

Object Libraries

Modeling Algorithms
User's Guide

Version 6.3 / September 2008

User's Guide

2

Copyright © 2008, by Open CASCADE S.A.S.

PROPRIETARY RIGHTS NOTICE: All rights reserved. No part of this material may be
reproduced or transmitted in any form or by any means, electronic, mechanical, or otherwise,
including photocopying and recording or in connection with any information storage or retrieval
system, without the permission in writing from Open CASCADE S.A.S.

The information in this document is subject to change without notice and should not be construed
as a commitment by Open CASCADE S.A.S. Open CASCADE S.A.S. assures no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or copied
only in accordance with the terms of such a license.

CAS.CADE and Open CASCADE are registered trademarks of Open CASCADE S.A.S. Other
brand or product names are trademarks or registered trademarks of their respective holders.

NOTICE FOR USERS:

This User Guide is a general instruction for Open CASCADE study. It may be incomplete and
even contain occasional mistakes, particularly in examples, samples, etc.
Open CASCADE S.A.S. bears no responsibility for such mistakes. If you find any mistakes or
imperfections in this document, or if you have suggestions for improving this document, please,
contact us and contribute your share to the development of Open CASCADE Technology:
bugmaster@opencascade.com

Tour Opus 12

77, Esplanade du Général de Gaulle

92914 PARIS LA DEFENSE

FRANCE

mailto:bugmaster@opencascade.com

Table of Contents

3

TTaabbllee ooff CCoonntteennttss
TABLE OF CONTENTS... 3

1. INTRODUCTION .. 6

1. 1 THE MODELING ALGORITHMS MODULE... 6

1. 2 THE TOPOLOGY API... 6

1. 2. 1 Error Handling in the Topology API... 9

2. GEOMETRIC TOOLS .. 12

2. 1 OVERVIEW.. 12

2. 2 INTERSECTIONS .. 12

2. 2. 1 Geom2dAPI_InterCurveCurve .. 14

2. 2. 2 Intersection of Curves and Surfaces .. 15

2. 2. 3 Intersection of two Surfaces... 15

2. 3 INTERPOLATIONS .. 16

2. 3. 1 Geom2dAPI_Interpolate.. 16

2. 3. 2 GeomAPI_Interpolate.. 16

2. 4 LINES AND CIRCLES FROM CONSTRAINTS... 17

2. 5 THE SERVICES PROVIDED .. 19

2. 6 TYPES OF ALGORITHMS... 19

2. 7 PERFORMANCE FACTORS .. 20

3. 8 CONVENTIONS .. 20

2. 8. 1 Exterior/Interior .. 20

2. 8. 2 Orientation of a Line ... 21

2. 9 EXAMPLES .. 22

2. 9. 1 Line tangent to two circles... 22

2. 9. 2 Circle of given radius tangent to two circles ... 26

2. 10 THE ALGORITHMS .. 29

2. 10. 1 The Qualifiers .. 29

2. 10. 2 General Remarks about the Algorithms... 29

2. 10. 3 The Analytic Algorithms .. 29

2. 10. 4 The Geometric Algorithms... 30

2. 10. 5 The Iterative Algorithms.. 31

2. 11 CURVES AND SURFACES FROM CONSTRAINTS .. 31

Table of Contents

4

2. 12 THE SERVICES PROVIDED .. 32

2. 12. 1 FairCurve .. 32

2. 12. 2 GeomFill.. 33

2. 12. 3 GeomPlate ... 35

2. 13 EXAMPLE OF USE.. 36

2. 14 PROJECTIONS .. 38

2. 14. 1 Projection of a Point onto a Curve.. 38

2. 14. 2 Geom2dAPI_ProjectPointOnCurve... 39

2. 14. 3 Redefined operators... 42

2. 14. 4 Access to lower-level functionalities.. 42

2. 14. 5 GeomAPI_ProjectPointOnCurve... 43

2. 14. 6 Projection of a Point on a Surface... 45

2. 14. 7 Access to lower-level functionalities.. 48

2. 14. 8 Switching from 2d and 3d Curves.. 48

3. TOPOLOGICAL TOOLS ... 49

3. 1 OVERVIEW.. 49

3. 2 STANDARD TOPOLOGICAL OBJECTS ... 50

3. 2. 1 BRepBuilderAPI_MakeShape.. 50

3. 2. 2 BRepBuilderAPI_ModifyShape ... 50

3. 2. 3 Making Vertices, Edges and Faces.. 50

3. 2. 4 Making Wires and Shells ... 64

3. 2. 5 Modification Operators ... 67

4. CONSTRUCTION OF PRIMITIVES.. 69

4. 1 MAKING PRIMITIVES .. 69

4. 1. 1 BRepPrimAPI_MakeBox ... 69

4. 1. 2 BRepPrimAPI_MakeWedge... 70

4. 1. 3 BRepPrimAPI_MakeOneAxis .. 72

4. 1. 4 BRepPrimAPI_MakeCylinder.. 73

4. 1. 5 BRepPrimAPI_MakeCone ... 74

4. 1. 6 BRepPrimAPI_MakeSphere .. 75

4. 1. 7 BRepPrimAPI_MakeTorus .. 76

4. 2 SWEEPING: PRISM, REVOLUTION AND PIPE... 79

4. 2. 1 BRepPrimAPI_MakeRevolution .. 80

4. 2. 2 BRepPrimAPI_MakeSweep ... 80

1. Introduction

5

4. 2. 3 BRepPrimAPI_MakePrism.. 80

5. BOOLEAN OPERATIONS... 84

5. 1 BOOLEAN OPERATORS.. 84

5. 1. 1 BRepAlgoAPI_BooleanOperation ... 85

5. 1. 2 BRepAlgoAPI_Fuse ... 85

5. 1. 3 BRepAlgoAPI_Common .. 86

5. 1. 4 BRepAlgoAPI_Cut ... 86

5. 1. 5 BRepAlgoAPI_Section ... 86

6. FILLETS AND CHAMFERS.. 87

6. 1 FILLET CONSTRUCTOR.. 87

6. 1. 1 BRepFilletAPI_MakeFillet .. 87

7. OFFSETS AND DRAFTS.. 94

7. 1 SHELLING OPERATOR.. 94

7. 1. 1 Modification Operators ... 95

7. 1. 2 Sewing Operators .. 99

8. FEATURES... 102

8. 1 THE BREPFEAT CLASSES AND THEIR USE ... 102

8. 1. 1 Form classes.. 102

8. 1. 2 The Gluer class.. 116

8. 1. 3 The SplitShape Class ... 117

9. HIDDEN LINE REMOVAL.. 118

9. 1 OVERVIEW.. 118

9. 2 THE SERVICES PROVIDED ... 122

9. 2. 1 HLRBRep... 122

9. 2. 2 Restrictions in use.. 124

9. 3 EXAMPLES OF USE.. 124

9. 3. 1 HLRBRep_Algo ... 124

9. 3. 2 HLRBRep_PolyAlgo .. 125

9. 4 MESHING OF SHAPES .. 127

1. Introduction

6

11.. IInnttrroodduuccttiioonn

1. 1 The Modeling Algorithms Module

This manual explains how to use the Modeling Algorithms. It provides basic
documentation on modeling algorithms. For advanced information on Modeling
Algorithms, see our offerings on our web site at
www.opencascade.com/support/training.html

The Modeling Algorithms module brings together a wide range of topological
algorithms used in modeling. Along with these tools, you will find the geometric
algorithms, which they call.

The algorithms available are divided into:

•

•

•

•

•

•

•

•

•

Geometric tools

Topological tools

The Topology API

1. 2 The Topology API

The Open CASCADE Topology API includes the following six packages:

BRepAlgoAPI

BRepBuilderAPI

BRepFilletAPI

BRepFeat

BRepOffsetAPI

BRepPrimAPI

http://www.opencascade.com/support/training.html

1. Introduction

7

•

•

The classes in these six packages provide the user with a simple and powerful
interface.

A simple interface: a function call works ideally,

A powerful interface: including error handling and access to extra
information provided by the algorithms.

As an example, the class BRepBuilderAPI_MakeEdge can be used to create a
linear edge from two points.

gp_Pnt P1(10,0,0), P2(20,0,0);

TopoDS_Edge E = BRepBuilderAPI_MakeEdge(P1,P2);

This is the simplest way to create edge E from two points P1, P2, but the developer
can test for errors when he is not as confident of the data as in the previous
example.

Example

#include <gp_Pnt.hxx>

#include <TopoDS_Edge.hxx>

#include <BRepBuilderAPI_MakeEdge.hxx>

void EdgeTest()

{

gp_Pnt P1;

gp_Pnt P2;

BRepBuilderAPI_MakeEdge ME(P1,P2);

if (!ME.IsDone())

{

// doing ME.Edge() or E = ME here

// would raise StdFail_NotDone

Standard_DomainError::Raise

(“ProcessPoints::Failed to createan edge”);

}

1. Introduction

8

TopoDS_Edge E = ME;

}

In this example an intermediary object ME has been introduced. This can be tested
for the completion of the function before accessing the result. More information on
error handling in the topology programming interface can be found in the next
section.

BRepBuilderAPI_MakeEdge provides valuable information. For example, when
creating an edge from two points, two vertices have to be created from the points.
Sometimes you may be interested in getting these vertices quickly without exploring
the new edge. Such information can be provided when using a class. The following
example shows a function creating an edge and two vertices from two points.

Example

void MakeEdgeAndVertices(const gp_Pnt& P1,

const gp_Pnt& P2,

TopoDS_Edge& E,

TopoDS_Vertex& V1,

TopoDS_Vertex& V2)

{

BRepBuilderAPI_MakeEdge ME(P1,P2);

if (!ME.IsDone()) {

Standard_DomainError::Raise

(“MakeEdgeAndVerices::Failed to create an edge”);

}

E = ME;

V1 = ME.Vextex1();

V2 = ME.Vertex2();

}

The BRepBuilderAPI_MakeEdge class provides the two methods Vertex1 and
Vertex2, which return the two vertices used to create the edge.

How can BRepBuilderAPI_MakeEdge be both a function and a class? It can do
this because it uses the casting capabilities of C++. The
BRepBuilderAPI_MakeEdge class has a method called Edge; in the previous

1. Introduction

9

example the line E = ME could have been written.

Example

E = ME.Edge();

This instruction tells the C++ compiler that there is an implicit casting of a
BRepBuilderAPI_MakeEdge into a TopoDS_Edge using the Edge method. It
means this method is automatically called when a BRepBuilderAPI_MakeEdge is
found where a TopoDS_Edge is required.

This feature allows you to provide classes, which have the simplicity of function calls
when required and the power of classes when advanced processing is necessary.
All the benefits of this approach are explained when describing the topology
programming interface classes.

1. 2. 1 Error Handling in the Topology API

A method can report an error in the two following situations:

•

•

The data or arguments of the method are incorrect, i.e. they do not
respect the restrictions specified by the methods in its specifications.
Typical example: creating a linear edge from two identical points is likely
to lead to a zero divide when computing the direction of the line.

Something unexpected happened. This situation covers every error not
included in the first category. Including: interruption, programming errors
in the method or in another method called by the first method, bad
specifications of the arguments (i.e. a set of arguments that was not
expected to fail).

The second situation is supposed to become increasingly exceptional as a system is
debugged and it is handled by the exception mechanism. Using exceptions avoids
handling error statuses in the call to a method: a very cumbersome style of
programming.

In the first situation, an exception is also supposed to be raised because the calling
method should have verified the arguments and if it did not do so, there is a bug. For
example if before calling MakeEdge you are not sure that the two points are non-
identical, this situation must be tested.

1. Introduction

10

Making those validity checks on the arguments can be tedious to program and
frustrating as you have probably correctly surmised that the method will perform the
test twice. It does not trust you.

As the test involves a great deal of computation, performing it twice is also time-
consuming.

Consequently, you might be tempted to adopt the highly inadvisable style of
programming illustrated in the following example:

Example

#include <Standard_ErrorHandler.hxx>

try {

TopoDS_Edge E = BRepAPI_MakeEdge(P1,P2);

// go on with the edge

}

catch {

// process the error.

}

To help the user, the Topology API classes only raise the exception
StdFail_NotDone. Any other exception means that something happened which was
unforeseen in the design of this API.

The NotDone exception is only raised when the user tries to access the result of the
computation and the original data is corrupted. At the construction of the class
instance, if the algorithm cannot be completed, the internal flag NotDone is set. This
flag can be tested and in some situations a more complete description of the error
can be queried. If the user ignores the NotDone status and tries to access the result,
an exception is raised.

For example, with the BRepBuilderAPI_MakeEdge class:

Example

BRepBuilderAPI_MakeEdge ME(P1,P2);

if (!ME.IsDone()) {

// doing ME.Edge() or E = ME here

1. Introduction

11

// would raise StdFail_NotDone

Standard_DomainError::Raise

(“ProcessPoints::Failed to create an edge”);

}

TopoDS_Edge E = ME;

Geometric Tools

12

22.. GGeeoommeettrriicc TToooollss

•

•

•

•

•

2. 1 Overview

Open CASCADE geometric tools include:

Computation of intersections

Interpolation laws

Computation of curves and surfaces from constraints

Computation of lines and circles from constraints

Projections

2. 2 Intersections

The Geom2dAPI_InterCurveCurve class allows the evaluation of the intersection
points (gp_Pnt2d) between two geometric curves (Geom2d_Curve and the
evaluation of the points of self-intersection of a curve.

Geometric Tools

13

Figure 1. Intersection and self-intersection of curves

In both cases, the algorithm requires a value for the tolerance (Standard_Real) for
the confusion between two points. The default tolerance value used in all
constructors is 1.0e-6.

Figure 2. Intersection and tangent intersection

The algorithm returns a point in the case of an intersection and a segment in the

Geometric Tools

14

case of tangent intersection.

2. 2. 1 Geom2dAPI_InterCurveCurve

This class may be instantiated in either of the following two ways:

Intersection of curves C1 and C2.

Geom2dAPI_InterCurveCurve Intersector(C1,C2,tolerance);

Self-intersection of curve C3.

Geom2dAPI_InterCurveCurve Intersector(C3,tolerance);

Calling the number of intersection points

Standard_Integer N = Intersector.NbPoints();

Calling an intersection point

To select the desired point, pass an integer index value in argument.
gp_Pnt2d P = Intersector.Point(Index);

Calling the number of intersection segments

Standard_Integer M = Intersector.NbSegments();

Calling an intersection segment

To select the desired segment pass integer index values in argument.
Handle(Geom2d_Curve) Seg1, Seg2;

Intersector.Segment(Index,Seg1,Seg2);

// if intersection of 2 curves

Intersector.Segment(Index,Seg1);

// if self-intersection of a curve

Access to lower-level functionalities

If you need access to a wider range of functionalities the following method will return

Geometric Tools

15

the algorithmic object for the calculation of intersections:

Geom2dInt_GInter& TheIntersector = Intersector.Intersector();

2. 2. 2 Intersection of Curves and Surfaces

The GeomAPI_IntCS class is used to compute the intersection points between a
curve and a surface.

