
system.

In Open CASCADE the classes are usually defined using CDL (CASCADE Definition
Language) that provides a certain level of abstraction from pure C++ constructs and
ensures a definite level of similarity in the implementation of classes. See CDL
User’s Guide for more details.

This chapter introduces some basic concepts most of which are directly supported
by CDL and used not only in Foundation Classes, but throughout the whole Open
CASCADE library.

1.2.1. Modules and toolkits
The whole Open CASCADE library is organized in a set of modules. The first
module, providing most basic services and used by all other modules, is called
Foundation Classes and described by this manual.

Every module consists primarily of one or several toolkits (though it can also contain
executables, resource units etc.). Physically a toolkit is represented by a shared
library (e.g. .so or .dll). The toolkit is built from one or several packages.

1.2.2. Packages
A package groups together a number of classes which have semantic links. For
example, a geometry package would contain Point, Line, and Circle classes. A
package can also contain enumerations, exceptions and package methods
(functions). In practice, a class name is prefixed with the name of its package e.g.

Geom_Circle.

Data types described in a package may include one or more of the following data
types:

• Enumerations

• Object classes

Introduction

10

• Exceptions

• Pointers to other object classes

Inside a package, two data types cannot bear the same name.

Figure 2. Contents of a package

Methods are either functions or procedures. Functions return an object, whereas
procedures only communicate by passing arguments. In both cases, when the
transmitted object is an instance manipulated by a handle, its identifier is passed.
There are three categories of methods:

Object constructor Creates an instance of the described class. A class will
have one or more object constructors with various
different arguments or none.

Instance method Operates on the instance which owns it.

Introduction

11

Class method Does not work on individual instances, only on the class
itself.

1.2.3. Classes
The fundamental software component in object-oriented software development is the
class. A class is the implementation of a data type. It defines its behavior (the
services offered by its functions) and its representation (the data structure of the
class – the fields which store its data).

Categories of Classes
Classes fall into three categories:

• Ordinary classes

• Deferred classes

• Generic classes

A deferred class cannot be instantiated. The purpose of having such classes is to
have a given behavior shared by a hierarchy of classes and dependent on the
implementation of the descendents. This is a way of guaranteeing a certain base of
inherited behavior common to all the classes based on a particular deferred class.
The C++ equivalent of a deferred CDL class is an abstract class.

A generic class offers a set of functional behaviors to manipulate other data types.
Instantiation of a generic class requires that a data type is given for its argument(s).
The generic classes in CDL perform the same mission as template classes in C++.

1.2.4. Genericity
Generic classes are implemented in two steps. First you declare the generic class to
establish the model, then you instantiate this class by giving information about the
generic types.

Declaring a Generic Class
The generic classes in Open CASCADE are similar by their intent to C++ templates
with explicit instantiation.

A generic class is declared in CDL as operating on data items of non-fixed types
which are declared as arguments of the generic class. It is possible to put a
restriction on these data types to be of subtype of some definite class. Definition of
the generic class does not create new class type in C++ terms; it only defines a
pattern for generation (instantiation) of the real classes.

Introduction

12

Instantiation of a Generic Class
When a generic class is instantiated, its argument types are substituted by actually
existing data types (elementary types or classes). The result of instantiation is a new
C++ class with an arbitrary name (specified in the instantiating declaration). By
convention, the name of the instantiated class is usually constructed from the name
of the generic class and names of actual argument types. As for any other class, the
name of the class instantiating a generic type is prefixed by the name of the package
in which instantiation is declared.

Example:
class Array1OfReal instantiates Array1 from TCollection (Real);

This declaration located in a CDL file of the TColStd package defines a new C++
class TColStd_Array1OfReal as the instantiation of generic class TCollection_Array1
for Real values.

More than one class can be instantiated from the same generic class with the same
argument types. Such classes will be identical by implementation, but considered as
two different classes by C++.

No class can inherit from a generic class.

A generic class can be a deferred class. A generic class can also accept a deferred
class as its argument. In both these cases, any class instantiated from it will also be
deferred. The resulting class can then be inherited by another class.

Nested Generic Classes
It often happens that many classes are linked by a common generic type. This is the
case when a base structure furnishes an iterator. In this context, it is necessary to
make sure that the group of linked generic classes is indeed instantiated for the
same type of object. In order to group the instantiation, you may declare certain
classes as being nested.

When generic class is instantiated, its nested classes are instantiated as well. The
name of the instantiation of the nested class is constructed from the name of that
nested class and name of the main generic class, connected by ‘Of’.

Example:
class MapOfReal instantiates Map from TCollection (Real,MapRealHasher);

This declaration in TColStd defines not only class TColStd_MapOfReal, but also
class TColStd_MapIteratorOfMapOfReal which is instantiated from nested class
MapIterator of the generic class TCollection_Map. Note that instantiation of the
nested class is separate class, it is not nested class to the instantiation of the main
class.

Nested classes, even though they are described as non-generic classes, are
generic by construction being inside the class they are a member of.

Introduction

13

1.2.5. Inheritance
The purpose of inheritance is to reduce the development workload. The inheritance
mechanism allows a new class to be declared already containing the characteristics
of an existing class. This new class can then be rapidly specialized for the task in
hand. This avoids the necessity of developing each component “from scratch”.

For example, having already developed a class BankAccount you could quickly
specialize new classes - SavingsAccount, LongTermDepositAccount,
MoneyMarketAccount, RevolvingCreditAccount, etc....

The corollary of this is that when two or more classes inherit from a parent (or
ancestor) class, all these classes guarantee as a minimum the behavior of their
parent (or ancestor). For example, if the parent class BankAccount contains the
method Print which tells it to print itself out, then all its descendent classes
guarantee to offer the same service.

One way of ensuring the use of inheritance is to declare classes at the top of a
hierarchy as being deferred. In such classes, the methods are not implemented.
This forces the user to create a new class which redefines the methods. This is a
way of guaranteeing a certain minimum of behavior among descendent classes.

1.2.6. Categories of Data Types
The data types in Open CASCADE fall into two categories:

• Data types manipulated by handle (or reference)

• Data types manipulated by value

Figure 1. Manipulation of data types

A data type is implemented as a class. The class not only defines its data
representation and the methods available on instances, but it also suggests how the
instance will be manipulated.

Introduction

14

• A variable of a type manipulated by value contains the instance itself.

• A variable of a type manipulated by handle contains a reference to the instance.

The first examples of types manipulated by values are the predefined primitive
types: Boolean, Character, Integer, Real etc.

A variable of a type manipulated by handle which is not attached to an object is said
to be null. To reference an object, we instantiate the class with one of its
constructors. For example, in C++:

Example

Handle(myClass) m = new myClass;

In Open CASCADE, the Handles are specific classes that are used to safely
manipulate objects allocated in the dynamic memory by reference, providing
reference counting mechanism and automatic destruction of the object when it is not
referenced.

1.2.7. Exceptions
The behavior of any object is implemented by the methods, which were defined in its
class declaration. The definition of these methods includes not only their signature
(their programming interface) but also their domain of validity.

This domain is expressed by exceptions. Exceptions are raised under various error
conditions. This mechanism is a safeguard of software quality.

1.2.8. Persistence and Data Schema
The data schema is the structure used by an application to store its data. Data
schemas consist of persistent classes.

An object is called persistent if it can be permanently stored. Thus, the object can
be reused at a later date by the application, which created it, or by another
application.

In order for an object to be persistent for CDL, its type must be declared as inheriting
from the class Standard_Persistent or have a parent class inheriting from the
Standard_Persistent class. Note that classes inheriting from Standard_Persistent are
handled by a reference.

Objects instantiated from classes which inherit from the Standard_Storable class
cannot themselves be stored individually, but they can be stored as fields of an
object which inherits from Standard_Persistent. Note that objects inheriting from
Standard_Storable are handled by a value.

Basics

15

22.. BBaassiiccss
This chapter deals with basic services such as memory management, programming
with handles, primitive types, exception handling, genericity by downcasting and
plug-in creation.

2.1. Data Types

2.1.1. Primitive Types
The primitive types are predefined in the language and they are manipulated by
value.

Some of these primitives inherit from the Storable class. This means they can be
used in the implementation of persistent objects, either contained in entities declared
within the methods of the object, or they form part of the internal representation of
the object.

The primitives inheriting from Standard_Storable are the following:

Boolean Is used to represent logical data. It may have only two values:

Standard_True and Standard_False.

Character Designates any ASCII character.

ExtCharacter Is an extended character.

Integer Is a whole number.

Real Denotes a real number (i.e. one with whole and a fractional part,
either of which may be null).

ShortReal Real with a smaller choice of values and memory size.

There are also non-Storable primitives. They are:

CString Is used for literal constants.

ExtString Is an extended string.

Address Represents a byte address of undetermined size.

The services offered by each of these types are described in the Standard Package.

The table below presents the equivalencies existing between C++ fundamental types
and Open CASCADE primitive types.

Table 1: Equivalence between C++ Types and Open CASCADE Primitive Types

C++ Types Open CASCADE Types

int Standard_Integer

double Standard_Real

float Standard_ShortReal

Basics

16

unsigned int Standard_Boolean

Standard_False = 0

Standard_True = 1

char Standard_Character

short Standard_ExtCharacter

char* Standard_CString

void* Standard_Address

short* Standard_ExtString

* pointer

Description reminder of the classes listed above:

Standard_Integer:

fundamental type representing 32-bit integers yielding negative, positive or null
values. Integer is implemented as a typedef of the C++ int fundamental type. As
such, the algebraic operations +, -, *, / as well as the ordering and equivalence
relations <, <=, ==, !=, >=, > are defined on it.

Standard_Real:

fundamental type representing real numbers with finite precision and finite size. Real
is implemented as a typedef of the C++ double (double precision) fundamental
type. As such, the algebraic operations +, -, *, /, unary- and the ordering and
equivalence relations <, <=, ==, !=, >=, > are defined on reals.

Standard_ShortReal:

fundamental type representing real numbers with finite precision and finite size.
ShortReal is implemented as a typedef of the C++ float (simple precision)
fundamental type. As such, the algebraic operations +, -, *, /, unary- and the ordering
and equivalence relations <, <=, ==, !=, >=, > are defined on reals.

Standard_Boolean:

Boolean is a fundamental type representing logical expressions. It has two values,
false and true. Boolean is implemented as a typedef of the C++ unsigned int
fundamental type. As such, the algebraic operations and, or, xor, not as well as
equivalence relations ==, != are defined on Booleans.

Standard_Character:

Character is a fundamental type representing the normalized ASCII character set. It
may be assigned the values of the 128 ASCII characters. Character is implemented
as a typedef of the C++ char fundamental type. As such, the ordering and
equivalence relations <, <=, ==, !=, >=, > are defined on characters using the order
of the ASCII chart (ex: A< B).

Basics

17

Standard_ExtCharacter:

ExtCharacter is a fundamental type representing the Unicode character set. It is a
16-bit character type. ExtCharacter is implemented as a typedef of the C++ short
fundamental type. As such, the ordering and equivalence relations <, <=, ==, !=, >=,
> are defined on extended characters using the order of the UNICODE chart (ex: A<
B).

Standard_CString:

CString is a fundamental type representing string literals. A string literal is a
sequence of ASCII (8 bits) characters enclosed in double quotes. CString is
implemented as a typedef of the C++ char* fundamental type.