This class is instantiated as follows:
GeomAPI_IntCS Intersector(C, S);

Calling the number of intersection points

Standard_Integer nb = Intersector.NbPoints();

Calling the intersection points

gp_Pnt& P = Intersector.Point(Index);

where Index is an integer between 1 and NB.

2. 2. 3 Intersection of two Surfaces

The GeomAPI_IntSS class is used to compute the intersection of two surfaces from
Geom_Surface with respect to a given tolerance.

This class is instantiated as follows:
GeomAPI_IntSS Intersector(S1, S2, Tolerance);

Once the GeomAPI_IntSS object has been created, it can be interpreted.

Calling the number of intersection curves

Standard_Integer nb = Intersector. NbLines();

Calling the intersection curves

Handle(Geom_Curve) C = Intersector.Line(Index)

where Index is an integer between 1 and Nb.

Geometric Tools

16

2. 3 Interpolations
Interpolation provides functionalities for interpolating BSpline curves, whether in 2D,
using Geom2dAPI_Interpolate, or 3D using GeomAPI_Interpolate.

2. 3. 1 Geom2dAPI_Interpolate

This class is used to interpolate a BSplineCurve passing through an array of points.
If tangency is not requested at the point of interpolation, continuity will be C2 . If
tangency is requested at the point, continuity will be C1. If Periodicity is requested,
the curve will be closed and the junction will be the first point given.

The curve will then have a continuity of C1 only.

This class may be instantiated as follows:

Geom2dAPI_Interpolate

(const Handle_TColgp_HArray1OfPnt2d& Points,

const Standard_Boolean PeriodicFlag,

const Standard_Real Tolerance);

Calling the BSpline curve

From the object defined above the BSpline curve may be requested.

Handle(Geom2d_BSplineCurve) C = Interp.Curve();

Note that the Handle(Geom2d_BSplineCurve) operator has been redefined.
Consequently, it is unnecessary to pass via the construction of an intermediate
object of the Geom2dAPI_Interpolate type and the following syntax is correct.

Handle(Geom2d_BSplineCurve) C = Geom2dAPI_Interpolate(Points);

2. 3. 2 GeomAPI_Interpolate

This class may be instantiated as follows:

GeomAPI_Interpolate Interp(Points);

Geometric Tools

17

Calling the BSpline curve

From the object defined above the BSpline curve may be requested.

Handle(Geom_BSplineCurve) C = Interp.Curve();

Note that the Handle(Geom_BSplineCurve) operator has been redefined. Thus, it is
unnecessary to pass via the construction of an intermediate object of the
GeomAPI_Interpolate type and the following syntax is correct.

Handle(Geom_BSplineCurve) C = GeomAPI_Interpolate(Points
Standard_False 1.0e-7);

Boundary conditions may be imposed with the method Load.
GeomAPI_Interpolate AnInterpolator

(Points, Standard_False 1.0e-5);

AnInterpolator.Load (Starting Tangent, Ending Tangent);

2. 4 Lines and Circles from Constraints
There are two packages of importance for the end-user - Geom2dGcc and GccAna.
Geom2dGcc deals with reference-handled geometric objects from the Geom2d
package while GccAna deals with value-handled geometric objects from the gp
package.

The Geom2dGcc package solves geometric constructions of lines and circles
expressed by constraints such as tangency or parallelism, that is, a constraint
expressed in geometric terms. As a simple example the following figure shows a line
which is constrained to pass through a point and be tangent to a circle.

Geometric Tools

18

Figure 3. A constrained line

The Geom2dGcc package focuses on algorithms; it is useful for finding results, but it
does not offer any management or modification functions, which could be applied to
the constraints or their arguments. This package is designed to offer optimum
performance, both in rapidity and precision. Trivial cases (for example, a circle
centered on one point and passing through another) are not treated.

The Geom2dGcc package deals only with 2d objects from the Geom2d package.
These objects are the points, lines and circles available.

All other lines such as Bezier curves and conic sections - with the exception of
circles -are considered general curves and must be differentiable twice.

The GccAna package deals with points, lines, and circles from the gp package.
Apart from constructors for lines and circles, it also allows the creation of conics from
the bisection of other geometric objects.

Geometric Tools

19

•
•
•
•
•
•
•
•
•
•
•
•
•
•

•

•

•

2. 5 Services provided
Provides an implementation of analytic algorithms using value-handled entities only
which are used to create 2D lines or circles with geometric constraints. The
algorithms available are:

circle tangent to three elements (lines, circles, curves, points),

circle tangent to two elements and having a radius,

circle tangent to two elements and centered on a third element,

circle tangent to two elements and centered on a point,

circle tangent to one element and centered on a second,

bisector of two points,

bisector of two lines,

bisector of two circles,

bisector of a line and a point,

bisector of a line and a circle,

line tangent to two elements (points, circles, curves),

line tangent to one element and parallel to a line,

line tangent to one element and perpendicular to a line,

line tangent to one element and forming angle with a line.

2. 6 Types of algorithms
There are three categories of available algorithms, which complement each other:

analytic,

geometric,

iterative.

An analytic algorithm will solve a system of equations, whereas a geometric

Geometric Tools

20

•

•
•
•

algorithm works with notions of parallelism, tangency, intersection and so on.

Both methods can provide solutions. An iterative algorithm, however, seeks to refine
an approximate solution.

2. 7 Performance factors
The appropriate algorithm is the one, which reaches a solution of the required
accuracy in the least time. Only the solutions actually requested by the user should
be calculated. A simple means to reduce the number of solutions is the notion of
"qualifier". There are four qualifiers, which are:

Unqualified: the position of the solution is undefined with respect to this
argument.

Enclosing: the solution encompasses this argument.

Enclosed: the solution is encompassed by this argument.

Outside: the solution and argument are outside each other.

3. 8 Conventions

2. 8. 1 Exterior/Interior

It is not hard to define the interior and exterior of a circle. As is shown in the following
diagram, the exterior is indicated by the sense of the binormal, that is to say the right
side according to the sense of traversing the circle. The left side is therefore the
interior (or "material").

Geometric Tools

21

Figure 4. Exterior/Interior of a Circle

By extension, the interior of a line or any open curve is defined as the left side
according to the passing direction, as shown in the following diagram:

Figure 5. Exterior/Interior of a Line and a Curve

2. 8. 2 Orientation of a Line

It is sometimes necessary to define in advance the sense of travel along a line to be
created. This sense will be from first to second argument.

Geometric Tools

22

The following figure shows a line, which is first tangent to circle C1 which is interior
to the line, and then passes through point P1.

Figure 6. An Oriented Line

2. 9 Examples

2. 9. 1 Line tangent to two circles

The following four diagrams illustrate four cases of using qualifiers in the creation of
a line. The fifth shows the solution if no qualifiers are given.

Note that the qualifier "Outside" is used to mean "Mutually exterior".

Example 1 Case 1

Figure 7. Both circles outside

Geometric Tools

23

Constraints:

Tangent and Exterior to C1.

Tangent and Exterior to C2.

Syntax:

Lin2d2Tan (Outside (C1), Outside (C2), Tolerance)

Example 1 Case 2

Figure 8. Both circles enclosed

Constraints:

Tangent and Including C1.

Tangent and Including C2.

Syntax:

Lin2d2Tan (Enclosing (C1), Enclosing (C2), Tolerance)

Geometric Tools

24

Example 1 Case 3

Figure 9. C1 enclosed, C2 outside

Constraints:

Tangent and Including C1.

Tangent and Exterior to C2.

Syntax:

Lin2d2Tan (Enclosing (C1), Outside (C2), Tolerance)

Example 1 Case 4

Figure 10. C1 outside, C2 enclosed

Geometric Tools

25

Constraints:

Tangent and Exterior to C1.

Tangent and Including C2.

Syntax:

Lin2d2Tan (Outside (C1), Enclosing (C2), Tolerance)

Example 1 Case 5

Figure 11. With no qualifiers specified

Constraints:

Tangent and Undefined with respect to C1.

Tangent and Undefined with respect to C2.

Syntax:

Lin2d2Tan

(Unqualified (C1), Unqualified (C2), Tolerance)

Geometric Tools

26

2. 9. 2 Circle of given radius tangent to two circles

The following four diagrams show the four cases in using qualifiers in the creation of
a circle.

Example 2 Case 1

Figure 12. Both solutions outside

Constraints:

Tangent and Exterior at C1.

Tangent and Exterior at C2.

Syntax:
Circ2d2TanRad

(Outside (C1), Outside (C2), Rad, Tolerance)

Example 2 Case 2

Geometric Tools

27

Figure 13. C2 encompasses C1.

Constraints:

Tangent and Exterior at C1.

Tangent and Included by C2.

Syntax:
Circ2d2TanRad

(Outside (C1), Enclosed (C2), Rad, Tolerance)

Example 2 Case 3

Figure 14. Solutions enclose C2

Geometric Tools

28

Constraints:

Tangent and Exterior at C1.

Tangent and Including C2.

Syntax:
Circ2d2TanRad

(Outside (C1), Enclosing (C2), Rad, Tolerance)

Example 2 Case 4

Figure 15. Solutions enclose C1 & C2

Constraints:

Tangent and Enclosing C1.

Tangent and Enclosing C2.

Syntax:

Circ2d2TanRad

(Enclosing(C1),Enclosing (C2), Rad, Tolerance)

Example 2 Case5

The following syntax will give all the circles of radius Rad, which are tangent to C1
and C2 without discrimination of relative position:

Circ2d2TanRad(Unqualified(C1),Unqualified(C2),Rad,Tolerance)

Geometric Tools

29

•
•
•
•

•
•

2. 10 The Algorithms
The objects created by this toolkit are non-persistent.

2. 10. 1 The Qualifiers

The GccEnt package contains the following package methods:

Unqualified,

Enclosing,

Enclosed,

Outside.

This enables the creation of expressions as for example in Figure 6_12.

Circ2d2TanRad

(Outside (C1), Enclosing (C2), Rad, Tolerance)

This can be expressed as "Draw all the circles of radius Rad, which are tangent to
both circle C1 and C2, C1 being outside and C2 being inside."

2. 10. 2 General Remarks about the Algorithms

We consider the following to be the case:

If a circle passes through a point then the circle is tangential to it.

A distinction is made between the trivial case of being centered on a
point and the complex case of being centered on a line.

2. 10. 3 The Analytic Algorithms

The GccAna package implements the analytic algorithms. It deals only with points,
lines, and circles from the gp package. Here is a list of the services offered:

Geometric Tools

30

Creation of a Line:

Tangent (point | circle) & Parallel (line)

Tangent (point | circle) & Perpendicular (line | circle)

Tangent (point | circle) & Oblique (line)

Tangent (2 { point | circle })

Bisector(line | line)

Creation of Conics:

Bisector (point | point)

Bisector (line | point)

Bisector (circle | point)

Bisector (line | line)

Bisector (circle | line)

Bisector (circle | circle)

Creation of a Circle:

Tangent (point | line | circle) & Center (point)

Tangent (3 { point | line | circle })

Tangent (2 { point | line | circle }) & Radius (real)

Tangent (2 { point | line | circle }) & Center (line | circle)

Tangent (point | line | circle) & Center (line | circle) & Radius (real)

For each algorithm, the desired tolerance (and angular tolerance if appropriate) is
given as an argument. Calculation is done to the highest precision available from the
hardware.

2. 10. 4 The Geometric Algorithms

The Geom2dGcc package offers algorithms, which produce 2d lines or circles with
geometric constraints. For arguments, it takes curves for which an approximate
solution is not requested. A tolerance value on the result is given as a starting
parameter. Here is a list of the services offered:

Creation of a Circle:

Tangent (curve) & Center (point)

Geometric Tools

31

Tangent (curve , point | line | circle | curve) & Radius (real)

Tangent (2 {point | line | circle}) & Center (curve)

Tangent (curve) & Center (line | circle | curve) & Radius (real)

Tangent (point | line | circle) & Center (curve) & Radius (real)

All calculations will be done to the highest precision available from the hardware.

2. 10. 5 The Iterative Algorithms

The Geom2dGcc package offers iterative algorithms find a solution by refining an
approximate solution. It produces 2d lines or circles with geometric constraints. For
all geometric arguments except points, an approximate solution is given as a starting
parameter. The tolerance or angular tolerance value is given as an argument. The
following is a list of the services offered:

Creation of a Line:

Tangent (curve) & Oblique (line)

Tangent (curve , { point | circle | curve })

Creation of a Circle:

Tangent (curve , 2 { point | circle | curve })

Tangent (curve , { point | circle | curve })

& Center (line | circle | curve)

2. 11 Curves and Surfaces from Constraints
The GeomFill and GeomPlate packages provide tools for creating surfaces either
from boundary curves or respecting curve and point constraints.

The FairCurve package provides a set of classes to create faired 2D curves or 2D
curves with minimal variation in curvature.

Geometric Tools

32

•
•
•

•
•
•

2. 12 Services provided

2. 12. 1 FairCurve

The FairCurve package provides the following services:

Creation of Batten Curves

The class Batten allows you to produce faired curves defined on the basis of one or
more constraints on each of the two reference points. These include point, angle of
tangency and curvature settings.

The following constraint orders are available:

0 the curve must pass through a point

1 the curve must pass through a point and have a given tangent

2 the curve must pass through a point, have a given tangent and a given
curvature.

Only constraint orders of 0 and 1are used.

The function Curve returns the result as a 2D BSpline curve.

Creation of Minimal Variation Curves

The class MinimalVariation allows you to produce curves with minimal variation in
curvature at each reference point.

The following constraint orders are available:

0 the curve must pass through a point

1 the curve must pass through a point and have a given tangent

2 the curve must pass through a point, have a given tangent and a given
curvature.

Constraint orders of 0, 1 and 2 can be used. The algorithm minimizes tension,
sagging and jerk energy.

The function Curve returns the result as a 2D BSpline curve.

Geometric Tools

33

Specifying the length of the curve

If you want to give a specific length to a batten curve, use:

b.SetSlidingFactor(L / b.SlidingOfReference())

where b is the name of the batten curve object

Aesthetic Considerations

Free sliding is generally more aesthetically pleasing than constrained sliding.

However, the computation can fail with values such as angles greater than p/2,
because in this case, the length is theoretically infinite.

Warning

In other cases, when sliding is imposed and the sliding factor is too large, the batten
can collapse.

Controlling Computation Time

The constructor parameters, Tolerance and NbIterations, control how precise the
computation is, and how long it will take.

2. 12. 2 GeomFill

The GeomFill package provides the following services for creating surfaces from
boundary curves:

Creation of Bezier surfaces

The class BezierCurves allows you to produce a Bezier surface from contiguous
Bezier curves. Note that problems may occur with rational Bezier Curves.

Creation of BSpline surfaces

The class BSplineCurves allows you to produce a BSpline surface from contiguous
BSpline curves. Note that problems may occur with rational BSplines.

Geometric Tools

34

•
•
•

Creation of a Pipe

The class Pipe allows you to produce a pipe by sweeping a curve (the section) along
another curve (the path). The result is a BSpline surface.

Filling a contour

The class GeomFill_ConstrainedFilling allows you to fill a contour defined by two,
three or four curves as well as by tangency constraints. The resulting surface is a
BSpline.

Creation of a Boundary

The class GeomFill_SimpleBound allows you to define a boundary for the surface,
which you want to construct.

Creation of a Boundary with an adjoining surface

The class GeomFill_BoundWithSurf allows you to define a boundary for the surface,
which you want to construct. This boundary will already be joined to another surface.

Filling styles

The enumerations FillingStyle specify the styles used to build the surface. These
include:

Stretch - the style with the flattest patches

Coons - a rounded style with less depth than Curved

Curved - the style with the most rounded patches.

Geometric Tools

35

Figure 16. Intersecting filleted edges with differing radii, presenting a gap
which has been filled by a surface.

2. 12. 3 GeomPlate

The GeomPlate package provides the following services for creating surfaces
respecting curve and point constraints:

Definition of a Framework

The class BuildPlateSurface allows you to create a framework to build surfaces
according to curve and point constraints as well as tolerance settings. The result is
returned with the function Surface.

Note that you do not have to specify an initial surface at the time of construction.

You can add one later or, if none is loaded, one will automatically be computed.

Definition of a Curve Constraint

The class CurveConstraint allows you to define curves as constraints to the surface,
which you want to build.

Geometric Tools

36

Definition of a Point Constraint

The class PointConstraint allows you to define points as constraints to the surface,
which you want to build.

Applying Geom_Surface to Plate Surfaces

The class Surface allows you to describe the characteristics of plate surface objects
returned by BuildPlateSurface::Surface using the methods of Geom_Surface

Approximating a Plate surface to a BSpline

The class MakeApprox allows you to convert a Geom_Plate surface into a
Geom_BSpline.

Figure 17. A surface generated from four curves and a point.

2. 13 Example of Use

Example

Create a Plate surface and approximate it from a polyline as a curve constraint and a
point constraint

Geometric Tools

37

Standard_Integer NbCurFront=4,

NbPointConstraint=1;

gp_Pnt P1(0.,0.,0.);

gp_Pnt P2(0.,10.,0.);

gp_Pnt P3(0.,10.,10.);

gp_Pnt P4(0.,0.,10.);

gp_Pnt P5(5.,5.,5.);

BRepAPI_MakePolygon W;

W.Add(P1);

W.Add(P2);

W.Add(P3);

W.Add(P4);

W.Add(P1);

// Initialize a BuildPlateSurface

GeomPlate_BuildPlateSurface BPSurf(3,15,2);

// Create the curve constraints

BRepTools_WireExplorer anExp;

for(anExp.Init(W); anExp.More(); anExp.Next())

{

TopoDS_Edge E = anExp.Current();

Handle(BRepAdaptor_HCurve) C = new

BRepAdaptor_HCurve();

C->ChangeCurve().Initialize(E);

Handle(BRepFill_CurveConstraint) Cont= new

BRepFill_CurveConstraint(C,0);

BPSurf.Add(Cont);

}

// Point constraint

Handle(GeomPlate_PointConstraint) PCont= new

GeomPlate_PointConstraint(P5,0);

BPSurf.Add(PCont);

// Compute the Plate surface

BPSurf.Perform();

// Approximation of the Plate surface

Standard_Integer MaxSeg=9;

Standard_Integer MaxDegree=8;

Standard_Integer CritOrder=0;

Geometric Tools

38

Standard_Real dmax,Tol;

Handle(GeomPlate_Surface) PSurf = BPSurf.Surface();

dmax = Max(0.0001,10*BPSurf.G0Error());

Tol=0.0001;

GeomPlate_MakeApprox

Mapp(PSurf,Tol,MaxSeg,MaxDegree,dmax,CritOrder);

Handle (Geom_Surface) Surf (Mapp.Surface());

// create a face corresponding to the approximated Plate

Surface

Standard_Real Umin, Umax, Vmin, Vmax;

PSurf->Bounds(Umin, Umax, Vmin, Vmax);

BRepAPI_MakeFace MF(Surf,Umin, Umax, Vmin, Vmax);

2. 14 Projections
This package provides functionality for projecting points onto 2D and 3D curves and
surfaces.

2. 14. 1 Projection of a Point onto a Curve

The Geom2dAPI_ProjectPointOnCurve class allows calculation of all the normals
projected from a point (gp_Pnt2d) onto a geometric curve (Geom2d_Curve). The
calculation may be restricted to a given domain.

Geometric Tools

39

Figure 18. Normals from a point to a curve

NOTE

Note that the curve does not have to be a

Geom2d_TrimmedCurve. The algorithm will function with any

class inheriting Geom2d_Curve.

2. 14. 2 Geom2dAPI_ProjectPointOnCurve

This class may be instantiated as in the following example:

gp_Pnt2d P;

Handle(Geom2d_BezierCurve) C =

new Geom2d_BezierCurve(args);

Geom2dAPI_ProjectPointOnCurve Projector (P, C);

To restrict the search for normals to a given domain [U1,U2], use the following

Geometric Tools

40

constructor:

Geom2dAPI_ProjectPointOnCurve Projector (P, C, U1, U2);

Having thus created the Geom2dAPI_ProjectPointOnCurve object we can now
interrogate it.

Geometric Tools

41

Calling the number of solution points

Standard_Integer NumSolutions = Projector.NbPoints();

Calling the location of a solution point

The solutions are indexed in a range from 1 to Projector.NbPoints(). The point, which
corresponds to a given index Index may be found:

gp_Pnt2d Pn = Projector.Point(Index);

Calling the parameter of a solution point

For a given point corresponding to a given index Index:
Standard_Real U = Projector.Parameter(Index);

This can also be programmed as:
Standard_Real U;

Projector.Parameter(Index,U);

Calling the distance between the starting point and another

We can find the distance between the initial point and a point, which corresponds to
the given index, Index:

Standard_Real D = Projector.Distance(Index);

Calling the nearest solution point

This class offers a method to return the closest solution point to the starting point.
This solution is accessed as follows:

gp_Pnt2d P1 = Projector.NearestPoint();

Calling the parameter of the nearest solution point

Standard_Real U = Projector.LowerDistanceParameter();

Calling the minimum distance from the point to the curve

Standard_Real D = Projector.LowerDistance();

Geometric Tools

42

2. 14. 3 Redefined operators

Some operators have been redefined to help you find the closest solution.

Standard_Real() Returns the minimum distance from the point to the curve.

Standard_Real D = Geom2dAPI_ProjectPointOnCurve (P,C);

Standard_Integer() Returns the number of solutions.

Standard_Integer N =

Geom2dAPI_ProjectPointOnCurve (P,C);

gp_Pnt2d() Returns the nearest solution point.

gp_Pnt2d P1 = Geom2dAPI_ProjectPointOnCurve (P,C);

Using these operators makes coding easier when you only need the nearest point.
Thus:

Geom2dAPI_ProjectPointOnCurve Projector (P, C);

gp_Pnt2d P1 = Projector.NearestPoint();

can be written more concisely as:

gp_Pnt2d P1 = Geom2dAPI_ProjectPointOnCurve (P,C);

However, note that in this second case no intermediate

Geom2dAPI_ProjectPointOnCurve object is created, and thus it is impossible to
have access to other solution points.

2. 14. 4 Access to lower-level functionalities

If you want to use the wider range of functionalities available from the Extrema
package, a call to the Extrema() method will return the algorithmic object for
calculating extrema. For example:

Geom2dExtrema_ExtPC& TheExtrema = Projector.Extrema();

Geometric Tools

43

2. 14. 5 GeomAPI_ProjectPointOnCurve

This class is instantiated as in the following example:

gp_Pnt P;

Handle(Geom_BezierCurve) C =

new Geom_BezierCurve(args);

GeomAPI_ProjectPointOnCurve Projector (P, C);

If you wish to restrict the search for normals to the given domain [U1,U2], use the
following constructor:

GeomAPI_ProjectPointOnCurve Projector (P, C, U1, U2);

Having thus created the GeomAPI_ProjectPointOnCurve object you can now
interrogate it.

Calling the number of solution points

Standard_Integer NumSolutions = Projector.NbPoints();

Calling the location of a solution point

The solutions are indexed in a range from 1 to Projector.NbPoints(). The point, which
corresponds to a given index may be found:

gp_Pnt Pn = Projector.Point(Index);

Calling the parameter of a solution point

For a given point corresponding to a given index:

Standard_Real U = Projector.Parameter(Index);

This can also be programmed as:

Standard_Real U;

Projector.Parameter(Index,U);

Geometric Tools

44

Calling the distance between the starting point and another

The distance between the initial point and a point, which corresponds to a given
index, may be found:

Standard_Real D = Projector.Distance(Index);

Calling the nearest solution point

This class offers a method to return the closest solution point to the starting point.
This solution is accessed as follows:

gp_Pnt P1 = Projector.NearestPoint();

Calling the minimum distance from the point to the curve

Standard_Real D = Projector.LowerDistance();

Redefined operators

Some operators have been redefined to help you find the nearest solution.

Standard_Real()Returns the minimum distance from the point to the curve.

Standard_Real D = GeomAPI_ProjectPointOnCurve (P,C);

Standard_Integer()Returns the number of solutions.

Standard_Integer N = GeomAPI_ProjectPointOnCurve (P,C);

gp_Pnt2d()Returns the nearest solution point.

gp_Pnt P1 = GeomAPI_ProjectPointOnCurve (P,C);

Using these operators makes coding easier when you only need the nearest point. In
this way,

GeomAPI_ProjectPointOnCurve Projector (P, C);

gp_Pnt P1 = Projector.NearestPoint();

can be written more concisely as:

Geometric Tools

45

gp_Pnt P1 = GeomAPI_ProjectPointOnCurve (P,C);

In the second case, however, no intermediate GeomAPI_ProjectPointOnCurve
object is created, and it is impossible to access other solutions points.

Access to lower-level functionalities

If you want to use the wider range of functionalities available from the Extrema
package, a call to the Extrema() method will return the algorithmic object for
calculating the extrema. For example:

GeomExtrema_ExtPC& TheExtrema = Projector.Extrema();

2. 14. 6 Projection of a Point on a Surface

The GeomAPI_ProjectPointOnSurface class allows calculation of all the normals
projected from a point from gp_Pnt onto a geometric surface from Geom_Surface.

Figure 19. Normals from a point to a surface

NOTE

Note that the surface does not have to be of the

Geometric Tools

46

Geom_RectangularTrimmedSurface type. The algorithm will

function with any class inheriting Geom_Surface.

GeomAPI_ProjectPointOnSurface

This class is instantiated as in the following example:

gp_Pnt P;

Handle (Geom_Surface) C = new Geom_Surface(args);

GeomAPI_ProjectPointOnSurface Proj (P, S);

To restrict the search for normals within the given rectangular domain [U1, U2, V1,
V2], use the following constructor:

GeomAPI_ProjectPointOnSurface Proj (P, S, U1, U2, V1, V2);

The values of U1, U2, V1 and V2 lie at or within their maximum and minimum limits,
i.e.:

Umin<= U1<U2<=Umax

Vmin<= V1<V2<=Vmax

Having thus created the GeomAPI_ProjectPointOnSurface object, you can
interrogate it.

Calling the number of solution points

Standard_Integer NumSolutions = Proj.NbPoints();

Calling the location of a solution point

The solutions are indexed in a range from 1 to Proj.NbPoints(). The point
corresponding to the given index may be found:

gp_Pnt Pn = Proj.Point(Index);

Calling the parameters of a solution point

For a given point corresponding to the given index:

Geometric Tools

47

Standard_Real U,V;

Proj.Parameter(Index, U, V);

Calling the distance between the starting point and another

The distance between the initial point and a point corresponding to the given index
may be found:

Standard_Real D = Projector.Distance(Index);

Calling the nearest solution point

This class offers a method, which returns the closest solution point to the starting
point. This solution is accessed as follows:

gp_Pnt P1 = Proj.NearestPoint();

Calling the parameter of the nearest solution point

Standard_Real U,V;

Proj.LowerDistanceParameter (U, V);

Calling the minimum distance from the point to the surface

Standard_Real D = Proj.LowerDistance();

Redefined operators

Some operators have been redefined to help you find the nearest solution.

Standard_Real()Returns the minimum distance from the point to the surface.

Standard_Real D = GeomAPI_ProjectPointOnSurface (P,S);

Standard_Integer()Returns the number of solutions.

Standard_Integer N = GeomAPI_ProjectPointOnSurface (P,S);

gp_Pnt2d()Returns the nearest solution point.

gp_Pnt P1 = GeomAPI_ProjectPointOnSurface (P,S);

Geometric Tools

48

•
•

Using these operators makes coding easier when you only need the nearest point. In
this way,

GeomAPI_ProjectPointOnSurface Proj (P, S);

gp_Pnt P1 = Proj.NearestPoint();

can be written more concisely as:

gp_Pnt P1 = GeomAPI_ProjectPointOnSurface (P,S);

In the second case, however, no intermediate GeomAPI_ProjectPointOnSurface
object is created, and it is impossible to access other solution points.

2. 14. 7 Access to lower-level functionalities

If you want to use the wider range of functionalities available from the Extrema
package, a call to the Extrema() method will return the algorithmic object for
calculating the extrema as follows:

GeomExtrema_ExtPC& TheExtrema = Proj.Extrema();

2. 14. 8 Switching from 2d and 3d Curves

The To2d and To3d package methods are used to;

build a 2d curve from a 3d Geom_Curve lying on a gp_Pln plane

build a 3d curve from a Geom2d_Curve and a gp_Pln plane.

These methods are called as follows:

Handle(Geom2d_Curve C2d = GeomAPI:To2d(C3d, Pln);

Handle(Geom_Curve C3d = GeomAPI:To3d(C2d, Pln);

3. Topological Tools

49

33.. TTooppoollooggiiccaall TToooollss

•

•
•
•
•
•

•
•
•
•
•
•
•

3. 1 Overview
Open CASCADE topological tools include:

Standard topological objects combining topological data structure and
boundary representation

Geometric Transformations

Conversion to NURBS geometry

Finding Planes

Duplicating Shapes

Checking Validity

The standard topological objects include

Vertices

Edges

Faces

Wires

Polygonal wires

Shells

Solids.

3. Topological Tools

50

3. 2 Standard Topological Objects

3. 2. 1 BRepBuilderAPI_MakeShape

The deferred class BRepBuilderAPI_MakeShape is the root of all the classes of
BRepBuilderAPI, which build shapes. It inherits from the class
BRepBuilderAPI_Command. It provides a field to store the constructed shape.

3. 2. 2 BRepBuilderAPI_ModifyShape

Class BRepBuilderAPI_ModifyShape is a deferred class used as a root for the shape
modifications. It inherits BRepBuilderAPI_MakeShape and implements the methods
used to trace the history of all sub-shapes.

3. 2. 3 Making Vertices, Edges and Faces

The following classes are used to create topology from geometry. They all have the
default precision as tolerance.

BRepBuilderAPI_MakeVertex

Use this class to create a new vertex from a 3D point from gp.

Example

gp_Pnt P(0,0,10);

TopoDS_Vertex V = BRepBuilderAPI_MakeVertex(P);

NOTE

Note that this always creates a new vertex. This class has no

other methods.