Standard_Address :

Address is a fundamental type representing a generic pointer. Address is
implemented as a typedef of the C++ void* fundamental type.

Standard_ExtString :

ExtString is a fundamental type representing string literals as sequences of Unicode
(16 bits) characters. ExtString is implemented as a typedef of the C++ short*
fundamental type.

2.1.2. Types manipulated by value
There are three categories of types which are manipulated by value:

• Primitive types

• Enumerated types

• Types defined by classes not inheriting from Standard_Persistent or
Standard_Transient, whether directly or not

Types which are manipulated by value behave in a more direct fashion than those
manipulated by handle and thus can be expected to perform operations faster, but
they cannot be stored independently in a file.

Basics

18

Figure 4. Manipulation of a data type by value

Types that are known to the schema (i.e. they are either primitives or they inherit
from Storable) and are manipulated by value, can be stored inside a persistent
object as part of the representation. Only in this way can a “manipulated by value”
object be stored in a file.

2.1.3. Types manipulated by reference (handle)
There are two categories of types which are manipulated by handle:

• Types defined by classes inheriting from the Persistent class, which are

therefore storable in a file.

• Types defined by classes inheriting from the Transient class.

Figure 5. Manipulation of a data type by reference

Basics

19

2.1.4. Summary of properties

 Manipulated by handle Manipulated by value

storable Persistent Primitive, Storable

(storable if nested in a
persistent class)

temporary Transient Other
Figure 6. Summary of the relationship for the various data types between how
they are handled and their storability.

2.2. Programming with Handles

2.2.1. Handle Definition
A handle may be compared with a C++ pointer. Several handles can reference the
same object. Also, a single handle may reference several objects, but only one at a
time. To have access to the object it refers to, the handle must be de-referenced just
as with a C++ pointer.

Transient and Persistent classes may be manipulated either with handles or with
values. Handles which reference non-persistent objects are called non-storable
handles; therefore, a persistent object cannot contain a non-storable handle.

Organization of Classes
Classes used with handles are persistent or transient.

Classes that inherit from Standard_Transient are transient while classes that inherit
from Standard_Persistent are persistent.

In this chapter we will discuss only transient classes and relevant handles. Persistent
classes and their handles are organized in a similar manner.

Class Standard_Transient is a root of a big hierarchy of Open CASCADE classes
that are said to be operable by handles. It provides a reference counter field,
inherited by all its descendant classes, that is used by associated Handle() classes
to track a number of handles pointing to this instance of the object.

For every class derived (directly or indirectly) from Transient, CDL extractor creates
associated class Handle() whose name is the same as the name of that class
prefixed by “Handle_”. Open CASCADE provides pre-processor macro Handle() that
produces a name of a Handle() class for a given transient class name.

Using a Handle
A handle is characterized by the object it references.

Basics

20

Before performing any operation on a transient object, you must declare the handle.

For example, if Point and Line are two transient classes from the Geom package, you
would write:

Example
Handle(Geom_Point) p1, p2;

Handle(Geom_Line) aLine;

Declaring a handle creates a null handle that does not refer to any object. The
handle may be checked to be null by its method IsNull().To nullify a handle, use
method Nullify().

To initialize a handle, either a new object should be created or the value of another
handle can be assigned to it, on condition that their types are compatible.

NOTE

Handles should only be used for object sharing. For all local operations, it
is advisable to use classes manipulated by values.

2.2.2. Type Management

General
Open CASCADE provides a means to describe the hierarchy of data types in a
generic way, with a possibility to check the exact type of the given object at run-time
(similarly to C++ RTTI). For every class type derived from Standard_Transient, CDL
extractor creates a code instantiating single instance of the class Standard_Type
(type descriptor) that holds information on that type: its name and list of ancestor
types.

That instance (actually, a handle on it) is returned by the virtual method
DynamicType() of the class derived from Standard_Transient. The other virtual
method IsKind() provides a means to check whether a given object has specified
type or inherits it.

In order to refer to the type descriptor object for a given class type, use macros
STANDARD_TYPE() with argument being a name of the class.

Type Conformity
The type used in the declaration of a handle is the static type of the object, the type
seen by the compiler. A handle can reference an object instantiated from a subclass
of its static type. Thus, the dynamic type of an object (also called the actual type of
an object) can be a descendant of the type which appears in the handle declaration
through which it is manipulated.

Consider the persistent class CartesianPoint, a sub-class of Point; the rule of type
conformity can be illustrated as follows:

Example

Basics

21

Handle (Geom_Point) p1;

Handle (Geom_CartesianPoint) p2;

p2 = new Geom_CartesianPoint;

p1 = p2; // OK, the types are compatible

The compiler sees p1 as a handle to Point though the actual object referenced by p1
is of the CartesianPoint type.

Explicit Type Conversion
According to the rule of type conformity, it is always possible to go up the class
hierarchy through successive assignments of handles. On the other hand,
assignment does not authorize you to go down the hierarchy. Consequently, an
explicit type conversion of handles is required.

A handle can be converted explicitly into one of its sub-types if the actual type of the
referenced object is a descendant of the object used to cast the handle. If this is not
the case, the handle is nullified (explicit type conversion is sometimes called a “safe
cast”). Consider the example below.

Example

Handle (Geom_Point) p1;

Handle (Geom_CartesianPoint) p2, p3;

p2 = new Geom_CartesianPoint;

p1 = p2; // OK, standard assignment

p3 = Handle (Geom_CartesianPoint)::DownCast (p1);

// OK, the actual type of p1 is CartesianPoint, although

the static type of the handle is Point

If conversion is not compatible with the actual type of the referenced object, the
handle which was “cast” becomes null (and no exception is raised). So, if you require
reliable services defined in a sub-class of the type seen by the handle (static type),
write as follows:

Example
void MyFunction (const Handle(A) & a)

{

 Handle(B) b = Handle(B)::Downcast(a);

 if (! b.IsNull()) {

 // we can use “b” if class B inherits from A

 }

Basics

22

 else {

 // the types are incompatible

 }

}

Downcasting is used particularly with collections of objects of different types;
however, these objects should inherit from the same root class.

For example, with a sequence of SequenceOfTransient transient objects and two
classes A and B that both inherit from Standard_Transient, you get the following
syntax:

Example

Handle (A) a;

Handle (B) b;

Handle (Standard_Transient) t;

SequenceOfTransient s;

a = new A;

s.Append (a);

b = new B;

s.Append (b);

t = s.Value (1);

// here, you cannot write:

// a = t; // ERROR !

// so you downcast:

a = Handle (A)::Downcast (t)

if (! a.IsNull()) {

 // types are compatible, you can use a

}

else {

 // the types are incompatible

}

2.2.3. Using Handles to Create Objects
To create an object which is manipulated by handle, declare the handle and initialize
it with the standard C++ new operator, immediately followed by a call to the
constructor. The constructor can be any of those specified in the source of the class
from which the object is instanced.

Example

Basics

23

Handle (Geom_CartesianPoint) p;

p = new Geom_CartesianPoint (0, 0, 0);

Unlike for a pointer, the delete operator does not work on a handle; the referenced
object is automatically destroyed when no longer in use.

2.2.4. Invoking Methods
Once you have a handle on a persistent or transient object, you can use it like a
pointer in C++. To invoke a method which acts on the referenced object, you
translate this method by the standard arrow -> operator, or alternatively, by function
call syntax when this is available.

To test or to modify the state of the handle, the method is translated by the dot “.”
operator.

The example below illustrates how to access the coordinates of an (optionally
initialized) point object:

Example
Handle (Geom_CartesianPoint) centre;

Standard_Real x, y, z;

if (centre.IsNull()) {

 centre = new PGeom_CartesianPoint (0, 0, 0);

}

centre->Coord(x, y, z);

The example below illustrates how to access the type object of a Cartesian point:

Example
Handle(Standard_Transient) p = new Geom_CartesianPoint(0.,0.,0.);

if (p->DynamicType() == STANDARD_TYPE(Geom_CartesianPoint))

 cout << "Type check OK" << endl;

else

 cout << "Type check FAILED" << endl;

NullObject exception will be raised if a field or a method of an object is accessed via
a Null handle.

Basics

24

Invoking Class Methods
A class method is called like a static C++ function, i.e. it is called by the name of the
class of which it is a member, followed by the “::” operator and the name of the
method.

Example: finding the maximum degree of a Bezier curve:

Standard_Integer n;

n = Geom_BezierCurve::MaxDegree();

2.2.5. Handle de-allocation
Before you delete an object, you must ensure it is no longer referenced. To reduce
the programming load related to this management of object life, the delete function in
Open CASCADE is secured by a reference counter of classes manipulated by
handle. A handle automates the reference counter management and automatically
deletes an object when it is no longer referenced. Normally you never call the delete
operator explicitly on instances of subclasses of Standard_Transient.

When a new handle to the same object is created, the reference counter is
incremented. When the handle is destroyed, nullified, or reassigned to another
object, that counter is decremented. The object is automatically deleted by the
handle when reference counter becomes 0.

The principle of allocation can be seen in the example below.

Example

...

{

Handle (TColStd_HSequenceOfInteger) H1 = new TColStd_HSequenceOfInteger;

 // H1 has one reference and corresponds to 48 bytes of memory

 {

 Handle (TColStd_HSequenceOfInteger) H2;

 H2 = H1; // H1 has two references

 if (argc == 3) {

 Handle (TColStd_HSequenceOfInteger) H3;

 H3 = H1;

 // Here, H1 has three references

 ...

 }

 // Here, H1 has two references

 }

Basics

25

 // Here, H1 has 1 reference

}

// Here, H1 has no reference and the referred

// TColStd_HSequenceOfInteger object is deleted

Cycles
Cycles appear if two or more objects reference each other by handles (stored as
fields). In this condition automatic destruction will not work.

Consider for example a graph, whose objects (primitives) have to know the graph
object to which they belong, i.e. a primitive must have a reference to complete graph
object. If both primitives and the graph are manipulated by handle and they refer to
each other by keeping a handle as a field, the cycle appears.

The graph object will not be deleted when the last handle to it is destructed in the
application, since there are handles to it stored inside its own data structure
(primitives).

There are two approaches how to avoid such situation:

• Use C++ pointer for one kind of references, e.g. from a primitive to the graph

• Nullify one set of handles (e.g. handles to a graph in primitives) when a graph
object needs to be destroyed

2.2.6. Creating Transient Classes without CDL
Though generation of Handle class and related C++ code is normally performed by
CDL extractor, it is also possible to define a class managed by handle without CDL.
To facilitate that, several macros are provided in the file
Standard_DefineHandle.hxx:

DECLARE_STANDARD_HANDLE(class_name,ancestor_name)

This macro declares Handle class for a class class_name that inherits class
ancestor_name (for instance, Standard_Transient). This macro should be put in
a header file; the declaration of the handle to a base class must be available
(usually put before or after the declaration of the class class_name, or into a
separate header file).

IMPLEMENT_STANDARD_HANDLE(class_name,ancestor_name)

This macro implements method DownCast() of the Handle class. Should be
located in a C++ file (normally the file where methods of the class class_name
are implemented).

DEFINE_STANDARD_RTTI(class_name)

Declares methods required for RTTI in the class class_name declaration; should
be in public: section.