BRepBuilderAPI_MakeEdge

Use this class to create edges. An edge is created from a curve and vertices. The

3. Topological Tools

51

basic method is to construct an edge from a curve, two vertices, and two
parameters. All other constructions are derived from this one. The basic method and
its arguments are described first, followed by the other methods. The
BRepBuilderAPI_MakeEdge class can provide extra information and return an error
status.

Basic Edge construction

Example

Handle(Geom_Curve) C = ...; // a curve

TopoDS_Vertex V1 = ...,V2 = ...;// two Vertices

Standard_Real p1 = ..., p2 = ..;// two parameters

TopoDS_Edge E = BRepBuilderAPI_MakeEdge(C,V1,V2,p1,p2);

C is the domain of the edge. V1 is the first vertex, it is oriented FORWARD, V2 is the
second vertex, it is oriented REVERSED. p1 and p2 are the parameters for the
vertices V1 and V2 on the curve. The default tolerance is associated with this edge.
The following figure illustrates this construction:

Figure 20. Basic Edge Construction

The following rules apply to the arguments:

3. Topological Tools

52

•
•

•

•

•

•

•

•

•

The curve

Must not be a Null Handle.

If the curve is a trimmed curve, the basis curve is
used.

The vertices

Can be null shapes. When V1 or V2 is Null the
edge is open in the corresponding direction and
the corresponding parameter p1 or p2 must
be infinite (i.e p1 is RealFirst(), p2 is RealLast()).

Must be different vertices if they have different 3d
locations and identical vertices if they have the
same 3d location (identical vertices are used when
the curve is closed).

The parameters

Must be increasing and in the range on the curve.

C -> FirstParameter() <= p1 < p2 <= C-
>LastParameter()

If the parameters are decreasing, the Vertices are
switched, i.e. V2 becomes V1 and V1 becomes V2.

On a periodic curve the parameters p1 and p2 are
adjusted by adding or subtracting the period to
obtain p1 in the range of the curve and p2 in the
range p1 < p2 <= p1+ Period. So on a parametric
curve p2 can be greater than the curve’s second
parameter, see the figure below.

Can be infinite but the corresponding vertex must
be Null (see above).

The distance between the Vertex 3d location and
the point evaluated on the curve with the
parameter must be lower than the default
precision.

The figure below illustrates two special cases, a semi-infinite edge and an edge on a
periodic curve.

3. Topological Tools

53

•

•

•
•
•

Figure 21. Infinite and Periodic Edges

Other Edge constructions

The BRepBuilderAPI_MakeEdge class provides methods, which are all simplified
calls of the previous one:

The parameters can be omitted. They are computed by projecting the
vertices on the curve.

3d points (Pnt from gp) can be given in place of vertices. Vertices are
created from the points. Giving vertices is useful when creating connected
vertices.

The vertices or points can be omitted if the parameters are given.

The points are computed by evaluating the parameters on the curve.

The vertices or points and the parameters can be omitted. The first and
last parameters of the curve are used.

The five following methods are thus derived from the basic construction:

Example

Handle(Geom_Curve) C = ...; // a curve

3. Topological Tools

54

TopoDS_Vertex V1 = ...,V2 = ...;// two Vertices

Standard_Real p1 = ..., p2 = ..;// two parameters

gp_Pnt P1 = ..., P2 = ...;// two points

TopoDS_Edge E;

p2 is RealLast

V1,p1 V12, p2 = 2.25 Pi

V1, p1 = 3 Pi

V2 is null

// project the vertices on the curve

E = BRepBuilderAPI_MakeEdge(C,V1,V2);

// Make vertices from points

E = BRepBuilderAPI_MakeEdge(C,P1,P2,p1,p2);

// Make vertices from points and project them

E = BRepBuilderAPI_MakeEdge(C,P1,P2);

// Computes the points from the parameters

E = BRepBuilderAPI_MakeEdge(C,p1,p2);

// Make an edge from the whole curve

E = BRepBuilderAPI_MakeEdge(C);

Six methods (the five above and the basic method) are also provided for curves from
the gp package in place of Curve from Geom. The methods create the
corresponding Curve from Geom and are implemented for the following classes:

gp_Lin creates a Geom_Line

gp_Circ creates a Geom_Circle

gp_Elips creates a Geom_Ellipse

gp_Hypr creates a Geom_Hyperbola

gp_Parab creates a Geom_Parabola

There are also two methods to construct edges from two vertices or two points.
These methods assume that the curve is a line; the vertices or points must have
different locations.

Example

TopoDS_Vertex V1 = ...,V2 = ...;// two Vertices

gp_Pnt P1 = ..., P2 = ...;// two points

3. Topological Tools

55

TopoDS_Edge E;

// linear edge from two vertices

E = BRepBuilderAPI_MakeEdge(V1,V2);

// linear edge from two points

E = BRepBuilderAPI_MakeEdge(P1,P2);

Other information and error status

The BRepBuilderAPI MakeEdge when used as a class can provide the two vertices.
This is useful when the vertices were not provided as arguments, for example when
the edge was constructed from a curve and parameters. The two methods Vertex1
and Vertex2 return the vertices. Note that the returned vertices can be null if the
edge is open in the corresponding direction.

The Error method returns a term of the BRepBuilderAPI_EdgeError enumeration. It
can be used to analyze the error when the IsDone method returns False. The terms
are:

•

•

•

•

•

EdgeDone

No error occurred, IsDone returns True.

PointProjectionFailed

No parameters were given but the projection of the 3D points on the curve failed.
This happens when the point distance to the curve is greater than the
precision.

ParameterOutOfRange

The given parameters are not in the range C->FirstParameter(), C->LastParameter()

DifferentPointsOnClosedCurve

The two vertices or points have different locations but they are the extremities of a
closed curve.

PointWithInfiniteParameter

3. Topological Tools

56

•

•

A finite coordinate point was associated with an infinite parameter (see the Precision
package for a definition of infinite values).

DifferentsPointAndParameter

The distance of the 3D point and the point evaluated on the curve with the parameter
is greater than the precision.

LineThroughIdenticPoints

Two identical points were given to define a line (construction of an edge without
curve), gp::Resolution is used for the confusion test.

The following example creates a wire from a set of parameters as described in the
following figure.

Figure 22. Creating an Edge

3. Topological Tools

57

Example

// Make a rectangle centered on the origin

// of dimensions H, L with fillets of radius R.

// The edges and the vertices are stored in the arrays

// theEdges and theVertices

// We use the class Array1OfShape

// (i.e. not arrays of edges or vertices)

#include <BRepBuilderAPI_MakeEdge.hxx>

#include <TopoDS_Shape.hxx>

#include <gp_Circ.hxx>

#include <gp.hxx>

#include <TopoDS_Wire.hxx>

#include <TopTools_Array1OfShape.hxx>

#include <BRepBuilderAPI_MakeWire.hxx>

// The MakeArc method to make an edge and two vertices

void MakeArc(Standard_Real x,Standard_Real y,

Standard_Real R,

Standard_Real ang,

TopoDS_Shape& E,

TopoDS_Shape& V1,

TopoDS_Shape& V2)

{

BRepBuilderAPI_MakeEdge ME(gp_Circ(gp::XOY(),R), ang,
ang+PI/2);

E = ME;

V1 = ME.Vertex1();

V2 = ME.Vertex2();

}

TopoDS_Wire MakeFilletedRectangle(const Standard_Real

H,

const Standard_Real L,

const Standard_Real R)

{

TopTools_Array1OfShape theEdges(1,8);

3. Topological Tools

58

TopTools_Array1OfShape theVertices(1,8);

// First create the circular edges and the vertices

// using the MakeArc function described above.

void MakeArc(Standard_Real, Standard_Real,

Standard_Real, Standard_Real,

TopoDS_Shape&, TopoDS_Shape&, TopoDS_Shape&);

Standard_Real x = L/2 - R, y = H/2 - R;

MakeArc(x,-y,R,0.,theEdges(2),theVertices(2),

theVertices(3));

MakeArc(x,y,R,PI*0.5,theEdges(4),theVertices(4),

theVertices(5));

MakeArc(-x,y,R,PI,theEdges(6),theVertices(6),

theVertices(7));

MakeArc(-x,-y,R,PI*1.5,theEdges(8),theVertices(8),

theVertices(1));

// Create the linear edges

for (Standard_Integer i = 1; i <= 7; i += 2)

{

theEdges(i) = BRepBuilderAPI_MakeEdge

(TopoDS::Vertex(theVertices(i)),TopoDS::Vertex

(theVertices(i+1)));

}

// Create the wire using the BRepBuilderAPI_MakeWire

BRepBuilderAPI_MakeWire MW;

for (i = 1; i <= 8; i++)

{

MW.Add(TopoDS::Edge(theEdges(i)));

}

return MW.Wire();

}

BRepBuilderAPI_MakeEdge2d

Use this class to make edges on a working plane from 2d curves. The working plane
is a default value of the BRepBuilderAPI package (see the Plane methods).

3. Topological Tools

59

The BRepBuilderAPI_MakeEdge2d class is strictly similar to the
BRepBuilderAPI_MakeEdge class using 2D geometry from gp and Geom2d instead
of 3D geometry.

BRepBuilderAPI_MakePolygon

Construction of polygons

The BRepBuilderAPI_MakePolygon class is used to build polygonal wires from
vertices or points. Points are automatically changed to vertices as in
BRepBuilderAPI_MakeEdge.

The basic use of BRepBuilderAPI_MakePolygon is to create a wire by adding
vertices or points using the Add method. At any moment, the current wire can be
extracted. The close method can be used to close the current wire. In the following
example, a closed wire is created from an array of points.

Example

#include <TopoDS_Wire.hxx>

#include <BRepBuilderAPI_MakePolygon.hxx>

#include <TColgp_Array1OfPnt.hxx>

TopoDS_Wire ClosedPolygon(const TColgp_Array1OfPnt& Points)

{

BRepBuilderAPI_MakePolygon MP;

for(Standard_Integeri=Points.Lower();

i<=Points.Upper();i++)

{

MP.Add(Points(i));

}

MP.Close();

return MP;

}

Short-cuts are provided for 2, 3, or 4 points or vertices. Those methods have a

3. Topological Tools

60

Boolean last argument to tell if the polygon is closed. The default value is False.

Two examples:

Example of a closed triangle from three vertices:
TopoDS_Wire W =
BRepBuilderAPI_MakePolygon(V1,V2,V3,Standard_True);

Example of an open polygon from four points:
TopoDS_Wire W = BRepBuilderAPI_MakePolygon(P1,P2,P3,P4);

Other information

The BRepBuilderAPI_MakePolygon class maintains a current wire. The current wire
can be extracted at any moment and the construction can proceed to a longer wire.
After each point insertion, the class maintains the last created edge and vertex,
which are returned by the methods Edge FirstVertex and LastVertex.

When the added point or vertex has the same location as the previous one it is not
added to the current wire but the most recently created edge becomes Null. The
Added method can be used to test this condition. The MakePolygon class never
raises an error. If no vertex has been added, the Wire is Null. If two vertices are at
the same location, no edge is created.

BRepBuilderAPI_MakeFace

Use this class to create faces. A face is created from a surface and wires. A surface
is constructed from a surface and optional parametric values. Wires can be added to
the surface. A planar surface can be constructed from a wire. An error status can be
returned after face construction.

Basic Face construction

A face can be constructed from a surface and four parameters to determine a
limitation of the UV space. The parameters are optional, if they are omitted the
natural bounds of the surface are used. Up to four edges and vertices are created
with a wire. No edge is created when the parameter is infinite.

3. Topological Tools

61

Example
Handle(Geom_Surface) S = ...; // a surface

Standard_Real umin,umax,vmin,vmax; // parameters

TopoDS_Face F =
BRepBuilderAPI_MakeFace(S,umin,umax,vmin,vmax);

Figure 23. Basic Face Construction

3. Topological Tools

62

To make a face from the natural boundary of a surface, the parameters are not
required:

Example

Handle(Geom_Surface) S = ...; // a surface

TopoDS_Face F = BRepBuilderAPI_MakeFace(S);

The constraint on the parameters as similar to the constraints in
BRepBuilderAPI_MakeEdge.

•

•
•

umin,umax (vmin,vmax) must be in the range of the surface and must be
increasing.

On a U (V) periodic surface umin and umax (vmin,vmax) are adjusted.

umin, umax, vmin, vmax can be infinite. There will be no edge in the
corresponding direction.

Other face constructions

The two basic constructions (from a surface and from a surface and parameters) are
implemented for all the gp package surfaces, which are transformed in the
corresponding Surface from Geom.

gp_Pln creates a Geom_Plane

gp_Cylinder creates a Geom_CylindricalSurface

gp_Cone creates a Geom_ConicalSurface

gp_Sphere creates a Geom_SphericalSurface

gp_Torus creates a Geom_ToroidalSurface

Once a face has been created, a wire can be added using the Add method. For
example, the following code creates a cylindrical surface and adds a wire.

Example

gp_Cylinder C = ..; // a cylinder

TopoDS_Wire W = ...;// a wire

3. Topological Tools

63

BRepBuilderAPI_MakeFace MF(C);

MF.Add(W);

TopoDS_Face F = MF;

More than one wire can be added to a face, provided that they do not cross each
other and they define only one area on the surface. (Note that this is not checked).
The edges on a Face must have a parametric curve description.

If there is no parametric curve for an edge of the wire on the Face it is computed by
projection.

For one wire, a simple syntax is provided to construct the face from the surface and
the wire. The above lines could be written.

Example
TopoDS_Face F = BRepBuilderAPI_MakeFace(C,W);

A planar face can be created from only a wire, provided this wire defines a plane.
For example, to create a planar face from a set of points you can use
BRepBuilderAPI_MakePolygon and BRepBuilderAPI_MakeFace.

Example

#include <TopoDS_Face.hxx>

#include <TColgp_Array1OfPnt.hxx>

#include <BRepBuilderAPI_MakePolygon.hxx>

#include <BRepBuilderAPI_MakeFace.hxx>

TopoDS_Face PolygonalFace(const TColgp_Array1OfPnt&
thePnts)

{

BRepBuilderAPI_MakePolygon MP;

for(Standard_Integeri=thePnts.Lower();

i<=thePnts.Upper();i++)

{

3. Topological Tools

64

MP.Add(thePnts(i));

}

MP.Close();

TopoDS_Face F = BRepBuilderAPI_MakeFace(MP.Wire());

return F;

}

The last use of MakeFace is to copy an existing face to add
new wires. For example

the following code adds a new wire to a face.

TopoDS_Face F = ...; // a face

TopoDS_Wire W = ...; // a wire

F = BRepBuilderAPI_MakeFace(F,W);

To add more than one wire an instance of the BRepBuilderAPI_MakeFace class can
be created with the face and the first wire and the new wires inserted with the Add
method.

Error status

The Error method returns an error status, which is a term from the
BRepBuilderAPI_FaceError enumeration.

FaceDone No error occurred.

NoFace No initialization of the algorithm; empty constructor was
used.

NotPlanar No surface was given and the wire was not planar.

CurveProjectionFailed No curve was found in the parametric space of the
surface for an edge.

ParametersOutOfRange The parameters umin,umax,vmin,vmax are out of the
surface.

3. 2. 4 Making Wires and Shells

Composite shapes are built not from geometry, but by the assembly of other shapes.
Composite shapes are:

3. Topological Tools

65

•
•
•

The Wire made from edges.

The Shell made from faces.

The Solid made from shells.

BRepBuilderAPI_MakeWire

The BRepBuilderAPI_MakeWire class can build a wire from one or more edges or
connect new edges to an existing wire.

Basic wire constructions

Up to four edges the class can be used directly, for example:

Example

TopoDS_Wire W = BRepBuilderAPI_MakeWire(E1,E2,E3,E4);

For a higher or unknown number of edges the Add method must be used; for
example, to build a wire from an array of shapes (to be edges).

Example

TopTools_Array1OfShapes theEdges;

BRepBuilderAPI_MakeWire MW;

for (Standard_Integer i = theEdge.Lower();

i <= theEdges.Upper(); i++)

MW.Add(TopoDS::Edge(theEdges(i));

TopoDS_Wire W = MW;

The class can be constructed with a wire. A wire can also be added. In this case, all
the edges of the wires are added. For example to merge two wires:

Example

#include <TopoDS_Wire.hxx>

3. Topological Tools

66

#include <BRepBuilderAPI_MakeWire.hxx>

TopoDS_Wire MergeWires (const TopoDS_Wire& W1,

const TopoDS_Wire& W2)

{

BRepBuilderAPI_MakeWire MW(W1);

MW.Add(W2);

return MW;

}

Other information

The BRepBuilderAPI_MakeWire class connects the edges to the wire. When a new
edge is added if one of its vertices is shared with the wire it is considered as
connected to the wire. If there is no shared vertex, the algorithm searches for a
vertex of the edge and a vertex of the wire, which are at the same location (the
tolerances of the vertices are used to test if they have the same location). If such a
pair of vertices is found, the edge is copied with the vertex of the wire in place of the
original vertex. All the vertices of the edge can be exchanged for vertices from the
wire. If no connection is found the wire is considered to be disconnected. This is an
error.

The BRepBuilderAPI_MakeWire class can return the last edge added to the wire
(Edge method). This edge can be different from the original edge if it was copied.

Error Status

The Error method returns a term of the BRepBuilderAPI_WireError enumeration:

WireDone No error occurred.

WireDone No error.

EmptyWire No initialization of the algorithm, empty constructor was used.

DisconnectedWire The last added edge was not connected to the wire.

3. Topological Tools

67

BRepBuilderAPI_MakeShell

Use the MakeShell class to build a Shell from a set of Faces. What is important is
that each face should have the required continuity. That is why an initial surface is
broken up into faces.

BRepBuilderAPI_MakeSolid

Use the MakeSolid class to build a Solid from a set of Shells. Its use is similar to the
use of the MakeWire class: shells are added to the solid in the same way that edges
are added to the wire in MakeWire.

3. 2. 5 Modification Operators

BRepBuilderAPI_Transform

The Transform from BRepBuilderAPI class is used to apply a transformation to a
shape (see class Trsf from gp). The methods have a boolean argument to copy or
share the original shape, as long as the transformation allows (it is only possible for
direct isometric transformations). By default, the original shape is shared.

The following example deals with the rotation of shapes.

Example

TopoDS_Shape myShape1 = ...;

// The original shape 1Sewing

TopoDS_Shape myShape2 = ...;

// The original shape2

gp_Trsf T;

T.SetRotation(gp_Ax1(gp
Pnt(0.,0.,0.),gp_Vec(0.,0.,1.)),2.*PI/5.);

BRepBuilderAPI_Transformation theTrsf(T);

theTrsf.Perform(myShape1);

TopoDS_Shape myNewShape1 = theTrsf.Shape()

theTrsf.Perform(myShape2,Standard_True);

// Here duplication is forced

TopoDS_Shape myNewShape2 = theTrsf.Shape()

...

3. Topological Tools

68

BRepBuilderAPI_Copy

Use the BRepBuilderAPI_Copy class to duplicate a shape. A new shape is thus
created.

In the following code, a solid is copied:

Example

TopoDS Solid MySolid;

....// Creates a solid

TopoDS_Solid myCopy = BRepBuilderAPI_Copy(mySolid);

4. Construction of Primitives

69

44.. CCoonnssttrruuccttiioonn ooff PPrriimmiittiivveess

4. 1 Making Primitives
The following classes are used to build primitive objects. They include boxes,
wedges and rotational objects. They can be used to build solids or shells. These
classes provide Shell and Solid methods to return the corresponding results.

The methods are overloaded to be cast automatically to TopoDS_Shell or
TopoDS_Solid.

4. 1. 1 BRepPrimAPI_MakeBox

Use the MakeBox class to build a parallelepiped box. The result is either a Shell or a
Solid. There are four ways to build a box:

From three dimensions dx,dy,dz. The box is parallel to the axes and extends for
[0,dx] [0,dy] [0,dz]

From a point and three dimensions. The same as above but the point is the new
origin.

From two points, the box is parallel to the axes and extends on the intervals defined
by the coordinates of the two points.

From a system of axes (gp_Ax2) and three dimensions. Same as the first way but
the box is parallel to the given system of axes.

An error is raised if the box is flat in any dimension using the default precision. The
following code shows how to create a box:

Example

TopoDS_Solid theBox = BRepPrimAPI_MakeBox(10.,20.,30.);

The following figure illustrates the four methods to build a box.

4. Construction of Primitives

70

Figure 24. Making Boxes

4. 1. 2 BRepPrimAPI_MakeWedge

Use the BRepPrimAPI_MakeWedge class to build a wedge. A wedge is a slanted
box, i.e. a box with angles. The wedge is constructed in much the same way as a
box i.e. from three dimensions dx,dy,dz plus arguments or from an axis system,
three dimensions, and arguments.

4. Construction of Primitives

71

The following figure shows two ways to build wedges. One is to add an ltx
dimension, which is the length in x of the face at dy. The second is to add xmin,
xmax, zmin, zmax to describe the face at dy.

The first method is a particular case of the second with:

xmin = 0, xmax = ltx, zmin = 0, zmax = dz

To make a centered pyramid you can use:

xmin = xmax = dx / 2, zmin = zmax = dz / 2

Figure 25. Making Wedges

4. Construction of Primitives

72

•
•
•

4. 1. 3 BRepPrimAPI_MakeOneAxis

The BRepPrimAPI_MakeOneAxis class is a deferred class used as a root class for
all the classes constructing rotational primitives. Rotational primitives are created by
rotating a curve around an axis. They cover the cylinder, the cone, the sphere, the
torus, and the revolution, which provides all the other curves.

The particular constructions of these primitives are described, but they all have some
common arguments, which are:

A system of coordinates, where the Z axis is the rotation axis..

An angle in the range [0,2*PI].

A vmin, vmax parameter range on the curve.

The result of the OneAxis construction is a Solid, a Shell, or a Face. The face is the
face covering the rotational surface. Remember that you will not use the OneAxis
directly but one of the derived classes, which provide improved constructions. The
following figure illustrates the OneAxis arguments.

Figure 26. MakeOneAxis arguments

4. Construction of Primitives

73

•
•

4. 1. 4 BRepPrimAPI_MakeCylinder

Use the MakeCylinder class to make cylindrical primitives. A cylinder is created
either in the default coordinate system or in a given coordinate system (gp_Ax2).
There are two constructions:

Radius and height, to build a full cylinder.

Radius, height and angle to build a portion of a cylinder.

The following code builds the cylindrical face of the figure, which is a quarter of
cylinder along the Y axis with the origin at X,Y,Z, a length of DY, and a radius R.

Example

Standard_Real X = 20, Y = 10, Z = 15, R = 10, DY = 30;

// Make the system of coordinates

gp_Ax2 axes = gp::ZOX();

axes.Translate(gp_Vec(X,Y,Z));

TopoDS_Face F =

BRepPrimAPI_MakeCylinder(axes,R,DY,PI/2.);

4. Construction of Primitives

74

•

•

Figure 27. Example of a Cylinder

4. 1. 5 BRepPrimAPI_MakeCone

Use the BRepPrimAPI_MakeCone class to make conical primitives. Like a cylinder,
a cone is created either in the default coordinate system or in a given coordinate
system (gp_Ax2). There are two constructions:

Two radii and height, to build a full cone. One of the radii can be null to
make a sharp cone.

Radii, height and angle to build a truncated cone.

The following code builds the solid cone of the figure, which is located in the default
system with radii R1 and R2 and height H.

Example

Standard_Real R1 = 30, R2 = 10, H = 15;

TopoDS_Solid S = BRepPrimAPI_MakeCone(R1,R2,H);

4. Construction of Primitives

75

•
•
•

•

Figure 28. Example of a Cone

4. 1. 6 BRepPrimAPI_MakeSphere

Use the BRepPrimAPI_MakeSphere class to make spherical primitives. Like a
cylinder, a sphere is created either in the default coordinate system or in a given
coordinate system (gp_Ax2). There are four constructions:

A radius; builds a full sphere. (see Figure 29.)

A radius and an angle; build a portion of a sphere.

A radius and two angles; build a segment of a sphere between two
latitudes. The angles a1, a2 must verify the relation:

PI/2 <= a1 < a2 <= PI/2. (see Figure 29.)

A radius and three angles; build a portion of a strip of sphere. (see Figure
29.)

The following code builds four spheres from a radius and three angles.

Example

Standard_Real R = 30, ang =

PI/2, a1 = -PI/2.3. a2 = PI/4;

TopoDS_Solid S1 = BRepPrimAPI_MakeSphere(R);

TopoDS_Solid S2 = BRepPrimAPI_MakeSphere(R,ang);

TopoDS_Solid S3 = BRepPrimAPI_MakeSphere(R,a1,a2);

TopoDS_Solid S4 = BRepPrimAPI_MakeSphere(R,a1,a2,ang);

Note that we could equally well choose to create Shells instead of Solids.

4. Construction of Primitives

76

•

Figure 29. Examples of Spheres

4. 1. 7 BRepPrimAPI_MakeTorus

Use the BRepPrimAPI_MakeTorus class to make toroidal primitives. Like the other
primitives, a torus is created either in the default coordinate system or in a given
coordinate system (gp_Ax2). There are four constructions similar to the sphere
constructions:

Two radii; build a full torus.

4. Construction of Primitives

77

•
•

•

Two radii and an angle; build a portion of a torus.

Two radii and two angles; build a segment of a torus between two latitudes. The
angles a1, a2 must verify the relation:

0 <= a1 < a2 <= 2*PI

Two radii and three angles; build a portion of a segment of torus.

Figure 30. Examples of Tori

The following code builds four toroidal shells from two radii and three angles.

Example

Standard_Real R1 = 30, R2 = 10, ang = PI, a1 = 0,

a2 = PI/2;

4. Construction of Primitives

78

TopoDS_Shell S1 = BRepPrimAPI_MakeTorus(R1,R2);

TopoDS_Shell S2 = BRepPrimAPI_MakeTorus(R1,R2,ang);

TopoDS_Shell S3 = BRepPrimAPI_MakeTorus(R1,R2,a1,a2);

TopoDS_Shell S4 =

BRepPrimAPI_MakeTorus(R1,R2,a1,a2,ang);

Note that we could equally well choose to create Solids instead of Shells.

4. Construction of Primitives

79

•

•
•
•
•
•

4. 2 Sweeping: Prism, Revolution and Pipe

Sweeps are the objects you obtain by sweeping a profile along a path. The profile
can be any topology. The path is usually a curve or a wire. The profile generates
objects according to the following rules:

Vertices generate Edges

Edges generate Faces.

Wires generate Shells.

Faces generate Solids.

Shells generate Composite Solids

It is forbidden to sweep Solids and Composite Solids. A Compound generates a
Compound with the sweep of all its elements.

Three kinds of sweeps are implemented in BRepPrimAPI, the linear sweep called
Prism, the rotational sweep called Revol and the general sweep called Pipe.

4. Construction of Primitives

80

•
•
•

•

Figure 31. Generating a sweep

4. 2. 1 BRepPrimAPI_MakeRevolution

Use the BRepPrimAPI_MakeRevolution class to build a uniaxe primitive from a
curve. As with other uniaxe primitives it can be created in the default coordinate
system or in a given coordinate system.

The curve can be any Geom_Curve, provided it is planar and contains the Z-axis.
There are four modes of construction:

From a curve, use the full curve and make a full rotation.

From a curve and an angle of rotation.

From a curve and two parameters to trim the curve. The two parameters
must be increasing and in the range of the curve.

From a curve, two parameters, and an angle. The two parameters must
be increasing and in the range of the curve.

4. 2. 2 BRepPrimAPI_MakeSweep

The BRepPrimAPI_MakeSweep class is a deferred class used as a root of the
sweep classes BRepPrimAPI_MakePrism and BRepPrimAPI_MakeRevol. It has
currently no special services for the end user.

4. 2. 3 BRepPrimAPI_MakePrism

Use the BRepPrimAPI_MakePrism class to make a linear prism from a shape. A
prism is created from a shape and a vector or a direction.

From a vector, a finite prism is created. From a direction, an infinite or semiinfinite
prism is created. A Boolean argument is used to toggle the semi-infinite or infinite
prism. All methods have a last boolean argument to copy or share the original
shape. The default is to share it. The following code, using a face, a direction and a
length, creates a finite, an infinite, and a semi-infinite solid.

Example

4. Construction of Primitives

81

TopoDS_Face F = ..; // The swept face

gp_Dir direc(0,0,1);

Standard_Real l = 10;

// create a vector from the direction and the length

gp_Vec v = direc;

v *= l;

TopoDS_Solid P1 = BRepPrimAPI_MakePrism(F,v);

// finite

TopoDS_Solid P2 = BRepPrimAPI_MakePrism(F,direc);

// infinite

TopoDS_Solid P3 =
BRepPrimAPI_MakePrism(F,direc,Standard_False);

// semi-infinite

4. Construction of Primitives

82

Figure 32. Finite, infinite, and semi-infinite prisms

BRepPrimAPI_MakeRevol

Use the BRepPrimAPI_MakeRevol class to make a revolved sweep. A revol is
created from a shape, an axis (gp_Ax1), and an angle. The angle has a default value
of 2*PI which means a closed revol.

BRepPrimAPI_MakeRevol methods have a last argument to copy or share the
original shape. The following code, using a face, an axis and an angle makes a full
and a partial revol.

Example

TopoDS_Face F = ...; // the profile

4. Construction of Primitives

83

gp_Ax1 axis(gp_Pnt(0,0,0),gp_Dir(0,0,1));

Standard_Real ang = PI/3;

TopoDS_Solid R1 = BRepPrimAPI_MakeRevol(F,axis);

// Full revol

TopoDS_Solid R2 = BRepPrimAPI_MakeRevol(F,axis,ang);

// Partial revol

Figure 33. Full and partial revols

5. Boolean Operations

84

55.. BBoooolleeaann OOppeerraattiioonnss

5. 1 Boolean Operators
Boolean operations are used to create new shapes from the combinations of two
shapes S1, S2.