IMPLEMENT_STANDARD_RTTIEXT(class_name,ancestor_name)

Implements above methods. Usually put into the C++ file implementing class
class_name.

Basics

26

Note that it is important to ensure correctness of macro arguments, especially the
ancestor name, otherwise the definition may be inconsistent (no compiler warnings
will be issued in case of mistake).

Example:

Appli_ExtSurface.hxx file:
#include <Geom_Surface.hxx>

class Appli_ExtSurface : public Geom_Surface

{

. . .

public:

 DEFINE_STANDARD_RTTI(Appli_ExtSurface)

}

DECLARE_STANDARD_HANDLE(Appli_ExtSurface,Geom_Surface)

Appli_ExtSurface.cxx file:
#include <Appli_ExtSurface.hxx>

IMPLEMENT_STANDARD_HANDLE(Appli_ExtSurface,Geom_Surface)

IMPLEMENT_STANDARD_RTTIEXT(Appli_ExtSurface,Geom_Surface)

2.3. Memory Management in Open CASCADE
In the course of a work session, geometric modeling applications create and delete a
considerable number of C++ objects allocated in the dynamic memory (heap). In this
context, performance of standard functions for allocating and de-allocating memory
may be not sufficient. For this reason, Open CASCADE employs a specialized
memory manager implemented in the Standard package.

2.3.1. Usage
To use Open CASCADE memory manager to allocate memory in a C code, just use
method Standard::Allocate() instead of malloc() and method Standard::Free()
instead of free(). In addition, method Standard::Reallocate() is provided to replace C
function realloc().

In C++, operators new() and delete() for a class may be defined so as to allocate
memory using Standard::Allocate() and free it using Standard::Free(). In that case all
objects of that class and all inherited classes will be allocated using Open
CASCADE memory manager.

CDL extractor defines new() and delete() in this way for all classes declared with
CDL. Thus all Open CASCADE classes (apart from a few exceptions) are allocated
using Open CASCADE memory manager.

Since operators new() and delete() are inherited, this is also true for any class
derived from an Open CASCADE class, for instance, for all classes derived from
Standard_Transient.

Basics

27

NOTE

It is possible (though not recommended unless really unavoidable) to
redefine new() and delete() functions for some class inheriting
Standard_Transient. If that is done, the method Delete() should be also
redefined to apply operator delete to this pointer. This will ensure that
appropriate delete() function will be called, even if the object is
manipulated by a handle to a base class.

2.3.2. Configuring memory manager
Open CASCADE memory manager may be configured to apply different optimization
techniques to different memory blocks (depending on their size), or even to avoid
any optimization and use C functions malloc() and free() directly.

The configuration is defined by numeric values of the following environment
variables:

• MMGT_OPT: if set to 1 (default), memory manager performs optimizations as
described below; if 0, every memory block is allocated in C memory heap
directly (via malloc() and free() functions). In the latter case, all other options
except MMGT_CLEAR are ignored.

• MMGT_CLEAR: if set to 1 (default), every allocated memory block is cleared by
zeros; if set to 0, memory block is returned as it is.

• MMGT_CELLSIZE: defines the maximal size of blocks allocated in large pools of
memory. Default is 200.

• MMGT_NBPAGES: defines the size of memory chunks allocated for small
blocks in pages (operating-system dependent). Default is 1000.

• MMGT_THRESHOLD: defines the maximal size of blocks that are recycled
internally instead of being returned to the heap. Default is 40000.

• MMGT_MMAP: when set to 1 (default), large memory blocks are allocated using
memory mapping functions of the operating system; if set to 0, they will be
allocated in the C heap by malloc().

• MMGT_REENTRANT: when set to 1, all calls to optimized memory manager will
be secured against possible simultaneous access from different execution
threads. This variable should be set in any multithreaded application that uses
optimized memory manager (MMGT_OPT=1) and has more than one thread
potentially calling Open CASCADE functions. Default is 0.

NOTE

When optimizing multithreaded applications involving Open CASCADE for
maximal performance, it is recommended to test both variants:
(MMGT_OPT=0) and (MMGT_OPT=1 and MMGT_REENTRANT=1).

2.3.3. Implementation details
When MMGT_OPT is set to 1, the following optimization techniques are used:

Basics

28

• Small blocks with a size less than MMGT_CELLSIZE, are not allocated
separately. Instead, a large pools of memory are allocated (the size of each pool
is MMGT_NBPAGES pages). Every new memory block is arranged in a spare
place of the current pool. When the current memory pool is completely occupied,
the next one is allocated, and so on.

In the current version memory pools are never returned to the system (until the
process finishes). However, memory blocks that are released by the method
Standard::Free() are remembered in the free lists and later reused when the
next block of the same size is allocated (recycling).

• Medium-sized blocks, with a size greater than MMGT_CELLSIZE but less than
MMGT_THRESHOLD, are allocated directly in the C heap (using malloc() and
free()). When such blocks are released by the method Standard::Free() they are
recycled just like small blocks.

However, unlike small blocks, the recycled medium blocks contained in the free
lists (i.e. released by the program but hold by memory manager) can be returned
to the heap by method Standard::Purge().

• Large blocks with a size greater than MMGT_THRESHOLD, including memory
pools used for small blocks, are allocated depending on the value of
MMGT_MMAP: if it is 0, these blocks are allocated in the C heap; otherwise they
are allocated using operating-system specific functions managing memory
mapped files.

Large blocks are returned to the system immediately when Standard::Free() is
called.

Benefits and drawbacks
The major benefit of Open CASCADE memory manager is explained by its recycling
of small and medium blocks that makes an application work much faster when it
constantly allocates and frees multiple memory blocks of similar sizes. In practical
situations, the real gain on the application performance may be up to 50%.

The associated drawback is that recycled memory is not returned to the operating
system during program execution. This may lead to considerable memory
consumption and even be misinterpreted as a memory leak. To minimize this effect,
the method Standard::Purge() shall be called after the completion of memory-
intensive operations.

The overhead expenses induced by Open CASCADE memory manager are:

• size of every allocated memory block is rounded up to 8 bytes (when
MMGT_OPT is 0, the rounding is defined by the CRT; the typical value for 32-bit
platforms is 4 bytes)

• additional 4 bytes (or 8 on 64-bit platforms) are allocated in the beginning of
every memory block to hold its size (or address of the next free memory block
when recycled in free list) only when MMGT_OPT is 1

Note that these overheads may be greater or less than overheads induced by C
heap memory manager, so overall memory consumption may be greater in either
optimized or standard modes, depending on circumstances.

As a general rule, it is advisable to allocate memory through significant blocks. In
this way, you can work with blocks of contiguous data, and processing is facilitated
for the memory page manager.

Basics

29

In multithreaded mode (MMGT_REENTRANT=1), Open CASCADE memory
manager uses mutex to lock access to free lists, therefore it may have less
performance than non-optimized mode in situations when different threads often
make simultaneous calls to memory manager. The reason is that modern
implementations of malloc() and free() employ several allocation arenas and thus
avoid delays waiting mutex release, which are possible in such situations.

2.4. Exception Handling
Exception handling provides a means of transferring control from a given point in a
program being executed to an exception handler associated with another point
previously executed.

A method may raise an exception which interrupts its normal execution and transfers
control to the handler catching this exception.

Open CASCADE provides a hierarchy of exception classes with a root class being
class Standard_Failure from the Standard package. The CDL extractor generates
exception classes with standardized interface.

Open CASCADE also provides support for converting system signals (such as
access violation or division by zero) to exceptions, so that such situations can be
safely handled with the same uniform approach.

However, in order to support this functionality on various platforms, some special
methods and workarounds are used. Though the implementation details are hidden
and handling of Open CASCADE exceptions is done basically in the same way as
with C++, some peculiarities of this approach shall be taken into account and some
rules must be respected.

The following paragraphs describe recommended approaches for using exceptions
when working with Open CASCADE.

2.4.1. Raising an Exception

“C++ like” Syntax
To raise an exception of a definite type method Raise() of the appropriate exception
class shall be used.

Example
DomainError::Raise(“Cannot cope with this condition”);

raises an exception of DomainError type with the associated message “Cannot cope
with this condition”, the message being optional. This exception may be caught by a
handler of some DomainError type as follows:

Example

Basics

30

try {

 OCC_CATCH_SIGNALS

 // try block

}

catch(DomainError) {

// handle DomainError exceptions here

}

Regular usage
Exceptions should not be used as a programming technique, to replace a “goto”
statement for example, but as a way to protect methods against misuse. The caller
must make sure its condition is such that the method can cope with it.

Thus,

• No exception should be raised during normal execution of an application.

• A method which may raise an exception should be protected by other
methods allowing the caller to check on the validity of the call.

For example, if you consider the TCollection_Array1 class used with:

• a Value function to extract an element

• a Lower function to extract the lower bound of the array

• an Upper function to extract the upper bound of the array,

then, the Value function may be implemented as follows:

Example

Item TCollection_Array1::Value (const Standard_Integer&index) const

{

 // where r1 and r2 are the lower and upper bounds of the array

 if(index < r1 || index > r2) {

 OutOfRange::Raise(“Index out of range in Array1::Value”);

 }

 return contents[index];

}

Here validity of the index is first verified using the Lower and Upper functions in order
to protect the call.

Normally the caller ensures the index being in the valid range before calling Value().
In this case the above implementation of Value is not optimal since the test done in
Value is time-consuming and redundant.

Basics

31

It is a widely used practice to include that kind of protections in a debug build of the
program and exclude in release (optimized) build. To support this practice, the
macros Raise_if() are provided for every Open CASCADE exception class:

<ErrorTypeName>_Raise_if(condition, “Error message”);

where ErrorTypeName is the exception type, condition is the logical expression
leading to the raise of the exception, and Error message is the associated
message.

The entire call may be removed by defining one of the pre-processor symbols
No_Exception or No_<ErrorTypeName> at compile-time:

Example
#define No_Exception /* remove all raises */

Using this syntax, the Value function becomes:

Example

Item TCollection_Array1::Value (const Standard_Integer&index) const

 {
 OutOfRange_Raise_if(index < r1 || index > r2,

 “index out of range in Array1::Value”);

 return contents[index];

}

2.4.2. Handling an Exception
When an exception is raised, control is transferred to the nearest handler of a given
type in the call stack, that is:

• the handler whose try block was most recently entered and not yet exited,

• the handler whose type matches the raise expression.

A handler of T exception type is a match for a raise expression with an exception
type of E if:

• T and E are of the same type, or

• T is a supertype of E.

Basics

32

In order to handle system signals as exceptions, make sure to insert macro
OCC_CATCH_SIGNALS somewhere in the beginning of the relevant code. The
recommended location for it is first statement after opening brace of try {} block.

As an example, consider the exceptions of type NumericError, Overflow, Underflow
and ZeroDivide where NumericError is the supertype of the three others.

Example

void f(1)

{

 try {

 OCC_CATCH_SIGNALS

 // try block

 }

 catch(Standard_Overflow) { // first handler

 // ...

 }

 catch(Standard_NumericError) { // second handler

 // ...

 }

}

Here, the first handler will catch exceptions of Overflow type and the second one –
exceptions of NumericError type and all exceptions derived from it, including
Underflow and Zerodivide.

The handlers are checked in order of appearance, from the nearest to the most
distant try block, until one matches the raise expression. For a try block, it would be
a mistake to place a handler for a base exception type ahead of a handler for its
derived type since that would ensure that the handler for the derived exception
would never be invoked.

Example

void f(1)

{

 int i = 0;

 {

 try {

 OCC_CATCH_SIGNALS

 g(i);// i is accessible

 }

Basics

33

 // statement here will produce compile-time errors !

 catch(Standard_NumericError) {

 // fix up with possible reuse of i

 }

 // statement here may produce unexpected side effect

 }

 . . .

}

The exceptions form a hierarchy tree completely separated from other user defined
classes. One exception of type Failure is the root of the entire exception hierarchy.
Thus, using a handler with Failure type catches any Open CASCADE exception. It is
recommended to set up such a handler in the main routine.

The main routine of a program would look like this:

Example

#include <Standard_ErrorHandler.hxx>

#include <Standard_Failure.hxx>

#include <iostream.h>

int main (int argc, char* argv[])

{

 try {

 OCC_CATCH_SIGNALS

 // main block

 return 0;

 }

 catch(Standard_Failure) {

 Handle(Standard_Failure) error = Failure::Caught ();

 cout << error << end1;

 }

 return 1;

}

where the function Caught is a static member of Failure that returns an exception
object containing the error message built in the raise expression. Note that this
method of accessing a raised object is used in Open CASCADE instead of usual
C++ syntax (receiving the exception in catch argument).

Basics

34

NOTE

Though standard C++ scoping rules and syntax apply to try block and
handlers, note that on some platforms Open CASCADE may be compiled in
compatibility mode when exceptions are emulated by long jumps (see
below). In this mode it is required that no statement precedes or follows
any handler. Thus it is highly recommended to always include a try block
into additional {} braces. Also this mode requires that header file
Standard_ErrorHandler.hxx be included in your program before a try block,
otherwise it may fail to handle Open CASCADE exceptions; furthermore
catch() statement does not allow passing exception object as argument.

Catching signals
In order for the application to be able to catch system signals (access violation,
division by zero, etc.) in the same way as other exceptions, the appropriate signal
handler shall be installed in the runtime by the method

OSD::SetSignal();

Normally this method is called in the beginning of the main() function. It installs a
handler that will convert system signals into Open CASCADE exceptions.

In order to actually convert signals to exceptions, macro OCC_CATCH_SIGNALS
shall be inserted in the source code. The typical place where this macro is put is
beginning of the try{} block which catches such exceptions.

2.4.3. Implementation details
The exception handling mechanism in Open CASCADE is implemented in different
ways depending on the preprocessor macros NO_CXX_EXCEPTIONS and
OCC_CONVERT_SIGNALS, which shall be consistently defined by compilation
procedures for both Open CASCADE and user applications:

1. On Windows and DEC, these macros are not defined by default, and normal
C++ exceptions are used in all cases, including throwing from signal handler.
Thus the behavior is as expected in C++.

2. On SUN and Linux, macro OCC_CONVERT_SIGNALS is defined by default.
The C++ exception mechanism is used for catching exceptions and for throwing
them from normal code. Since it is not possible to throw C++ exception from
system signal handler function, that function makes a long jump to the nearest
(in the execution stack) invocation of macro OCC_CATCH_SIGNALS, and only
there the C++ exception gets actually thrown. The macro
OCC_CATCH_SIGNALS is defined in the file Standard_ErrorHandler.hxx.
Therefore, including this file is necessary for successful compilation of a code
containing this macro.

This mode differs from standard C++ exception handling only for signals:

• macro OCC_CATCH_SIGNALS is necessary (besides call to
OSD::SetSignal() described above) for conversion of signals into exceptions;

• the destructors for automatic C++ objects created in the code after that
macro and till the place where signal is raised will not be called in case of
signal, since no C++ stack unwinding is performed by long jump.

Basics

35

3. On SUN and Linux Open CASCADE can also be compiled in compatibility mode
(which was default till Open CASCADE 6.1.0). In that case macro
NO_CXX_EXCEPTIONS is defined and the C++ exceptions are simulated with
C long jumps. As a consequence, the behavior is slightly different from that
expected in the C++ standard.

While exception handling with NO_CXX_EXCEPTIONS is made very similar to
C++ by syntax, it has a number of peculiarities that should be taken into account:

• try and catch are actually macros defined in the file
Standard_ErrorHandler.hxx. Therefore, including this file is necessary for
handling Open CASCADE exceptions;

• due to being a macro, catch cannot contain a declaration of the exception
object after its type; only type is allowed in the catch statement. Use method
Standard_Failure::Caught() to access an exception object;

• catch macro may conflict with some STL classes that might use catch(…)
statements in their header files. So STL headers should not be included after
Standard_ErrorHandler.hxx;

• Open CASCADE try/catch block will not handle normal C++ exceptions;
however this can be achieved using special workarounds;

• the try macro defines a C++ object that holds an entry point in the exception
handler. Therefore if exception is raised by code located immediately after
the try/catch block but on the same nesting level as try, it may be handled by
that catch. This may lead to unexpected behavior, including infinite loop. To
avoid that, always surround the try/catch block in {} braces;

• the destructors of the C++ objects allocated on the stack after handler
initialization are not called by exception raising.

In general, for writing platform-independent code it is recommended to insert macros
OCC_CATCH_SIGNALS in try {} blocks or other code where signals may happen.
For compatibility with previous versions of Open CASCADE the limitations described
above for NO_CXX_EXCEPTIONS shall be assumed.

2.5. Plug-In Management

2.5.1. Distribution by Plug-Ins
A plug-in is a component that can be loaded dynamically into a client application, not
requiring to be directly linked to it. The plug-in is not bound to its client, i.e. the plug-
in knows only how its connection mechanism is defined and how to call the
corresponding services.

A plug-in can be used to:

• implement the mechanism of a driver, i.e dynamically changing a driver
implementation according to the current transactions (for example,
retrieving a document stored in another version of an application),

• restrict processing resources to the minimum required (for example, it
does not load any application services at run-time as long as the user
does not need them),

Basics

36

• facilitate development de-synchronization (an application can be
delivered with base functions while some advanced capabilities will be
added as plug-ins when they are available).

The plug-in is identified with the help of the global universal identifier (GUID). The
GUID includes lower case characters and cannot end with a blank space.

Once it has been loaded, the call to the services provided by the plug-in is direct (the
client is implemented in the same language as the plug-in).

C++ Plug-In Implementation
The C++ plug-in implements a service as an object with functions defined in an
abstract class (this abstract class and its parent classes with the GUID are the only
information about the plug-in implemented in the client application). The plug-in
consists of a sharable library including a method named Factory which creates the
C++ object (the client cannot instantiate this object because the plug-in
implementation is not visible).

Foundation classes provide in the package Plugin a method named Load(), which
enables the client to access the required service through a library.

That method reads the information regarding available plug-ins and their locations
from the resource file Plugin found by environment variable CSF_PluginDefaults:

$CSF_PluginDefaults/.Plugin

The Load method:

• looks for the library name in the resource file or registry through its GUID,

Example(UNIX)

! METADATADRIVER whose value must be OS or DM.

! FW

a148e300-5740-11d1-a904-080036aaa103.Location:

libFWOSPlugin.so

a148e300-5740-11d1-a904-080036aaa103.CCL:

/adv_44/CAS/BAG/FW-K4C/inc/FWOS.ccl

! FWDM

a148e301-5740-11d1-a904-080036aaa103.Location:

libFWDMPlugin.so

a148e301-5740-11d1-a904-080036aaa103.CCL:

/adv_44/CAS/BAG/DESIGNMANAGER-K4C/inc/DMAccess.ccl|/

adv_44/CAS/BAG/DATABASE-K4C/inc/FWDMCommands.ccl

a148e301-5740-11d1-a904-080036aaa103.Message: /adv_44/CAS/

BAG/DESIGNMANAGER-K4C/etc/locale/DMAccess

! Copy-Paste

Basics

37

5ff7dc00-8840-11d1-b5c2-00a0c9064368.Location:

libCDMShapeDriversPlugin.so

5ff7dc01-8840-11d1-b5c2-00a0c9064368.Location:

libCDMShapeDriversPlugin.so

5ff7dc02-8840-11d1-b5c2-00a0c9064368.Location:

libCDMShapeDriversPlugin.so

5ff7dc03-8840-11d1-b5c2-00a0c9064368.Location:

libCDMShapeDriversPlugin.so

5ff7dc04-8840-11d1-b5c2-00a0c9064368.Location:

libCDMShapeDriversPlugin.so

! Plugs 2d plotters:

d0d722a2-b4c9-11d1-b561-0000f87a4710.location: FWOSPlugin

d0d722a2-b4c9-11d1-b561-0000f87a4710.CCL: /adv_44/CAS/BAG/

VIEWERS-K4C/inc/CCLPlotters.ccl

d0d722a2-b4c9-11d1-b561-0000f87a4710.Message: /adv_44/CAS/

BAG/VIEWERS-K4C/etc/locale/CCLPlotters

!SHAPES

e3708f72-b1a8-11d0-91c2-080036424703.Location:

libBRepExchangerPlugin.so

e3708f72-b1a8-11d0-91c2-080036424703.CCL: /adv_44/CAS/BAG/

FW-K4C/inc/BRep.ccl

• loads the library according to the rules of the operating system of the host
machine (for example, by using environment variables such as
LD_LIBRARY_PATH with Unix and PATH with Windows), then,

• invokes the Factory method to return the object which supports the
required service.

The client may then call the functions supported by this object.

C++ Client Plug-In Implementation
To invoke one of the services provided by the plug-in, you may call the
Plugin::ServiceFactory global function with the Standard_GUID of the requested service
as follows:

Handle(FADriver_PartStorer)::DownCast

(PlugIn::ServiceFactory

(PlugIn_ServiceId(yourStandardGUID)))

Example// File:FAFactory.cxx

Basics

38

#include <FAFactory.ixx>

#include <FADriver_PartRetriever.hxx>

#include <FADriver_PartStorer.hxx>

#include <FirstAppSchema.hxx>

#include <Standard_GUID.hxx>

#include <Standard_Failure.hxx>

#include <FACDM_Application.hxx>

#include <Plugin_Macro.hxx>

PLUGIN(FAFactory)

static Standard_GUID

 StorageDriver(“45b3c690-22f3-11d2-b09e-0000f8791463”);

static Standard_GUID

 RetrievalDriver(“45b3c69c-22f3-11d2-b09e-0000f8791463”);

static Standard_GUID

 Schema(“45b3c6a2-22f3-11d2-b09e-0000f8791463”);

//==

// function : Factory

// purpose :

//==

Handle(Standard_Transient) FAFactory::Factory(const Standard_GUID& aGUID)

{

 if(aGUID == StorageDriver) {

 cout << “FAFactory : Create store driver” << endl;

 static Handle(FADriver_PartStorer) sd = new FADriver_PartStorer();

 return sd;

 }

 if(aGUID == RetrievalDriver) {

 cout << “FAFactory : Create retrieve driver” << endl;

 static Handle(FADriver_PartRetriever)

 rd = new FADriver_PartRetriever();

 return rd;

 }

 if(aGUID == Schema) {

 cout << “FAFactory : Create schema” << endl;

 static Handle(FirstAppSchema) s = new FirstAppSchema();

 return s;

 }

Basics

39

 Standard_Failure::Raise(“FAFactory: unknown GUID”);

 Handle(Standard_Transient) t;

 return t;

}

Not Using the Software Factory
To create a factory without using the Software Factory, define a dll project under
Windows or a library under UNIX by using a source file as specified above. The
FAFactory class is implemented as follows:

Example

#include <Handle_Standard_Transient.hxx>

#include <Standard_Macro.hxx>

class Standard_Transient;

class Standard_GUID;

class FAFactory {

public:

 Standard_EXPORT static Handle_Standard_Transient

 Factory(const Standard_GUID& aGUID) ;

 . . .