Fusion: gets all the points in S1 or S2.

Common: gets all the points in S1 and S2.

Cut S1 by S2: gets all the points in S1 and not in S2.

The following figure illustrates the boolean operations.

5. Boolean Operations

85

Figure 34. Boolean Operations

5. 1. 1 BRepAlgoAPI_BooleanOperation

The BRepAlgoAPI_BooleanOperation class is the deferred root class for Boolean
operations.

5. 1. 2 BRepAlgoAPI_Fuse

The BRepAlgoAPI_Fuse class performs the fuse operations.

5. Boolean Operations

86

Example
TopoDS_Shape A = ..., B = ...;

TopoDS_Shape S = BRepAlgoAPI_Fuse(A,B);

5. 1. 3 BRepAlgoAPI_Common

The BRepAlgoAPI_Common class performs the common operations.

Example

TopoDS_Shape A = ..., B = ...;

TopoDS_Shape S = BRepAlgoAPI_Common(A,B);

5. 1. 4 BRepAlgoAPI_Cut

The BRepAlgoAPI_Cut class performs the cut operations.

Example

TopoDS_Shape A = ..., B = ...;

TopoDS_Shape S = BRepAlgoAPI_Cut(A,B);

5. 1. 5 BRepAlgoAPI_Section

The BRepAlgoAPI_Section class performs the section, described as a
TopoDS_Compound made of TopoDS_Edge.

Example

TopoDS_Shape A = ..., TopoDS_ShapeB = ...;

TopoDS_Shape S = BRepAlgoAPI_Section(A,B);

6. Fillets and Chamfers

87

66.. FFiilllleettss aanndd CChhaammffeerrss

6. 1 Fillet Constructor

6. 1. 1 BRepFilletAPI_MakeFillet

Use the BRepFilletAPI_MakeFillet class to add fillets on a shape. A fillet is a smooth
face replacing a sharp edge.

First, give a shape, which will be filleted. This is done at the construction of the class.

Then add fillet descriptions using the Add method. A fillet description contains an
edge and a radius. Of course the edge must be shared by two faces. The fillet is
automatically extended to all edges in a smooth continuity with the original edge.

Finally, perform the operation by asking for the result as for any class inherited from
MakeShape.

It is not an error to Add a fillet twice, the last description holds.

Figure 35. Filleting two edges using radii r1 and r2.

6. Fillets and Chamfers

88

In the following example a filleted box with dimensions a,b,c and radius r is created.

Example 1 Constant radius.

#include <TopoDS_Shape.hxx>

#include <TopoDS.hxx>

#include <BRepFilletAPI_MakeBox.hxx>

#include <TopoDS_Solid.hxx>

#include <BRepFilletAPI_MakeFillet.hxx>

#include <TopExp_Explorer.hxx>

TopoDS_Shape FilletedBox(const Standard_Real a,

const Standard_Real b,

const Standard_Real c,

const Standard_Real r)

{

TopoDS_Solid Box = BRepFilletAPI_MakeBox(a,b,c);

BRepFilletAPI_MakeFillet MF(Box);

// add all the edges to fillet

TopExp_Explorer ex(Box,TopAbs_EDGE);

while (ex.More())

{

MF.Add(r,TopoDS::Edge(ex.Current()));

ex.Next();

}

return MF.Shape();

}

6. Fillets and Chamfers

89

Figure 36. Filleting a box

6. Fillets and Chamfers

90

Example 2 Evolutive radius

void CSampleTopologicalOperationsDoc::OnEvolvedblend1()

{

TopoDS_Shape theBox =

BRepFilletAPI_MakeBox(200,200,200);

BRepFilletAPI_MakeFillet Rake(theBox);

ChFi3d_FilletShape FSh = ChFi3d_Rational;

Rake.SetFilletShape(FSh);

TopExp_Explorer ex(theBox,TopAbs_EDGE);

Rake.Add(8,50,TopoDS::Edge(ex.Current()));

TopoDS_Shape evolvedBox = Rake.Shape();

}

Figure 37. Evolutive radius fillet

6. Fillets and Chamfers

91

•
•

•
•
•

BRepFilletAPI_MakeFillet2d

BRepFilletAPI_MakeFillet2d is used to construct fillets and chamfers on planar
faces.

A fillet is defined as a smooth edge on the face whereas a chamfer is defined as a
rectilinear edge replacing a vertex of the face.

1. Give the face on which the fillets (or the chamfers) are to be built.

2. Indicate which vertex is to be deleted and give the fillet radius with the AddFillet
method in order to add a fillet. Then add a chamfer with the AddChamfer
method. A chamfer can be described by

two edges and three distances

one edge, one vertex, one distance and one angle.

Fillets and chamfers are calculated when addition is complete.

3. Modification of a chamfer or fillet2d is possible.

A new face is created, the original face remaining unchanged.

You can ask the builder to obtain information on the modifications, which have been
performed:

new edge, modified or unchanged edge

edge E1 has been changed into edge E1’

edge E1’ is built from edge E1

If face F2 is created by the 2d fillet and chamfer builder from face F2, the builder can
be rebuilt (the builder recovers the status it had before deletion). To do so, use the
following syntax:

BRepFilletAPI_MakeFillet2d builder;

builder.Init(F1,F2);

Example

#include “BRepFilletAPI_MakeBox.hxx”

#include “TopoDS_Shape.hxx”

#include “TopExp_Explorer.hxx”

6. Fillets and Chamfers

92

#include “BRepFilletAPI_MakeFillet2d.hxx”

#include “TopoDS.hxx”

#include “TopoDS_Solid.hxx”

TopoDS_Shape FilletFace(const Standard_Real a,

const Standard_Real b,

const Standard_Real c,

const Standard_Real r)

{

TopoDS_Solid Box = BRepFilletAPI_MakeBox (a,b,c);

TopExp_Explorer ex1(Box,TopAbs_FACE);

const TopoDS_Face& F = TopoDS::Face(ex1.Current());

BRepFilletAPI_MakeFillet2d MF(F);

TopExp_Explorer ex2(F, TopAbs_VERTEX);

while (ex2.More())

{

MF.AddFillet(TopoDS::Vertex(ex2.Current()),r);

ex2.Next();

}

// while...

return MF.Shape();

}}

BRepFilletAPI_MakeChamfer

The use of the BRepFilletAPI_MakeChamfer class is similar to the use of
BRepFilletAPI_MakeFillet, except for the following:

1. The surfaces created are ruled and not smooth.

2. The Add syntax for selecting edges requires two distances, one edge and one
face (contiguous to the edge):

Add(d1, d2, E, F) with d1 on the face F.

6. Fillets and Chamfers

93

Figure 38. Creating a chamfer

7. Offsets and Drafts

94

77.. OOffffsseettss aanndd DDrraaffttss

7. 1 Shelling operator
BRepOffsetAPI_MakeThickSolid

Shelling is used to offset given faces of a solid by a specific value. It rounds or
intersects adjacent faces along its edges depending on the convexity of the edge.
The constructor takes the solid, the list of faces to offset and an offset value as input.

Example

TopoDS_Solid SolidInitial = ...;

Standard_Real Of = ...;

Standard_Boolean Inter = ...;

TopTools_ListOfShape LCF;

TopoDS_Shape Result;

Standard_Real Tol = Precision::Confusion();

for (Standard_Integer i = 1 ;i <n; i++) {

TopoDS_Face SF = ...; // a face from SolidInitial

LCF.Append(SF);

}

Result = BRepOffsetAPI_MakeThickSolid (SolidInitial,

LCF,

Of,

Tol,

BRepOffset_Skin,

Inter);

7. Offsets and Drafts

95

•
•
•

Figure 39. Shelling

7. 1. 1 Modification Operators

BRepOffsetAPI_DraftAngle

Use the BRepOffsetAPI_DraftAngle class to modify a shape by applying draft angles
to planar and cylindrical faces of the shape.

The class is created or initialized from a shape, then faces to be modified are added;
for each face, three arguments are used:

Direction: the direction with which the draft angle is measured

Angle: value of the angle

Neutral plane: intersection between the face and the neutral plane is
invariant.

The following code places a draft angle on several faces of a shape; the same
direction, angle and neutral plane are used for each face:

Example

7. Offsets and Drafts

96

TopoDS_Shape myShape = ...

// The original shape

TopTools_ListOfShape ListOfFace;

// Creation of the list of faces to be modified

...

gp_Dir Direc(0.,0.,1.);

// Z direction

Standard_Real Angle = 5.*PI/180.;

// 5 degree angle

gp_Pln Neutral(gp_Pnt(0.,0.,5.),Direc

// Neutral plane Z=5

BRepOffsetAPI_DraftAngle theDraft(myShape);

TopTools_ListIteratorOfListOfShape itl;

for (itl.Initialize(ListOfFace); itl.More(); itl.Next()) {

theDraft.Add(TopoDS::Face(itl.Value()),Direc,Angle,Neutral);

if (!theDraft.AddDone()) {

// An error has occurred. The faulty face is given by
// ProblematicFace break;

}

}

if (!theDraft.AddDone()) {

// An error has occurred

TopoDS_Face guilty = theDraft.ProblematicFace();

...

}

theDraft.Build();

if (!theDraft.IsDone()) {

// Problem encountered during reconstruction

...

}

else {

TopoDS_Shape myResult = theDraft.Shape();

...

}

7. Offsets and Drafts

97

Figure 40. Example of DraftAngle

BRepOffsetAPI_MakePipe

Use the BRepOffsetAPI_MakePipe class to make a pipe. A pipe is created from a
Spine, which is a Wire and a Profile which is a Shape. This implementation is
currently limited to spines with smooth transitions. To be more precise the continuity
must be C1, which is to say at neighboring edges the tangent must have the same
direction, though not necessarily the same magnitude.

Whatever angle the spine makes with the profile is preserved throughout the pipe.

7. Offsets and Drafts

98

Example

TopoDS_Wire Spine = ...;

TopoDS_Shape Profile = ...;

TopoDS_Shape Pipe = BRepOffsetAPI_MakePipe(Spine,Profile);

BRepOffsetAPI_MakeEvolved

Use the BRepOffsetAPI_MakeEvolved class to create an evolved solid. The evolved
solid is created from a Spine (planar face or wire) and a profile (wire).

The evolved solid is the unlooped sweep generated by the spine and the profile.

The evolved solid is created by sweeping the profile’s reference axes on the spine.
The origin of the axes moves to the spine, the X axis and the local tangent coincide
and the Z axis is normal to the face.

The reference axes of the profile can be defined following two distinct modes:

1. The reference axes of the profile are the origin axes.

2. The references axes of the profile are calculated as follows:

•

•
•

the origin is given by the point on the spine which is the closest to the
profile

the X axis is given by the tangent to the spine at the point defined above

the Z axis is the normal to the plane which contains the spine.

Example

TopoDS_Face Spine = ...;

TopoDS_Wire Profile = ...;

TopoDS_Shape Evol =

BRepOffsetAPI_MakeEvolved(Spine,Profile);

7. Offsets and Drafts

99

7. 1. 2 Sewing Operators

BRepOffsetAPI_Sewing

The BRepOffsetAPI_Sewing class is used to sew TopoDS Shapes together along
their common edges. The edges can be partially shared as in the following example.

7. Offsets and Drafts

100

Figure 41. Shapes with partially shared edges

The constructor takes as arguments the tolerance (default value is 10-6) and a flag,
which is used to mark the degenerate shapes.

The Add method is used to add shapes, as it is needed.

7. Offsets and Drafts

101

The Perform method forces calculation of the sewed shape.

The SewedShape method returns the result.

Additional methods can be used to give additional information on the number of free
boundaries, of multiple edges and of degenerate shapes.

BRepOffsetAPI_FindContiguousEdges

The BRepOffsetAPI_FindContiguousEdges class is used to find edges, which
coincide among a set of shapes within the given tolerance; these edges can be
analyzed on tangency, continuity (C1, G2, etc.)...

The constructor takes as arguments the tolerance defining the edge proximity (10-6
by default) and a flag used to mark degenerated shapes.

The Add method is used to add shapes, which are to be analyzed.

The Nabbed method returns the total number of edges.

The NbContiguousEdges returns the number of contiguous edges within the given
tolerance as defined above.

The ContiguousEdge method takes an edge number as an argument and returns the
TopoDS edge contiguous to another edge.

The ContiguousEdgeCouple gives all the edges or portions of edges (sections),
which are common to the edge with the number given above.

The SectionToBoundary method is used to find the original edge on the original
shape from the section.

8. Features

102

88.. FFeeaattuurreess

8. 1 The BRepFeat Classes and their use
The BRepFeat package is used to manipulate extensions of the classical boundary
representation of shapes closer to features. In that sense, BrepFeat is an extension
of the BRepAPI package.

Figure 42. The BRepFeat classes

8. 1. 1 Form classes

The Form from BRepFeat class is a deferred class used as a root for form features.
It inherits MakeShape from BRepAPI and provides implementation of methods uses
to keep track of all sub-shapes.

MakePrism

The MakePrism from BRepFeat class is used to build a prism interacting with a
shape. It is created or initialized from

8. Features

103

•
•
•

•
•

•

a shape (the basic shape),

the base of the prism,

a face (the face of sketch on which the base has been defined and used
to determine whether the base has been defined on the basic shape or
not),

a direction,

a Boolean indicating the type of operation (fusion=protrusion or
cut=depression) on the basic shape,

another Boolean indicating if the self-intersections have to be found (not
used in every case).

There are six Perform methods:

Perform(Height) The resulting prism is of the given length.

Perform(Until) The prism is defined between the position of the base

and the given face.

Perform(From, Until) The prism is defined between the two faces From and

Until.

PerformUntilEnd() The prism is semi-infinite, limited by the actual position
of the base.

PerformFromEnd(Until) The prism is semi-infinite, limited by the face Until.

PerformThruAll() The prism is infinite. In the case of a depression, the
result is similar to a cut with an infinite prism. In the case
of a protrusion, infinite parts are not kept in the result.

NOTE

The Add method can be used prior to using the Perform

methods to indicate that a face generated by an edge “slides”

onto a face of the basic shape.

8. Features

104

In the following sequence, a protrusion is performed, i.e. a face of the shape is
changed into a prism.

Example

TopoDS_Shape Sbase = ...;

TopoDS_Face Fprism =; // a face of Sbase

gp_Dir Extrusion (.,.,.);

// An empty face is given as the sketch face

BRepFeat_MakePrism thePrism(Sbase, Fprism, TopoDS_Face(),
Extrusion, Standard_True, Standard_True);

thePrism, Perform(100.);

if (thePrism.IsDone()) {

TopoDS_Shape theResult = thePrism;

...

}

8. Features

105

Figure 43. Fusion with MakePrism

8. Features

106

•
•
•

Figure 44. Creating a prism between two faces with Perform(From, Until)

MakeDPrism

Describes functions to build draft prism topologies from basis shape surfaces. These
can be depressions or protrusions.

The semantics of draft prism feature creation is based on the construction of shapes:

along a length

up to a limiting face

from a limiting face to a height.

The shape defining construction of the draft prism feature can be either the
supporting edge or the concerned area of a face.