};

Collections, Strings and Unit Conversion

40

33.. CCoolllleeccttiioonnss,, SSttrriinnggss aanndd UUnniitt
CCoonnvveerrssiioonn

3.1. Collections

3.1.1. Overview
The Collections component contains the classes that handle dynamically sized
aggregates of data. They include a wide range of collections such as arrays, lists
and maps.

Collections classes are generic, that is, they can hold a variety of objects which do
not necessarily inherit from a unique root class. When you need to use a collection
of a given type of object you must instantiate it for this specific type of element. Once
this declaration is compiled, all the functions available on the generic collection are
available on your instantiated class. Note however:

• Each collection directly used as an argument in an OpenCASCADE public
syntax is instantiated in a Open CASCADE component.

• The TColStd package (Collections of Standard Objects component)
provides numerous instantiations of these generic collections with objects
from the Standard package or from the Strings component.

The Collections component provides a wide range of generic collections:

• Arrays are generally used for a quick access to the item, however an
array is a fixed sized aggregate.

• Sequences are variable sized structures, they avoid the use of large and
quasi-empty arrays. But a sequence item is longer to access than an
array item: only an exploration in sequence is effective (but sequences
are not adapted for numerous explorations). Arrays and sequences are
commonly used as data structures for more complex objects.

• On the other hand, maps are dynamic structures where the size is
constantly adapted to the number of inserted items and the access time
for an item is effective. Maps structures are commonly used in cases of
numerous explorations: they are typically internal data structures for
complex algorithms. Sets generate the same results as maps but
computation time is considerable.

• Lists, queues and stacks are minor structures similar to sequences but
with other exploration algorithms.

Most collections follow value semantics: their instances are the actual collections,
not handles to a collection. Only arrays and sequences may also be manipulated by
handle, and therefore shared.

Generic general-purpose aggregates (TCollection package)

Array1

Array2

Collections, Strings and Unit Conversion

41

HArray1

HArray2

HSequence

HSet

List

Queue

Sequence

Set

Stack

Generic maps (TCollection package)

BasicMap

DataMap

DoubleMap

IndexedDataMap

IndexedMap

Map

MapHasher

Iterators (TCollection package)

BasicMapIterator

DataMapIterator

DoubleMapIterator

ListIterator

MapIterator

SetIterator

StackIterator

3.1.2. Generic general-purpose Aggregates
TCollection_Array1
Unidimensional arrays similar to C arrays, i.e. of fixed size but dynamically
dimensioned at construction time.

Collections, Strings and Unit Conversion

42

As with a C array, the access time for an Array1 indexed item is constant and is
independent of the array size. Arrays are commonly used as elementary data
structures for more complex objects.

Array1 is a generic class which depends on Item, the type of element in the array.

Array1 indexes start and end at a user-defined position. Thus, when accessing an
item, you must base the index on the lower and upper bounds of the array.

TCollection_Array2
Bi-dimensional arrays of fixed size but dynamically dimensioned at construction time.

As with a C array, the access time for an Array2 indexed item is constant and is
independent of the array size. Arrays are commonly used as elementary data
structures for more complex objects.

Array2 is a generic class which depends on Item, the type of element in the array.

Array2 indexes start and end at a user-defined position. Thus, when accessing an
item, you must base the index on the lower and upper bounds of the array.

TCollection_HArray1
Unidimensional arrays similar to C arrays, i.e. of fixed size but dynamically
dimensioned at construction time.

As with a C array, the access time for an HArray1 or HArray2 indexed item is
constant and is independent of the array size. Arrays are commonly used as
elementary data structures for more complex objects.

HArray1 objects are handles to arrays.

• HArray1 arrays may be shared by several objects.

• You may use a TCollection_Array1 structure to have the actual array.

HArray1 is a generic class which depends on two parameters:

• Item, the type of element in the array,

• Array, the actual type of array handled by HArray1. This is an
instantiation with Item of the TCollection_Array1 generic class.

HArray1 indexes start and end at a user-defined position. Thus, when accessing an
item, you must base the index on the lower and upper bounds of the array.

TCollection_HArray2
Bi-dimensional arrays of fixed size but dynamically dimensioned at construction time.

As with a C array, the access time for an HArray2 indexed item is constant and is
independent of the array size. Arrays are commonly used as elementary data
structures for more complex objects.

HArray2 objects are handles to arrays.

• HArray2 arrays may be shared by several objects.

• You may use a TCollection_Array2 structure to have the actual array.

HArray2 is a generic class which depends on two parameters:

Collections, Strings and Unit Conversion

43

• Item, the type of element in the array,

• Array, the actual type of array handled by HArray2. This is an

instantiation with Item of the TCollection_Array2 generic class.

TCollection_HSequence
A sequence of items indexed by an integer.

Sequences have about the same goal as unidimensional arrays
(TCollection_HArray1): they are commonly used as elementary data structures for
more complex objects. But a sequence is a structure of variable size: sequences
avoid the use of large and quasi-empty arrays. Exploring a sequence data structure
is effective when the exploration is done in sequence; elsewhere a sequence item is
longer to read than an array item. Note also that sequences are not effective when
they have to support numerous algorithmic explorations: a map is better for that.

HSequence objects are handles to sequences.

• HSequence sequences may be shared by several objects.

• You may use a TCollection_Sequence structure to have the actual
sequence.

HSequence is a generic class which depends on two parameters:

• Item, the type of element in the sequence,

• Seq, the actual type of sequence handled by HSequence. This is an
instantiation with Item of the TCollection_Sequence generic class.

TCollection_HSet
Collection of non-ordered items without any duplicates. At each transaction, the
system ckecks to see that there are no duplicates.

HSet objects are handles to sets.

HSet is a generic class which depends on two parameters:

• Item, the type of element in the set,

• Set, the actual type of set handled by HSet. This is an instantiation with
TCollection_Set generic class.

TCollection_List
Ordered lists of non-unique objects which can be accessed sequentially using an
iterator.

Item insertion in a list is very fast at any position. But searching for items by value
may be slow if the list is long, because it requires a sequential search.

List is a generic class which depends on Item, the type of element in the structure.

Use a ListIterator iterator to explore a List structure.

An iterator class is automatically instantiated from the TCollection_ListIterator
class at the time of instantiation of a List structure.

A sequence is a better structure when searching for items by value.

Collections, Strings and Unit Conversion

44

Queues and stacks are other kinds of list with a different access to data.

TCollection_Queue
A structure where items are added at the end and removed from the front. The first
item entered will be the first removed ("FIFO" structure: First In First Out). Queue is
a generic class which depends on Item, the type of element in the structure.

TCollection_Sequence
A sequence of items indexed by an integer.

Sequences have about the same goal as unidimensional arrays
(TCollection_Array1): they are commonly used as elementary data structures for
more complex objects. But a sequence is a structure of variable size: sequences
avoid the use of large and quasi-empty arrays. Exploring a sequence data structure
is effective when the exploration is done in sequence; elsewhere a sequence item is
longer to read than an array item. Note also that sequences are not effective when
they have to support numerous algorithmic explorations: a map is better for that.

Sequence is a generic class which depends on Item, the type of element in the
sequence.

TCollection_Set
Collection of non-ordered items without any duplicates. At each transaction, the
system ckecks there are no duplicates.

A set generates the same result as a map. A map is more effective; so it is advisable
to use maps instead of sets.

Set is a generic class which depends on Item, the type of element in the set.

Use a SetIterator iterator to explore a Set structure.

TCollection_Stack
A structure where items are added and removed from the top. The last item entered
will be the first removed ("LIFO" structure: Last In First Out).

Stack is a generic class which depends on Item, the type of element in the structure.

Use a StackIterator iterator to explore a Stack structure.

3.1.3. Generic Maps
TCollection_BasicMap
Root class for maps.

Maps are dynamically extended data structures where data is quickly accessed with
a key.

General properties of maps

Map items may be (complex) non-unitary data; they may be difficult to manage with
an array. More, the map allows a data structure to be indexed by complex data.

The size of a map is dynamically extended. So a map may be first dimensioned for a
little number of items. Maps avoid the use of large and quasi-empty arrays. The
access time for a map item is much better than the one for a sequence, list, queue or
stack item.

Collections, Strings and Unit Conversion

45

The access time for a map item may be compared with the access time for an array
item. It depends first on the size of the map. It depends also on the quality of a user
redefinable function (the hashing function) to find quickly where is the item.

The exploration of a map may be of better performance than the exploration of an
array because the size of the map is adapted to the number of inserted items.

These properties explain why maps are commonly used as internal data structures
for algorithms.

Definitions

A map is a data structure for which data are addressed by keys.

Once inserted in the map, a map item is referenced as an entry of the map.

Each entry of the map is addressed by a key. Two different keys address two
different entries of the map.

The position of an entry in the map is called a bucket.

A map is dimensioned by its number of buckets, i.e. the maximum number of entries
in the map. The performance of a map is conditioned by the number of buckets.

The hashing function transforms a key into a bucket index. The number of values
that can be computed by the hashing function is equal to the number of buckets of
the map.

Both the hashing function and the equality test between two keys are provided by a
hasher object.

A map may be explored by a map iterator. This exploration provides only inserted
entries in the map (i.e. non empty buckets).

Collections generic maps

The Collections component provides numerous generic derived maps.

These maps include automatic management of the number of buckets: they are
automatically resized when the number of keys exceeds the number of buckets. If
you have a fair idea of the number of items in your map, you can save on automatic
resizing by specifying a number of buckets at the time of construction, or by using a
resizing function. This may be considered for crucial optimization issues.

Keys, items and hashers are parameters of these generic derived maps.

TCollection_MapHasher class describes the functions required by any hasher
which is to be used with a map instantiated from the Collections component.

An iterator class is automatically instantiated at the time of instantiation of a map
provided by the Collections component if this map is to be explored with an iterator.
Note that some provided generic maps are not to be explored with an iterator but
with indexes (indexed maps).

TCollection_DataMap
A map used to store keys with associated items. An entry of DataMap is composed
of both the key and the item.

The DataMap can be seen as an extended array where the keys are the indexes.

DataMap is a generic class which depends on three parameters:

• Key is the type of key for an entry in the map,

Collections, Strings and Unit Conversion

46

• Item is the type of element associated with a key in the map,

• Hasher is the type of hasher on keys.

Use a DataMapIterator iterator to explore a DataMap map.

An iterator class is automatically instantiated from the

TCollection_DataMapIterator generic class at the time of instantiation of a
DataMap map.

TCollection_MapHasher class describes the functions required for a Hasher
object.

TCollection_DoubleMap
A map used to bind pairs of keys (Key1,Key2) and retrieve them in linear time.

Key1 is referenced as the first key of the DoubleMap and Key2 as the second key.

An entry of a DoubleMap is composed of a pair of two keys: the first key and the
second key.

DoubleMap is a generic class which depends on four parameters:

• Key1 is the type of the first key for an entry in the map,

• Key2 is the type of the second key for an entry in the map,

• Hasher1 is the type of hasher on first keys,

• Hasher2 is the type of hasher on second keys.

Use a DoubleMapIterator to explore a DoubleMap map.

An iterator class is automatically instantiated from the
TCollection_DoubleMapIterator class at the time of instantiation of a DoubleMap
map.

TCollection_MapHasher class describes the functions required for a Hasher1 or a
Hasher2 object.

TCollection_IndexedDataMap
A map to store keys with associated items and to bind an index to them.

Each new key stored in the map is assigned an index. Indexes are incremented as
keys (and items) stored in the map. A key can be found by the index, and an index
can be found by the key. No key but the last can be removed, so the indexes are in
the range 1...Upper where Upper is the number of keys stored in the map. An item is
stored with each key.

An entry of an IndexedDataMap is composed of both the key, the item and the
index. An IndexedDataMap is an ordered map, which allows a linear iteration on its
contents. It combines the interest:

• of an array because data may be accessed with an index,

• and of a map because data may also be accessed with a key.

Collections, Strings and Unit Conversion

47

IndexedDataMap is a generic class which depends on three parameters:

• Key is the type of key for an entry in the map,

• Item is the type of element associated with a key in the map,

• Hasher is the type of hasher on keys.

TCollection_IndexedMap
A map used to store keys and to bind an index to them.

Each new key stored in the map is assigned an index. Indexes are incremented as
keys stored in the map. A key can be found by the index, and an index by the key.
No key but the last can be removed, so the indexes are in the range 1...Upper where
Upper is the number of keys stored in the map.

An entry of an IndexedMap is composed of both the key and the index. An
IndexedMap is an ordered map, which allows a linear iteration on its contents. But
no data is attached to the key. An IndexedMap is typically used by an algorithm to
know if some action is still performed on components of a complex data structure.

IndexedMap is a generic class which depends on two parameters:

• Key is the type of key for an entry in the map,

• Hasher is the type of hasher on keys.

TCollection_Map
A basic hashed map, used to store and retrieve keys in linear time.

An entry of a Map is composed of the key only. No data is attached to the key. A
Map is typically used by an algorithm to know if some action is still performed on
components of a complex data structure.

Map is a generic class which depends on two parameters:

• Key is the type of key in the map,

• Hasher is the type of hasher on keys.

Use a MapIterator iterator to explore a Map map.

TCollection_MapHasher
A hasher on the keys of a map instantiated from the Collections component.

A hasher provides two functions:

• The hashing function (HashCode) transforms a key into a bucket index in

the map. The number of values that can be computed by the hashing

function is equal to the number of buckets in the map.

• IsEqual is the equality test between two keys. Hashers are used as

parameters in generic maps provided by the Collections component.

Collections, Strings and Unit Conversion

48

MapHasher is a generic class which depends on the type of keys, providing that
Key is a type from the Standard package. In such cases MapHasher may be
directly instantiated with Key. Note that the package TColStd provides some of
these instantiations.

Elsewhere, if Key is not a type from the Standard package you must consider
MapHasher as a template and build a class which includes its functions, in order to
use it as a hasher in a map instantiated from the Collections component.

Note that TCollection_AsciiString and TCollection_ExtendedString classes
correspond to these specifications, in consequence they may be used as hashers:
when Key is one of these two types you may just define the hasher as the same
type at the time of instantiation of your map.

3.1.4. Iterators
TCollection_BasicMapIterator
Root class for map iterators. A map iterator provides a step by step exploration of all
the entries of a map.

TCollection_DataMapIterator
Functions used for iterating the contents of a DataMap map.

A map is a non-ordered data structure. The order in which entries of a map are
explored by the iterator depends on its contents and change when the map is edited.

It is not recommended to modify the contents of a map during the iteration: the result
is unpredictable.

TCollection_DoubleMapIterator
Functions used for iterating the contents of a DoubleMap map.

TCollection_ListIterator
Functions used for iterating the contents of a List data structure.

A ListIterator object can be used to go through a list sequentially, and as a
bookmark to hold a position in a list. It is not an index, however. Each step of the
iteration gives the current position of the iterator, to which corresponds the current
item in the list. The current position is undefined if the list is empty, or when the
exploration is finished.

An iterator class is automatically instantiated from this generic class at the time of
instantiation of a List data structure.

TCollection_MapIterator
Functions used for iterating the contents of a Map map.

An iterator class is automatically instantiated from this generic class at the time of
instantiation of a Map map.

TCollection_SetIterator
Functions used for iterating the contents of a Set data structure.

An iterator class is automatically instantiated from this generic class at the time of
instantiation of a Set structure.

Collections, Strings and Unit Conversion

49

TCollection_StackIterator
Functions used for iterating the contents of a Stack data structure.

An iterator class is automatically instantiated from this generic class at the time of
instantiation of a Stack structure.

3.2. Collections of Standard Objects

3.2.1. Overview
While generic classes of the TCollection package are the root classes that describe
the generic purpose of every type of collection, classes effectively used are
extracted from the TColStd package.

The TColStd and TShort packages provide frequently used instantiations of generic
classes with objects from the Standard package or strings from the TCollection
package.

3.2.2. Description
These instantiations are the following:

• Unidimensional arrays: instantiations of the TCollection_Array1 generic
class with Standard Objects and TCollection strings.

• Bidimensional arrays: instantiations of the TCollection_Array2 generic
class with Standard Objects.

• Unidimensional arrays manipulated by handles: instantiations of the
TCollection_HArray1 generic class with Standard Objects and
TCollection strings.

• Bidimensional arrays manipulated by handles: instantiations of the
TCollection_HArray2 generic class with Standard Objects.

• Sequences: instantiations of the TCollection_Sequence generic class
with Standard objects and TCollection strings.

• Sequences manipulated by handles: instantiations of the
TCollection_HSequence generic class with Standard objects and
TCollection strings.

• Lists: instantiations of the TCollection_List generic class with Standard
objects.

• Queues: instantiations of the TCollection_Queue generic class with
Standard objects.

• Sets: instantiations of the TCollection_Set generic class with Standard
objects.

• Sets manipulated by handles: instantiations of the TCollection_HSet
generic class with Standard objects.

• Stacks: instantiations of the TCollection_Stack generic class with
Standard objects.

Collections, Strings and Unit Conversion

50

• Hashers on map keys: instantiations of the TCollection_MapHasher
generic class with Standard objects.

• Basic hashed maps: instantiations of the TCollection_Map generic class
with Standard objects.

• Hashed maps with an additional item: instantiations of the
TCollection_DataMap generic class with Standard objects.

• Basic indexed maps: instantiations of the TCollection_IndexedMap
generic class with Standard objects.

• Indexed maps with an additional item: instantiations of the
TCollection_IndexedDataMap generic class with Standard_Transient
objects.

• Class TColStd_PackedMapOfInteger provides alternative
implementation of map of integer numbers, optimized for both
performance and memory usage (it uses bit flags to encode integers,
which results in spending only 24 bytes per 32 integers stored in optimal
case). This class also provides Boolean operations with maps as sets of
integers (union, intersection, subtraction, difference, checks for equality
and containment).

3.3. Strings

3.3.1. Overview
The Strings component provides services to manipulate character strings.

Strings are classes that handle dynamically sized sequences of characters based
on both ASCII (normal 8-bit character type) and Unicode (16-bit character type).
They provide editing operations with built-in memory management which make the
relative objects easier to use than ordinary character arrays.

Strings may also be manipulated by handle, and therefore shared.

Strings (TCollection package)

AsciiString

ExtendedString

HAsciiString

HExtendedString

Conversion (Resource package)

Unicode

Collections, Strings and Unit Conversion

51

3.3.2. Strings
TCollection_AsciiString
A variable-length sequence of ASCII characters (normal 8-bit character type). It
provides editing operations with built-in memory management to make AsciiString
objects easier to use than ordinary character arrays.

AsciiString objects follow "value semantics", that is, they are the actual strings, not
handles to strings, and are copied through assignment. You may use HAsciiString
objects to get handles to strings.

TCollection_ExtendedString
A variable-length sequence of "extended" (UNICODE) characters (16-bit character
type). It provides editing operations with built-in memory management to make
ExtendedString objects easier to use than ordinary extended character arrays.

ExtendedString objects follow "value semantics", that is, they are the actual strings,
not handles to strings, and are copied through assignment. You may use
HExtendedString objects to get handles to strings.

TCollection_HAsciiString
A variable-length sequence of ASCII characters (normal 8-bit character type). It
provides editing operations with built-in memory management to make HAsciiString
objects easier to use than ordinary character arrays.

HAsciiString objects are handles to strings.

• HAsciiString strings may be shared by several objects.

• You may use an AsciiString object to get the actual string.

HAsciiString objects use an AsciiString string as a field.

TCollection_HExtendedString
A variable-length sequence of "extended" (UNICODE) characters (16-bit character
type). It provides editing operations with built-in memory management to make
ExtendedString objects easier to use than ordinary extended character arrays.

HExtendedString objects are handles to strings.

• HExtendedString strings may be shared by several objects.

• You may use an ExtendedString object to get the actual string.

HExtendedString objects use an ExtendedString string as a field.

3.3.3. Conversion
Resource_Unicode
Functions used to convert a non-ASCII C string given in ANSI, EUC, GB or SJIS

format, to a Unicode string of extended characters, and vice versa.

Collections, Strings and Unit Conversion

52

3.4. Unit Conversion

3.4.1. Overview
The UnitsAPI global functions are used to convert a value from any unit into another
unit. Conversion is executed among three unit systems:

• the SI System,

• the user’s Local System,

• the user’s Current System.

The SI System is the standard international unit system. It is indicated by SI in the
signatures of the UnitsAPI functions.

The Open CASCADE (former MDTV) System corresponds to the SI international
standard but the length unit and all its derivatives use the millimeter instead of the
meter.

Both systems are proposed by Open CASCADE; the SI System is the standard
option. By selecting one of these two systems, you define your Local System
through the SetLocalSystem function. The Local System is indicated by LS in the
signatures of the UnitsAPI functions.

The Local System units can be modified in the working environment. You define your
Current System by modifying its units through the SetCurrentUnit function. The
Current System is indicated by Current in the signatures of the UnitsAPI functions.

A physical quantity is defined by a string (example: LENGTH).

Math Primitives and Algorithms

53

44.. MMaatthh PPrriimmiittiivveess aanndd AAllggoorriitthhmmss

4.1. Overview
Math primitives and algorithms available in Open CASCADE include:

• Vectors and matrices

• Geometric primitives

• Math algorithms

4.2. Vectors and Matrices
The Vectors and Matrices component provides a C++ implementation of the
fundamental types Matrix and Vector, currently used to define more complex data
structures. The Vector and Matrix classes support vectors and matrices of real
values with standard operations such as addition, multiplication, transposition,
inversion etc.

Vectors and matrices have arbitrary ranges which must be defined at declaration
time and cannot be changed after declaration.