In the case of the supporting edge, this contour can be attached to a face of the
basis shape by binding. When the contour is bound to this face, the information that
the contour will slide on the face becomes available to the relevant class methods.

In the case of the concerned area of a face, you could, for example, cut it out and
move it to a different height, which will define the limiting face of a protrusion

8. Features

107

direction or depression.

There are six Perform methods:

Perform(Height) The resulting prism is of the given length.

Perform(Until) The prism is defined between the position of the

base and the given face.

Perform(From, Until) The prism is defined between the two faces

From and Until.

PerformUntilEnd() The prism is semi-infinite, limited by the actual

position of the base.

PerformFromEnd(Until) The prism is semi-infinite, limited by the face

Until.

PerformThruAll() The prism is infinite. In the case of a depression,

the result is similar to a cut with an infinite prism.
In the case of a protrusion, infinite parts are not
kept in the result.

NOTE

The Add method can be used prior to using the Perform

methods to indicate that a face generated by an edge “slides”

onto a face of the basic shape.

Example

MakeDPrism

TopoDS_Shape S = BRepAPI_MakeBox(400.,250.,300.);

TopExp_Explorer Ex;

Ex.Init(S,TopAbs_FACE);

8. Features

108

Ex.Next();

Ex.Next();

Ex.Next();

Ex.Next();

Ex.Next();

TopoDS_Face F = TopoDS::Face(Ex.Current());

Handle(Geom_Surface) surf = BRep_Tool::Surface(F);

gp_Circ2d

c(gp_Ax2d(gp_Pnt2d(200.,130.),gp_Dir2d(1.,0.)),50.);

BRepAPI_MakeWire MW;

Handle(Geom2d_Curve) aline = new Geom2d_Circle(c);

MW.Add(BRepAPI_MakeEdge(aline,surf,0.,PI));

MW.Add(BRepAPI_MakeEdge(aline,surf,PI,2.*PI));

BRepAPI_MakeFace MKF;

MKF.Init(surf,Standard_False);

MKF.Add(MW.Wire());

TopoDS_Face FP = MKF.Face();

BRepLib::BuildCurves3d(FP);

BRepFeat_MakeDPrism MKDP (S,FP,F,10*PI180,Standard_True,

Standard_True);

MKDP.Perform(200);

TopoDS_Shape res1 = MKDP.Shape();

8. Features

109

•
•
•

•

Figure 45. Creating a tapered prism

MakeRevol

The MakeRevol from BRepFeat class is used to build a revol interacting with a

shape. It is created or initialized from

a shape (the basic shape,)

the base of the revol,

a face (the face of sketch on which the base has been defined and used
to determine whether the base has been defined on the basic shape or
not),

an axis,

8. Features

110

•

•

a boolean indicating the type of operation (fusion=protrusion or
cut=depression) on the basic shape,

another boolean indicating whether the self-intersections have to be found
(not used in every case).

There are four Perform methods:

Perform(Angle) The resulting revol is of the given magnitude.

Perform(Until) The revol is defined between the actual position of the

base and the given face.

Perform(From, Until) The revol is defined between the two faces, From and

Until.

PerformThruAll() The result is similar to Perform(2*PI).

NOTE

The Add method can be used prior to using the Perform

methods in order to indicate that a face generated by an edge

“slides” onto a face of the basic shape.

In the following sequence, a face of the shape is revolved and the revol is limited by
one face.

Example
TopoDS_Shape Sbase = ...;

TopoDS_Face Frevol =; // a face of Sbase

TopoDS_Face FUntil =; // face limiting the revol

gp_Dir RevolDir (.,.,.);

gp_Ax1 RevolAx(gp_Pnt(.,.,.),RevolDir);

// An empty face is given as the sketch face

BRepFeat_MakeRevol theRevol(Sbase, Frevol, TopoDS_Face()

8. Features

111

RevolAx, Standard_True, Standard_True);

theRevol.Perform(FUntil);

if (theRevol.IsDone()) {

TopoDS_Shape theResult = theRevol;

...

}

MakePipe

Constructs compound shapes with pipe features. These can be depressions or
protrusions.

The semantics of pipe feature creation is based on the construction of shapes:

•
•
•

along a length

up to a limiting face

from a limiting face to a height.

The shape defining construction of the pipe feature can be either the supporting
edge or the concerned area of a face.

In the case of the supporting edge, this contour can be attached to a face of the
basis shape by binding. When the contour is bound to this face, the information that
the contour will slide on the face becomes available to the relevant class methods.

In the case of the concerned area of a face, you could, for example, cut it out and
move it to a different height, which will define the limiting face of a protrusion or
depression.

There are two perform methods:

Perform(Until) The pipe is defined between a given face and the path of

the pipe.

Perform(From, Until) The pipe is defined between the two faces From and

Until.

8. Features

112

Example

MakePipe

TopoDS_Shape S = BRepAPI_MakeBox(400.,250.,300.);

TopExp_Explorer Ex;

Ex.Init(S,TopAbs_FACE);

Ex.Next();

Ex.Next();

TopoDS_Face F1 = TopoDS::Face(Ex.Current());

Handle(Geom_Surface) surf = BRep_Tool::Surface(F1);

BRepAPI_MakeWire MW1;

gp_Pnt2d p1,p2;

p1 = gp_Pnt2d(100.,100.);

p2 = gp_Pnt2d(200.,100.);

Handle(Geom2d_Line) aline = GCE2d_MakeLine(p1,p2).Value();

MW1.Add(BRepAPI_MakeEdge(aline,surf,0.,p1.Distance(p2)));

p1 = p2;

p2 = gp_Pnt2d(150.,200.);

aline = GCE2d_MakeLine(p1,p2).Value();

MW1.Add(BRepAPI_MakeEdge(aline,surf,0.,p1.Distance(p2)));

p1 = p2;

p2 = gp_Pnt2d(100.,100.);

aline = GCE2d_MakeLine(p1,p2).Value();

MW1.Add(BRepAPI_MakeEdge(aline,surf,0.,p1.Distance(p2)));

BRepAPI_MakeFace MKF1;

MKF1.Init(surf,Standard_False);

MKF1.Add(MW1.Wire());

TopoDS_Face FP = MKF1.Face();

BRepLib::BuildCurves3d(FP);

TColgp_Array1OfPnt CurvePoles(1,3);

gp_Pnt pt = gp_Pnt(150.,0.,150.);

CurvePoles(1) = pt;

pt = gp_Pnt(200.,100.,150.);

CurvePoles(2) = pt;

8. Features

113

pt = gp_Pnt(150.,200.,150.);

CurvePoles(3) = pt;

Handle(Geom_BezierCurve) curve = new Geom_BezierCurve

(CurvePoles);

curve->Reverse();

TopoDS_Edge E = BRepAPI_MakeEdge(curve);

TopoDS_Wire W = BRepAPI_MakeWire(E);

BRepFeat_MakePipe MKPipe (S,FP,F1,W,Standard_True,

Standard_True);

MKPipe.Perform();

TopoDS_Shape res1 = MKPipe.Shape();

Figure 46. Creating a pipe

8. Features

114

•
•
•

MakeLinearForm

Builds a rib or a groove along a developable, planar surface.

The semantics of mechanical features is built around giving thickness to a contour.
This thickness can either be symmetrical - on one side of the contour - or
dissymmetrical - on both sides. As in the semantics of form features, the thickness is
defined by construction of shapes in specific contexts.

The development contexts differ, however, in the case of mechanical features.

Here they include extrusion:

to a limiting face of the basis shape

to or from a limiting plane

to a height.

There is one Perform method:

Perform() Performs a prism from the wire to the plane along the basis
shape Sbase. Reconstructs the feature topologically

Example

BRepAPI_MakeWire mkw;

gp_Pnt p1 = gp_Pnt(0.,0.,0.);

gp_Pnt p2 = gp_Pnt(200.,0.,0.);

mkw.Add(BRepAPI_MakeEdge(p1,p2));

p1 = p2;

p2 = gp_Pnt(200.,0.,50.);

mkw.Add(BRepAPI_MakeEdge(p1,p2));

p1 = p2;

p2 = gp_Pnt(50.,0.,50.);

mkw.Add(BRepAPI_MakeEdge(p1,p2));

p1 = p2;

p2 = gp_Pnt(50.,0.,200.);

mkw.Add(BRepAPI_MakeEdge(p1,p2));

p1 = p2;

p2 = gp_Pnt(0.,0.,200.);

mkw.Add(BRepAPI_MakeEdge(p1,p2));

8. Features

115

p1 = p2;

mkw.Add(BRepAPI_MakeEdge(p2,gp_Pnt(0.,0.,0.)));

TopoDS_Shape S = BRepAPI_MakePrism(BRepAPI_MakeFace

(mkw.Wire()),gp_Vec(gp_Pnt(0.,0.,0.),gp_P

 nt(0.,100.,0.)));

Handle(AIS_Shape) ais1 = new AIS_Shape(S);

TopoDS_Wire W = BRepAPI_MakeWire(BRepAPI_MakeEdge(gp_Pnt

(50.,45.,100.),

gp_Pnt(100.,45.,50.)));

Handle(Geom_Plane) aplane = new Geom_Plane(0.,1.,0.,-45.);

BRepFeat_MakeLinearForm aform(S, W, aplane, gp_Dir

(0.,1.,0.), gp_Dir(-1.,0.,0.),1, Standard_True);

aform.Perform(10.);

TopoDS_Shape res = aform.Shape();

8. Features

116

Figure 47. Creating a rib

8. 1. 2 The Gluer class

The Gluer from BRepFeat class is used to glue two solids along faces. The contact
faces of the glued shape must not have parts outside the contact faces of the basic
shape.

The class is created or initialized from two shapes: the “glued” shape and the basic
shape (on which the other shape is glued).

Two Bind methods are used to bind a face of the glued shape to a face of the basic
shape and an edge of the glued shape to an edge of the basic shape.

NOTE

Every face and edge has to be bounded, especially if two

edges of two glued faces are coincident they must be

explicitly bounded.

Example

TopoDS_Shape Sbase = ...; // the basic shape

TopoDS_Shape Sglued = ...; // the glued shape

TopTools_ListOfShape Lfbase;

TopTools_ListOfShape Lfglued;

// Determination of the glued faces

...

BRepFeat_Gluer theGlue(Sglue, Sbase);

TopTools_ListIteratorOfListOfShape itlb(Lfbase);

TopTools_ListIteratorOfListOfShape itlg(Lfglued);

for (; itlb.More(); itlb.Next(), itlg(Next()) {

const TopoDS_Face& f1 = TopoDS::Face(itlg.Value());

const TopoDS_Face& f2 = TopoDS::Face(itlb.Value());

theGlue.Bind(f1,f2);

// for example, use the class FindEdges from LocOpe
to

8. Features

117

// determine coincident edges

LocOpe_FindEdge fined(f1,f2);

for (fined.InitIterator(); fined.More();
fined.Next()) {

theGlue.Bind(fined.EdgeFrom(),fined.EdgeTo());

}

}

theGlue.Build();

if (theGlue.IsDone() {

TopoDS_Shape theResult = theGlue;

...

}

8. 1. 3 The SplitShape Class

The SplitShape from BRepFeat class is used to split faces of a shape with wires or
edges. The shape containing the new entities is rebuilt, sharing the unmodified ones.

The class is created or initialized from a shape (the basic shape).

Three Add methods are available:

Add(Wire, Face) Adds a new wire on a face of the basic shape.

Add(Edge, Face) Adds a new edge on a face of the basic shape.

Add(EdgeNew, EdgeOld) Adds a new edge on an existing one (the old edge

must contain the new edge).

NOTE

The added wires and edges must define closed wires on faces

or wires located between two existing edges. Existing edges

must not be intersected.

Example

9. Hidden Line Removal

118

TopoDS_Shape Sbase = ...; // basic shape

TopoDS_Face Fsplit = ...; // face of Sbase

TopoDS_Wire Wsplit = ...; // new wire contained in Fsplit

BRepFeat_SplitShape Spls(Sbase);

Spls.Add(Wsplit, Fsplit);

TopoDS_Shape theResult = Spls;

...

99.. HHiiddddeenn LLiinnee RReemmoovvaall

9. 1 Overview
In order to have the precision required in industrial design, drawings need to offer
the possibility of removing lines, which are hidden in a given projection.

To do this, the Hidden Line Removal component provides two algorithms:
HLRBRep_Algo and HLRBRep_PolyAlgo.

These two algorithms are based on the principle of comparing each edge of the
shape to be visualized with each of its faces, and calculating the visible and the
hidden parts of each edge. Note that these are not the sort of algorithms used in
generating shading, which calculate the visible and hidden parts of each face in a
shape to be visualized by comparing each face in the shape with every other face in
the same shape.

These algorithms operate on a shape and remove or indicate edges hidden by
faces. For a given projection, they calculate a set of lines characteristic of the object
being represented. They are also used in conjunction with extraction utilities, which
reconstruct a new, simplified shape from a selection of the results of the calculation.
This new shape is made up of edges, which represent the shape visualized in the
projection.

9. Hidden Line Removal

119

•
•
•

HLRBRep_Algo takes the shape itself into account whereas HLRBRep_PolyAlgo
works with a polyhedral simplification of the shape. When you use HLRBRep_Algo,
you obtain an exact result, whereas, when you use HLRBRep_PolyAlgo, you
reduce computation time.

No smoothing algorithm is provided. Consequently, a polyhedron will be treated as
such and the algorithms will give the results in the form of line segments conforming
to the mathematical definition of the polyhedron. This is always the case with
HLRBRep_PolyAlgo.

HLRBRep_Algo and HLRBRep_PolyAlgo can deal with any kind of object -
assemblies of volumes, surfaces, and lines, for example - as long there are no
unfinished objects or points within it.

You can choose to display the following types of line if they are present in the
projection:

sharp edges

smooth edges - transition edges between two surfaces

sewn edges - a double edge where a face in a periodic surface is sewn
together.

9. Hidden Line Removal

120

•
•

Figure 48. sharp, smooth and sewn edges in a simple screw shape

isoparameters

outlines (edges added to the topology in order to represent the contours
visible in a particular projection)

9. Hidden Line Removal

121

Figure 49. outline edges and isoparameters in the same shape

Figure 50. A simple screw shape seen with shading

9. Hidden Line Removal

122

Figure 51. An extraction showing hidden sharp edges

9. 2 The Services Provided

9. 2. 1 HLRBRep

The HLRBRep package provides the following services:

Loading shapes to be treated

HLRBRep_Algo and HLRBRep_PolyAlgo provide algorithms for removal of hidden
lines. HLRBRep_Algo operates on a shape with isoparameters; it takes the shape
itself into account whereas HLRBRep_PolyAlgo works with a polyhedral
simplification of the shape.

To do pass a TopoDS_Shape to an HLRBRep_Algo object, use
HLRBRep_Algo::Add. With an HLRBRep_PolyAlgo object, use
HLRBRep_PolyAlgo::Load. If you wish to add several shapes, use Add or Load

9. Hidden Line Removal

123

•
•
•
•
•
•
•
•

as often as necessary.

Setting the view parameters

HLRBRep_Algo::Projector and HLRBRep_PolyAlgo::Projector set a
projector object which defines the parameters of the view. This object is an
HLRAlgo_Projector.

Computing the projections

HLRBRep_PolyAlgo::Update launches the calculation of outlines of the shape
visualized by the HLRBRep_PolyAlgo framework.

In the case of HLRBRep_Algo, use HLRBRep_Algo::Update.With this algorithm,
you must also call the method HLRBRep_Algo::Hide to calculate visible and
hidden lines of the shape to be visualized. With an HLRBRep_PolyAlgo object,
visible and hidden lines are computed by HLRBRep_PolyHLRToShape (see below).

Extracting edges.

The classes HLRBRep_HLRToShape and HLRBRep_PolyHLRToShape present a
range of extraction filters for an HLRBRep_Algo object and an HLRBRep_PolyAlgo
object, respectively. They highlight the type of edge you want from the results
calculated by the algorithm on a shape. With both extraction classes, you can
highlight the following types of output:

visible sharp edges

hidden sharp edges

visible smooth edges

hidden smooth edges

visible sewn edges

hidden sewn edges

visible outline edges

hidden outline edges.

To perform the extraction on an HLRBRep_PolyHLRToShape object, use the
HLRBRep_PolyHLRToShape::Update function.

In an HLRBRep_HLRToShape object, built from an HLRBRepAlgo object, you can
also highlight:

9. Hidden Line Removal

124

•
•

visible isoparameters and

hidden isoparameters.

9. 2. 2 Restrictions in use

• Points are not treated

• Z-clipping planes are not used

• Infinite faces or lines are not treated.

9. 3 Examples of Use

9. 3. 1 HLRBRep_Algo

Example

// Build The algorithm object

myAlgo = new HLRBRep_Algo();

// Add Shapes into the algorithm

TopTools_ListIteratorOfListOfShape anIterator(myListOfShape);

for (;anIterator.More();anIterator.Next())

myAlgo->Add(anIterator.Value(),myNbIsos);

// Set The Projector (myProjector is a

HLRAlgo_Projector)

myAlgo->Projector(myProjector);

// Build HLR

myAlgo->Update();

9. Hidden Line Removal

125

// Set The Edge Status

myAlgo->Hide();

// Build the extraction object :

HLRBRep_HLRToShape aHLRToShape(myAlgo);

// extract the results :

TopoDS_Shape VCompound = aHLRToShape.VCompound();

TopoDS_Shape Rg1LineVCompound =

aHLRToShape.Rg1LineVCompound();

TopoDS_Shape RgNLineVCompound =

aHLRToShape.RgNLineVCompound();

TopoDS_Shape OutLineVCompound =

aHLRToShape.OutLineVCompound();

TopoDS_Shape IsoLineVCompound =

aHLRToShape.IsoLineVCompound();

TopoDS_Shape HCompound = aHLRToShape.HCompound();

TopoDS_Shape Rg1LineHCompound =

aHLRToShape.Rg1LineHCompound();

TopoDS_Shape RgNLineHCompound =

aHLRToShape.RgNLineHCompound();

TopoDS_Shape OutLineHCompound =

aHLRToShape.OutLineHCompound();

TopoDS_Shape IsoLineHCompound =

aHLRToShape.IsoLineHCompound();

9. 3. 2 HLRBRep_PolyAlgo

Example

// Build The algorithm object

myPolyAlgo = new HLRBRep_PolyAlgo();

9. Hidden Line Removal

126

// Add Shapes into the algorithm

TopTools_ListIteratorOfListOfShape

anIterator(myListOfShape);

for (;anIterator.More();anIterator.Next())

myPolyAlgo->Load(anIterator.Value());

// Set The Projector (myProjector is a

HLRAlgo_Projector)

myPolyAlgo->Projector(myProjector);

// Build HLR

myPolyAlgo->Update();

// Build the extraction object :

HLRBRep_PolyHLRToShape aPolyHLRToShape;

aPolyHLRToShape.Update(myPolyAlgo);

// extract the results :

TopoDS_Shape VCompound =

aPolyHLRToShape.VCompound();

TopoDS_ShapeRg1LineVCompound =

aPolyHLRToShape.Rg1LineVCompound();

TopoDS_Shape RgNLineVCompound =

aPolyHLRToShape.RgNLineVCompound();

TopoDS_Shape OutLineVCompound =

aPolyHLRToShape.OutLineVCompound();

TopoDS_Shape HCompound =

aPolyHLRToShape.HCompound();

TopoDS_Shape Rg1LineHCompound =

aPolyHLRToShape.Rg1LineHCompound();

TopoDS_Shape RgNLineHCompound =

aPolyHLRToShape.RgNLineHCompound();

TopoDS_Shape OutLineHCompound =

aPolyHLRToShape.OutLineHCompound();

9. Hidden Line Removal

127

9. 4 Meshing of Shapes
The HLRBRep_PolyAlgo algorithm works with triangulation of shapes. This is
provided by the function BRepMesh::Mesh, which adds a triangulation of the shape
to its topological data structure. This triangulation is computed with a given
deflection.

Example

Standard_Real radius=10. ;

Standard_Real height=25. ;

BRepAPI_MakeCylinder myCyl (radius, height) ;

TopoDS_Shape myShape = myCyl.Shape() ;

Standard_Real Deflection = 0.01 ;

BRepMesh::Mesh (myShape, Deflection);

Meshing covers a shape with a triangular mesh. Other than hidden line removal, you
can use meshing to transfer the shape to another tool: a manufacturing tool, a
shading algorithm, a finite element algorithm, or a collision algorithm, for example.

You can obtain information on the shape by first exploring it. To then access
triangulation of a face in the shape, use BRepTool::Triangulation. To access a
polygon which is the approximation of an edge of the face, use
BRepTool::PolygonOnTriangulation.

	Modeling Algorithms
	User's Guide
	Table of Contents
	 1. Introduction
	1. 1 The Modeling Algorithms Module
	1. 2 The Topology API
	Example
	1. 2. 1 Error Handling in the Topology API

	2. Geometric Tools
	2. 1 Overview
	2. 2 Intersections
	Figure 1. Intersection and self-intersection of curves
	Figure 2. Intersection and tangent intersection
	2. 2. 1 Geom2dAPI_InterCurveCurve
	Intersection of curves C1 and C2.
	Self-intersection of curve C3.
	Calling the number of intersection points
	Calling an intersection point
	Calling the number of intersection segments
	Calling an intersection segment
	Access to lower-level functionalities

	2. 2. 2 Intersection of Curves and Surfaces
	Calling the number of intersection points
	Calling the intersection points

	2. 2. 3 Intersection of two Surfaces
	Calling the number of intersection curves
	Calling the intersection curves

	 2. 3 Interpolations
	2. 3. 1 Geom2dAPI_Interpolate
	Calling the BSpline curve

	2. 3. 2 GeomAPI_Interpolate
	Calling the BSpline curve

	2. 4 Lines and Circles from Constraints
	Figure 3. A constrained line

	 2. 5 Services provided
	2. 6 Types of algorithms
	2. 7 Performance factors
	3. 8 Conventions
	2. 8. 1 Exterior/Interior
	Figure 4. Exterior/Interior of a Circle
	Figure 5. Exterior/Interior of a Line and a Curve

	2. 8. 2 Orientation of a Line
	Figure 6. An Oriented Line

	2. 9 Examples
	2. 9. 1 Line tangent to two circles
	Figure 7. Both circles outside
	Figure 8. Both circles enclosed
	Figure 10. C1 outside, C2 enclosed
	Figure 11. With no qualifiers specified

	 2. 9. 2 Circle of given radius tangent to two circles
	
	Figure 12. Both solutions outside
	Example 2 Case 2

	Figure 14. Solutions enclose C2
	Figure 15. Solutions enclose C1 & C2
	Example 2 Case5

	2. 10 The Algorithms
	2. 10. 1 The Qualifiers
	2. 10. 2 General Remarks about the Algorithms
	2. 10. 3 The Analytic Algorithms
	Creation of a Line:
	Creation of Conics:
	Creation of a Circle:

	2. 10. 4 The Geometric Algorithms
	Creation of a Circle:

	2. 10. 5 The Iterative Algorithms
	Creation of a Line:
	Creation of a Circle:

	2. 11 Curves and Surfaces from Constraints
	2. 12 Services provided
	
	2. 12. 1 FairCurve
	Creation of Batten Curves
	Creation of Minimal Variation Curves
	Specifying the length of the curve
	Aesthetic Considerations
	Warning
	Controlling Computation Time

	2. 12. 2 GeomFill
	Creation of Bezier surfaces
	Creation of BSpline surfaces
	Creation of a Pipe
	Filling a contour
	Creation of a Boundary
	Creation of a Boundary with an adjoining surface
	Filling styles

	2. 12. 3 GeomPlate
	Definition of a Framework
	Definition of a Curve Constraint
	Definition of a Point Constraint
	Applying Geom_Surface to Plate Surfaces
	Approximating a Plate surface to a BSpline

	2. 13 Example of Use
	2. 14 Projections
	2. 14. 1 Projection of a Point onto a Curve
	Figure 18. Normals from a point to a curve
	NOTE
	Geom2d_TrimmedCurve. The algorithm will function with any

	2. 14. 2 Geom2dAPI_ProjectPointOnCurve
	 Calling the number of solution points
	Calling the location of a solution point
	Calling the parameter of a solution point
	Calling the distance between the starting point and another
	Calling the nearest solution point
	Calling the parameter of the nearest solution point
	Calling the minimum distance from the point to the curve

	2. 14. 3 Redefined operators
	2. 14. 4 Access to lower-level functionalities
	2. 14. 5 GeomAPI_ProjectPointOnCurve
	Calling the number of solution points
	Calling the location of a solution point
	Calling the parameter of a solution point
	Calling the distance between the starting point and another
	Calling the nearest solution point
	Calling the minimum distance from the point to the curve
	Access to lower-level functionalities

	2. 14. 6 Projection of a Point on a Surface
	Figure 19. Normals from a point to a surface
	Calling the number of solution points
	Calling the location of a solution point
	Calling the parameters of a solution point
	Calling the distance between the starting point and another
	Calling the nearest solution point
	Calling the parameter of the nearest solution point
	Calling the minimum distance from the point to the surface
	Redefined operators

	2. 14. 7 Access to lower-level functionalities
	2. 14. 8 Switching from 2d and 3d Curves

	 3. Topological Tools
	3. 1 Overview
	3. 2 Standard Topological Objects
	3. 2. 1 BRepBuilderAPI_MakeShape
	3. 2. 2 BRepBuilderAPI_ModifyShape
	3. 2. 3 Making Vertices, Edges and Faces
	BRepBuilderAPI_MakeVertex
	BRepBuilderAPI_MakeEdge
	Basic Edge construction
	Figure 20. Basic Edge Construction
	Other Edge constructions
	Other information and error status
	Figure 22. Creating an Edge

	
	BRepBuilderAPI_MakeEdge2d
	BRepBuilderAPI_MakePolygon
	Construction of polygons
	Other information

	BRepBuilderAPI_MakeFace
	Basic Face construction
	Figure 23. Basic Face Construction
	Other face constructions
	Error status

	3. 2. 4 Making Wires and Shells
	BRepBuilderAPI_MakeWire
	Basic wire constructions
	Other information
	
	Error Status

	
	BRepBuilderAPI_MakeShell
	BRepBuilderAPI_MakeSolid

	3. 2. 5 Modification Operators
	BRepBuilderAPI_Transform
	BRepBuilderAPI_Copy

	 4. Construction of Primitives
	4. 1 Making Primitives
	
	4. 1. 1 BRepPrimAPI_MakeBox
	Figure 24. Making Boxes

	4. 1. 2 BRepPrimAPI_MakeWedge
	Figure 25. Making Wedges

	4. 1. 3 BRepPrimAPI_MakeOneAxis
	Figure 26. MakeOneAxis arguments

	4. 1. 4 BRepPrimAPI_MakeCylinder
	Figure 27. Example of a Cylinder

	4. 1. 5 BRepPrimAPI_MakeCone
	Figure 28. Example of a Cone

	4. 1. 6 BRepPrimAPI_MakeSphere
	Figure 29. Examples of Spheres

	4. 1. 7 BRepPrimAPI_MakeTorus
	Figure 30. Examples of Tori

	 4. 2 Sweeping: Prism, Revolution and Pipe
	
	Figure 31. Generating a sweep

	4. 2. 1 BRepPrimAPI_MakeRevolution
	4. 2. 2 BRepPrimAPI_MakeSweep
	4. 2. 3 BRepPrimAPI_MakePrism
	Figure 32. Finite, infinite, and semi-infinite prisms
	BRepPrimAPI_MakeRevol
	Figure 33. Full and partial revols

	 5. Boolean Operations
	5. 1 Boolean Operators
	Figure 34. Boolean Operations
	
	5. 1. 1 BRepAlgoAPI_BooleanOperation
	5. 1. 2 BRepAlgoAPI_Fuse
	5. 1. 3 BRepAlgoAPI_Common
	5. 1. 4 BRepAlgoAPI_Cut
	5. 1. 5 BRepAlgoAPI_Section

	 6. Fillets and Chamfers
	6. 1 Fillet Constructor
	6. 1. 1 BRepFilletAPI_MakeFillet
	Figure 36. Filleting a box
	Figure 37. Evolutive radius fillet

	BRepFilletAPI_MakeFillet2d
	BRepFilletAPI_MakeChamfer
	Figure 38. Creating a chamfer

	 7. Offsets and Drafts
	7. 1 Shelling operator
	BRepOffsetAPI_MakeThickSolid
	Figure 39. Shelling

	7. 1. 1 Modification Operators
	BRepOffsetAPI_DraftAngle
	Figure 40. Example of DraftAngle

	
	BRepOffsetAPI_MakePipe
	BRepOffsetAPI_MakeEvolved

	7. 1. 2 Sewing Operators
	
	BRepOffsetAPI_Sewing
	Figure 41. Shapes with partially shared edges

	BRepOffsetAPI_FindContiguousEdges

	 8. Features
	8. 1 The BRepFeat Classes and their use
	Figure 42. The BRepFeat classes
	8. 1. 1 Form classes
	MakePrism
	Figure 43. Fusion with MakePrism

	MakeDPrism
	Figure 45. Creating a tapered prism

	MakeRevol
	MakePipe
	Figure 46. Creating a pipe

	MakeLinearForm
	Figure 47. Creating a rib

	8. 1. 2 The Gluer class
	
	Example

	8. 1. 3 The SplitShape Class
	NOTE

	9. Hidden Line Removal
	9. 1 Overview
	
	Figure 49. outline edges and isoparameters in the same shape
	Figure 50. A simple screw shape seen with shading
	
	Figure 51. An extraction showing hidden sharp edges

	9. 2 The Services Provided
	
	9. 2. 1 HLRBRep
	Loading shapes to be treated
	
	Setting the view parameters
	Computing the projections
	Extracting edges.

	9. 2. 2 Restrictions in use

	9. 3 Examples of Use
	
	9. 3. 1 HLRBRep_Algo
	9. 3. 2 HLRBRep_PolyAlgo

	9. 4 Meshing of Shapes