Example

math_Vector v(1, 3);

// a vector of dimension 3 with range (1..3)

math_Matrix m(0, 2, 0, 2);

// a matrix of dimension 3x3 with range (0..2, 0..2)

math_Vector v(N1, N2);

// a vector of dimension N2-N1+1 with range (N1..N2)

Vector and Matrix objects use value semantics. In other words, they cannot be
shared and are copied through assignment.

Example

math_Vector v1(1, 3), v2(0, 2);

Math Primitives and Algorithms

54

v2 = v1;

// v1 is copied into v2. a modification of v1 does not

//affect v2

Vector and Matrix values may be initialized and obtained using indexes which must
lie within the range definition of the vector or the matrix.

Example

math_Vector v(1, 3);

math_Matrix m(1, 3, 1, 3);

Standard_Real value;

v(2) = 1.0;

value = v(1);

m(1, 3) = 1.0;

value = m(2, 2);

Some operations on Vector and Matrix objects may not be legal. In this case an
exception is raised. Two standard exceptions are used:

• Standard_DimensionError exception is raised when two matrices or
vectors involved in an operation are of incompatible dimensions.

• Standard_RangeError exception is raised if an access outside the range
definition of a vector or of a matrix is attempted.

Example

math_Vector v1(1, 3), v2(1, 2), v3(0, 2);

v1 = v2;

// error: Standard_DimensionError is raised

v1 = v3;

// OK: ranges are not equal but dimensions are

// compatible

v1(0) = 2.0;

// error: Standard_RangeError is raised

Math Primitives and Algorithms

55

4.3. Primitive Geometric Types

4.3.1. Overview
Before creating a geometric object, you must decide whether you are in a 2d or in a
3d context and how you want to handle the object.

The gp package offers classes for both 2d and 3d objects which are handled by
value rather than by reference. When this sort of object is copied, it is copied
entirely. Changes in one instance will not be reflected in another.

4.3.2. gp
The gp package defines the basic non-persistent geometric entities used for
algebraic calculation and basic analytical geometry in 2d & 3d space. It also provides
basic transformations such as identity, rotation, translation, mirroring, scale
transformations, combinations of transformations, etc. Entities are handled by value.

The available geometric entities are:

• 2d & 3d Cartesian coordinates (x, y, z)

• Matrices

• Cartesian points

• Vector

• Direction

• Axis

• Line

• Circle

• Ellipse

• Hyperbola

• Parabola

• Plane

• Infinite cylindrical surface

• Spherical surface

• Toroidal surface

• Conical surface.

Math Primitives and Algorithms

56

4.4. Collections of Primitive Geometric Types
Before creating a geometric object, you must decide whether you are in a 2d or in a
3d context and how you want to handle the object.

If you do not need a single instance of a geometric primitive but a set of them then
the package which deals with collections of this sort of object, TColgp, will provide
the necessary functionality.

In particular, this package provides standard and frequently used instantiations of
generic classes with geometric objects.

4.4.1. TColgp
The TColgp package provides instantiations of the TCollection classes with the
classes from gp i.e. XY, XYZ, Pnt, Pnt2d, Vec, Vec2d, Lin, Lin2d, Circ, Circ2d.

These are non-persistent classes.

4.5. Basic Geometric Libraries
There are various library packages available which offer a range of basic
computations on curves and surfaces.

If you are dealing with objects created from the gp package, the useful algorithms
are in the elementary curves and surfaces libraries - the ElCLib and ElSLib
packages.

The Precision package describes functions for defining the precision criterion used
to compare two numbers.

4.5.1. EICLib
Methods for analytic curves. A library of simple computations on curves from the gp
package (Lines, Circles and Conics). Computes points with a given parameter.
Computes the parameter for a point.

4.5.2. EISLib
Methods for analytic surfaces . A library of simple computations on surfaces from the
package gp (Planes, Cylinders, Spheres, Cones, Tori). Computes points with a given
pair of parameters. Computes the parameter for a point. There is a library for
calculating normals on curves and surfaces.

4.5.3. Bnd
Package Bnd provides a set of classes and tools to operate with bounding boxes of
geometric objects in 2d and 3d space.

Math Primitives and Algorithms

57

4.6. Common Math Algorithms
The common math algorithms library provides a C++ implementation of the most
frequently used mathematical algorithms. These include:

• Algorithms to solve a set of linear algebraic equations,

• Algorithms to find the minimum of a function of one or more independent

variables,

• Algorithms to find roots of one, or of a set, of non-linear equations,

• An algorithm to find the eigenvalues and eigenvectors of a square matrix.

4.6.1. Implementation of Algorithms
All mathematical algorithms are implemented using the same principles. They
contain:

A constructor performing all, or most of, the calculation, given the appropriate
arguments. All relevant information is stored inside the resulting object, so that all
subsequent calculations or interrogations will be solved in the most efficient way.

A function IsDone returning the boolean true if the calculation was successful.

A set of functions, specific to each algorithm, enabling all the various results to be
obtained.

Calling these functions is legal only if the function IsDone answers true, otherwise
the exception StdFail_NotDone is raised.

The example below demonstrates the use of the Gauss class, which implements the
Gauss solution for a set of linear equations.The following definition is an extract from
the header file of the class math_Gauss:

Example

class Gauss {

public:

 Gauss (const math_Matrix& A);

 Standard_Boolean IsDone() const;

 void Solve (const math_Vector& B,

 math_Vector& X) const;

};

Now the main program uses the Gauss class to solve the equations a*x1=b1 and
a*x2=b2:

Math Primitives and Algorithms

58

Example

#include <math_Vector.hxx> #include <math_Matrix.hxx>

main ()

{

 math_Vector a(1, 3, 1, 3);

 math_Vector b1(1, 3), b2(1, 3);

 math_Vector x1(1, 3), x2(1, 3);

 // a, b1 and b2 are set here to the appropriate values

 math_Gauss sol(a); // computation of the

 // LU decomposition of A

 if(sol.IsDone()) { // is it OK ?

 sol.Solve(b1, x1); // yes, so compute x1

 sol.Solve(b2, x2); // then x2

 ...

 }

 else { // it is not OK:

 // fix up

 sol.Solve(b1, x1); // error:

 // StdFail_NotDone is raised

 }

}

The next example demonstrates the use of the BissecNewton class, which
implements a combination of the Newton and Bissection algorithms to find the root of
a function known to lie between two bounds.The definition is an extract from the
header file of the class math_BissecNewton:

Example

class BissecNewton {

public:

BissecNewton (math_FunctionWithDerivative& f,

const Standard_Real bound1,

const Standard_Real bound2,

const Standard_Real tolx);

Standard_Boolean IsDone() const;

Standard_Real Root();

};

Math Primitives and Algorithms

59

The abstract class math_FunctionWithDerivative describes the services which have
to be implemented for the function f which is to be used by a BissecNewton
algorithm. The following definition corresponds to the header file of the abstract class
math_FunctionWithDerivative:

Example

class math_FunctionWithDerivative {

public:

virtual Standard_Boolean Value

(const Standard_Real x, Standard_Real& f) = 0;

virtual Standard_Boolean Derivative

(const Standard_Real x, Standard_Real& d) = 0;

virtual Standard_Boolean Values

(const Standard_Real x,

Standard_Real& f,

Standard_Real& d) = 0;

};

Now the test sample uses the BissecNewton class to find the root of the equation
f(x)=x**2-4 in the interval [1.5, 2.5]:the function to solve is implemented in the class
myFunction which inherits from the class math_FunctionWithDerivative,then the
main program finds the required root.

Example

#include <math_BissecNewton.hxx>

#include <math_FunctionWithDerivative.hxx>

class myFunction : public math_FunctionWithDerivative

{

 Standard_Real coefa, coefb, coefc;

 public:

 myFunction (const Standard_Real a, const Standard_Real b,

 const Standard_Real c) :

 coefa(a), coefb(b), coefc(c)

 {}

 virtual Standard_Boolean Value (const Standard_Real x,

 Standard_Real& f)

Math Primitives and Algorithms

60

 {

 f = coefa * x * x + coefb * x + coefc;

 }

 virtual Standard_Boolean Derivative (const Standard_Real x,

 Standard_Real& d)

 {

 d = coefa * x * 2.0 + coefb;

 }

 virtual Standard_Boolean Values (const Standard_Real x,

 Standard_Real& f, Standard_Real& d)

 {

 f = coefa * x * x + coefb * x + coefc;

 d = coefa * x * 2.0 + coefb;

 }

};

main()

{

 myFunction f(1.0, 0.0, 4.0);

 math_BissecNewton sol(F, 1.5, 2.5, 0.000001);

 if(Sol.IsDone()) { // is it OK ?

 Standard_Real x = sol.Root(); // yes.

 }

 else { // no

 // here some code is needed to try another

 // method or to output an error message.

 }

. . .

4.7. Precision
On the Open CASCADE platform, each object stored in the database should carry
its own precision value. This is important when dealing with systems where objects
are imported from other systems as well as with various associated precision values.

The Precision package addresses the daily problem of the geometric algorithm
developer: what precision setting to use to compare two numbers. Real number
equivalence is clearly a poor choice. The difference between the numbers should be
compared to a given precision setting.

Do not write:
if (X1 == X2)

Math Primitives and Algorithms

61

but instead write:
if (Abs(X1-X2) < Precision)

Also, to order real numbers, keep in mind that:
if (X1 < X2 - Precision)

is incorrect.
if (X2 - X1 > Precision)

is far better when X1 and X2 are high numbers.

This package proposes a set of methods providing precision settings for the most
commonly encountered situations.

In Open CASCADE, precision is usually not implicit; low-level geometric algorithms
accept precision settings as arguments. Usually these should not refer directly to this
package.

High-level modeling algorithms have to provide a precision setting to the low level
geometric algorithms they call. One way is to use the settings provided by this
package. The high-level modeling algorithms can also have their own strategy for
managing precision. As an example the Topology Data Structure stores precision
values which are later used by algorithms. When a new topology is created, it takes
the stored value.

Different precision settings offered by this package cover the most common needs of
geometric algorithms such as Intersection and Approximation.

The choice of a precision value depends both on the algorithm and on the geometric
space. The geometric space may be either:

• a "real" space, 3d or 2d where the lengths are measured in meters,
micron, inches, etc.

• a "parametric" space, 1d on a curve or 2d on a surface where numbers
have no dimension.

The choice of precision value for parametric space depends not only on the
accuracy of the machine, but also on the dimensions of the curve or the surface.

This is because it is desirable to link parametric precision and real precision. If you
are on a curve defined by the equation P(t), you would want to have equivalence
between the following:
Abs(t1-t2) < ParametricPrecision

Distance (P(t1),P(t2)) < RealPrecision.

4.7.1. The Precision package
The Precision package offers a number of package methods and default precisions
for use in dealing with angles, distances, intersections, approximations, and
parametric space.

It provides values to use in comparisons to test for real number equalities.

• Angular precision compares angles.

• Confusion precision compares distances.

Math Primitives and Algorithms

62

• Intersection precision is used by intersection algorithms.

• Approximation precision is used by approximation algorithms.

• Parametric precision gets a parametric space precision from a 3D

precision.

• Infinite returns a high number that can be considered to be infinite. Use -

Infinite for a high negative number. (See also: IsNegativeInfinite,

IsPositiveInfinite.)

4.7.2. Standard Precision values
This package provides a set of real space precision values for algorithms. The real
space precisions are designed for precision to 0.1 microns. The only unit available is
the millimeter.

The parametric precisions are derived from the real precisons by the Parametric
function. This applies a scaling factor which is the length of a tangent to the curve or
the surface. You, the user, provide this length. There is a default value for a curve
with [0,1] parameter space and a length less than 100 meters.

The geometric packages provide Parametric precisions for the different types of
curves.

The Precision package provides methods to test whether a real number can be
considered to be infinite.

Angular returns Real from Standard;
Used to compare two angles. Current value is Epsilon(2 * PI) i.e. the smallest
number x such that 2*PI + x is different of 2* PI.

Example

Confusion of two angles

Abs(Angle1 - Angle2) < Precision::Angular()

Parallelism of two vectors (Vec from gp)

V1.IsParallel(V2,Precision::Angular())

Note that Precision::Angular() can be used on both dot and cross products because
for small angles the Sine and the Angle are equivalent. So to test if two directions of
type gp_Dir are perpendicular, it is legal to use the following code:
Abs(D1 * D2) < Precision::Angular()

Math Primitives and Algorithms

63

Confusion returns Real from Standard;
Used to test 3d distances. The current value is 1.e-7 in other words, 1/10 micron if
the unit used is the millimeter.

Example

Confusion of two points (Pnt from gp)

P1.IsEqual(P2,Precision::Confusion())

A vector of null length (Vec from gp)

V.Magnitude() < Precision::Confusion()

Intersection returns Real from Standard;
A reasonable precision to pass to an Intersection process as a limit of refinement of
Intersection Points. Intersection is high enough for the process to converge quickly.
Intersection is lower than Confusion so that you still get a point on the intersected
geometries. The current value is Confusion() / 100.

Approximation returns Real from Standard;
A reasonable precision to pass to an approximation process as a limit of refinement
of fitting. Approximation is greater than the other precisions because it is designed to
be used when time is at a premium. It has been provided as a reasonable
compromise by the designers of the Approximation algorithm. The current value is
Confusion() * 10.

Note that Approximation is greater than Confusion, so care must be taken when
using Confusion in an approximation process.

PConfusion(T : Real from Standard) returns Real from Standard;
Used to test distances in parametric space.

This is Precision::Parametric(Precision::Confusion(),T).

PIntersection(T : Real from Standard) returns Real from Standard;
Used for Intersections in parametric space.

This is Precision::Parametric(Precision::Intersection(),T).

PApproximation(T : Real from Standard) returns Real from Standard;
Used for Approximations in parametric space.

This is Precision::Parametric(Precision::Approximation(),T) .

PConfusion returns Real from Standard;
Used to test distances in parametric space on a default curve.

This is Precision::Parametric(Precision::Confusion()) .

Math Primitives and Algorithms

64

PIntersection returns Real from Standard;
Used for Intersections in parametric space on a default curve.

This is Precision::Parametric(Precision::Intersection()) .

PApproximation returns Real from Standard;
Used for Approximations in parametric space on a default curve.

This is Precision::Parametric(Precision::Approximation())

IsPositiveInfinite(R : Real from Standard) returns Boolean;
Returns True if R may be considered as a positive infinite number. The criterion

is R >1.e100.

IsNegativeInfinite(R : Real from Standard) returns Boolean;
Returns True if R may be considered as a negative infinite number. The criterion

is R <-1.e100.

Data Storage

65

55.. DDaattaa SSttoorraaggee

5.1. Saving and Opening Files

Figure 8. Saving-Opening mechanism overview

Roots of the transferable transient objects (in the example above, TopoDS_Shape,
Geom_Geometry and Geom2d_Geometry) are used in algorithms; they contain data
and temporary results.

The associated objects in the persistent domain are here PTopoDS_HShape,
PGeom_Geometry and PGeom2d_Geometry. They contain a real data structure
which is stored in a file.

Note that when an object is stored, if it contains another stored object, the
references to the contained object are also managed.

Data Storage

66

Figure 2. Saving-Opening mechanism

5.2. Basic Storage Procedures
The following illustrates the storage and retrieval mechanisms on shapes.

5.2.1. Saving
From a transient object, the storage procedure follows five main steps.

Data Storage

67

1. Create an I/O driver for files. For example:
FSD_File f();

2. Instance the data schema which will process your persistent information. The
schema is used for read/write operations. If ShapeSchema is the name of your
schema:

Handle(ShapeSchema) s = new ShapeSchema;

3. Create the persistent shape from the transient shape.

TopoDS_Shape aShape;

PTColStd_TransientPersistentMap aMap;

Handle(PTopoDS_HShape) aPShape = MgtBRep::Translate

 (aShape, aMap, MgtBRep_WithoutTriangle);

4. Create a new container and fill it using the AddRoot() method

Handle(Storage_Data) d = new Storage_Data;

d -> AddRoot (“ObjectName”, aPShape);

You may add as many objects as you want in this container.

5. Save to the archive

s -> Write (f,d);

5.2.2. Opening
The retrieval mechanism is the opposite of the storage mechanism. The procedure
for retrieving an object is the following:

1. Create an I/O driver and instance a data schema (if not done)

2. Read the persistent object from the archive and get the list of objects using the
Roots() method.

Handle(Storage_Data) d = s -> Read(f);

Handle(Storage_HSeqOfRoot) roots = d-> Roots();

3. Loop on root objects to get Standard_Persistent objects (the following sequence
only gets the first root):

Handle(Standard_Persistent) p;

Handle(Standard_Root) r;

if(roots -> Length() >= 1) {

 r = roots -> Value(1);

 p = r -> Object();

}

4. DownCast the persistent object to a PTopoDS_Hshape

Handle(PTopoDS_HShape) aPShape;

aPShape = Handle(PTopoDS_HShape)::DownCast(p);

Data Storage

68

5. Create the TopoDS_Shape
TopoDS_Shape aShape;

PTColStd_PersistentTransientMap aMap;

MgtBRep::Translate (aPShape, aMap, aShape, MgtBRep_WithoutTriangle);

5.3. Methods Used

5.3.1. Write
This method is used to save data in a file. Its syntax is:

void Write(Storage_BaseDriver& s,

const Handle(Storage_Data)& aData);

5.3.2. Read
This method is used to open a storage file. Its syntax is:
Handle_Storage_Data Read(Storage_BaseDriver& s) const;

	Introduction
	1.1. Foundation Classes Overview
	Root Classes
	Strings
	Collections
	Collections of Standard Objects
	Vectors and Matrices
	Primitive Geometric Types
	Common Math Algorithms
	Exceptions
	Quantities
	Application services

	1.2. Fundamental Concepts
	1.2.1. Modules and toolkits
	1.2.2. Packages
	Figure 2. Contents of a package

	1.2.3. Classes
	Categories of Classes

	1.2.4. Genericity
	Declaring a Generic Class
	Instantiation of a Generic Class
	Nested Generic Classes

	1.2.5. Inheritance
	1.2.6. Categories of Data Types
	Figure 1. Manipulation of data types

	1.2.7. Exceptions
	1.2.8. Persistence and Data Schema

	2. Basics
	2.1. Data Types
	2.1.1. Primitive Types
	2.1.2. Types manipulated by value
	Figure 4. Manipulation of a data type by value

	2.1.3. Types manipulated by reference (handle)
	Figure 5. Manipulation of a data type by reference

	2.1.4. Summary of properties
	Persistent
	Figure 6. Summary of the relationship for the various data types between how they are handled and their storability.

	2.2. Programming with Handles
	2.2.1. Handle Definition
	Organization of Classes
	Using a Handle

	2.2.2. Type Management
	General
	Type Conformity
	Explicit Type Conversion

	2.2.3. Using Handles to Create Objects
	2.2.4. Invoking Methods
	Invoking Class Methods

	2.2.5. Handle de-allocation
	Cycles

	2.2.6. Creating Transient Classes without CDL

	2.3. Memory Management in Open CASCADE
	2.3.1. Usage
	2.3.2. Configuring memory manager
	2.3.3. Implementation details
	Benefits and drawbacks

	2.4. Exception Handling
	2.4.1. Raising an Exception
	“C++ like” Syntax
	Regular usage

	2.4.2. Handling an Exception
	Catching signals

	2.4.3. Implementation details

	2.5. Plug-In Management
	2.5.1. Distribution by Plug-Ins
	C++ Plug-In Implementation
	C++ Client Plug-In Implementation
	Not Using the Software Factory

	3. Collections, Strings and Unit Conversion
	3.1. Collections
	3.1.1. Overview
	3.1.2. Generic general-purpose Aggregates
	TCollection_Array1
	TCollection_Array2
	TCollection_HArray1
	TCollection_HArray2
	TCollection_HSequence
	TCollection_HSet
	TCollection_List
	TCollection_Queue
	TCollection_Sequence
	TCollection_Set
	TCollection_Stack

	3.1.3. Generic Maps
	TCollection_BasicMap
	TCollection_DataMap
	TCollection_DoubleMap
	TCollection_IndexedDataMap
	TCollection_IndexedMap
	TCollection_Map
	TCollection_MapHasher

	3.1.4. Iterators
	TCollection_BasicMapIterator
	TCollection_DataMapIterator
	TCollection_DoubleMapIterator
	TCollection_ListIterator
	TCollection_MapIterator
	TCollection_SetIterator
	TCollection_StackIterator

	3.2. Collections of Standard Objects
	3.2.1. Overview
	3.2.2. Description

	3.3. Strings
	3.3.1. Overview
	3.3.2. Strings
	TCollection_AsciiString
	TCollection_ExtendedString
	TCollection_HAsciiString
	TCollection_HExtendedString

	3.3.3. Conversion
	Resource_Unicode

	3.4. Unit Conversion
	3.4.1. Overview

	4. Math Primitives and Algorithms
	4.1. Overview
	4.2. Vectors and Matrices
	4.3. Primitive Geometric Types
	4.3.1. Overview
	4.3.2. gp

	4.4. Collections of Primitive Geometric Types
	4.4.1. TColgp

	4.5. Basic Geometric Libraries
	4.5.1. EICLib
	4.5.2. EISLib
	4.5.3. Bnd

	4.6. Common Math Algorithms
	4.6.1. Implementation of Algorithms

	4.7. Precision
	4.7.1. The Precision package
	4.7.2. Standard Precision values
	Angular returns Real from Standard;
	Confusion returns Real from Standard;
	Intersection returns Real from Standard;
	Approximation returns Real from Standard;
	PConfusion(T : Real from Standard) returns Real from Standard;
	PIntersection(T : Real from Standard) returns Real from Standard;
	PApproximation(T : Real from Standard) returns Real from Standard;
	PConfusion returns Real from Standard;
	PIntersection returns Real from Standard;
	PApproximation returns Real from Standard;
	IsPositiveInfinite(R : Real from Standard) returns Boolean;
	IsNegativeInfinite(R : Real from Standard) returns Boolean;

	5. Data Storage
	5.1. Saving and Opening Files
	Figure 8. Saving-Opening mechanism overview
	Figure 2. Saving-Opening mechanism

	5.2. Basic Storage Procedures
	5.2.1. Saving
	5.2.2. Opening

	5.3. Methods Used
	5.3.1. Write
	5.3.2. Read

