

Tutorial

My First Application

Version 6.3 / September 2008

2 Project Overview

Copyright © 2008, by Open CASCADE S.A.S.

PROPRIETARY RIGHTS NOTICE: All rights reserved. No part of this material may be reproduced or
transmitted in any form or by any means, electronic, mechanical, or otherwise, including photocopying
and recording or in connection with any information storage or retrieval system, without the permission
in writing from Open CASCADE S.A.S.

The information in this document is subject to change without notice and should not be construed as a
commitment by Open CASCADE S.A.S. Open CASCADE S.A.S. assures no responsibility for any
errors that may appear in this document.

The software described in this document is furnished under a license and may be used or copied only
in accordance with the terms of such a license.

CAS.CADE and Open CASCADE are registered trademarks of Open CASCADE S.A.S. Other brand
or product names are trademarks or registered trademarks of their respective holders.

NOTICE FOR USERS:

This User Guide is a general instruction for Open CASCADE study. It may be incomplete and even
contain occasional mistakes, particularly in examples, samples, etc. Open CASCADE S.A.S. bears no
responsibility for such mistakes. If you find any mistakes or imperfections in this document, or if you
have suggestions for improving this document, please, contact us and contribute your share to the
development of Open CASCADE Technology: bugmaster@opencascade.com

Tour Opus 12

77, Esplanade du Général de Gaulle

92914 PARIS LA DEFENSE

FRANCE

mailto:bugmaster@opencascade.com

 Project Overview 3

Table of Contents
1. PROJECT OVERVIEW ..4

1.1. PREREQUISITES..4
1.2. THE PROJECT ...4
1.3. PROJECT SPECIFICATIONS ..4

2. BUILDING THE PROFILE ..6
2.1. DEFINING SUPPORT POINTS ...6
2.2. PROFILE: DEFINING THE GEOMETRY..7
2.3. PROFILE: DEFINING THE TOPOLOGY ..8
2.4. PROFILE: COMPLETING THE PROFILE ...10

3. BUILDING THE BODY ..12
3.1. PRISM THE PROFILE ...12
3.2. APPLYING FILLETS ..13
3.3. ADDING THE NECK ..15
3.4. CREATING A HOLLOWED SOLID...16

4. BUILDING THE THREADING ...19
4.1. CREATING SURFACES ..19
4.2. DEFINING 2D CURVES ...19
4.3. BUILDING EDGES AND WIRES..23
4.4. CREATING THREADING..24

5. BUILDING THE RESULTING COMPOUND..26

6. APPENDIX..27

4 Project Overview

1. Project Overview
This tutorial will teach you how to use Open CASCADE services to model a 3D object. The purpose of
this tutorial is not to describe all Open CASCADE classes but to help you to start thinking in terms of
the Open CASCADE tool.

1.1. Prerequisites
This tutorial assumes that you have experience in using and setting up C++.

From a programming standpoint, Open CASCADE is designed to enhance your C++ tools with high
performance modeling classes, methods and functions. The combination of all these resources will
allow you to create substantial applications.

1.2. The project
To illustrate the use of classes provided in the 3D geometric modeling toolkits, you will create a bottle
as shown:

In the tutorial we will create, step-by-step, a function that will model a bottle as shown above. You will
find the complete source code of this tutorial, including the very function MakeBottle in the distribution
of Open CASCADE. The function body is provided in the file Tutorial/src/MakeBottle.cxx.

1.3. Project Specifications
We first define the bottle specifications as follows:

Object Parameter Parameter

Name
Parameter
Value

Bottle height MyHeight 70mm

Bottle width MyWidth 50mm

Bottle thickness MyThickness 30mm

 Project Overview 5

In addition, we decide that the bottle’s profile will be centered on the origin of the global Cartesian
coordinate system.

This modeling requires four steps:

• build the bottle’s Profile

• build the bottle’s Body

• build the Threading on the bottle’s neck

• build result compound

6 Building the Profile

2. Building the Profile

2.1. Defining Support Points
To create the bottle’s profile, you first create characteristic points with their coordinates as shown
below in the (XOY) plane. These points will be the supports that define the geometry of the profile.

There are two classes to describe a 3D Cartesian point from its X, Y and Z coordinates in Open
CASCADE:

• the primitive geometric gp_Pnt class

• the transient Geom_CartesianPoint class manipulated by a handle

A handle is a type of smart pointer that provides automatic memory management.

To choose the best class for this application, consider the following:

• gp_Pnt is manipulated by value. Like all objects of its kind, it will have limited lifetime.

• Geom_CartesianPoint is manipulated by a handle and may have multiple references and long
lifetime.

Since all the points you will define are only used to create the profile’s curves, an object with a limited
lifetime will do. Choose the gp_Pnt class.

To instantiate a gp_Pnt object, just specify the X, Y, and Z coordinates of the points in the global
cartesian coordinate system:

gp_Pnt aPnt1(-myWidth / 2. , 0 , 0);
gp_Pnt aPnt2(-myWidth / 2. , -myThickness / 4. , 0);
gp_Pnt aPnt3(0 , -myThickness / 2. , 0);
gp_Pnt aPnt4(myWidth / 2. , -myThickness / 4. , 0);
gp_Pnt aPnt5(myWidth / 2. , 0 , 0);

If you had decided to use the Geom_CartesianPoint class, the syntax would have been slightly
different. All objects manipulated by a handle must use the standard C++ operator new and are built as
follows:

Handle(Geom_CartesianPoint) aPnt1 = new
Geom_CartesianPoint(-myWidth / 2. , 0 , 0);

 Building the Profile 7

Once your objects are instantiated, you may need to apply methods to them. Here again, syntax is the
same as in C++. For example, to get the X coordinate of a point:

gp_Pnt aPnt1(0,0,0);

Handle(Geom_CartesianPoint) aPnt2 =
new Geom_CartesianPoint(0 , 0 , 0);

Standard_Real xValue1 = aPnt1.X();
Standard_Real xValue2 = aPnt2->X();

2.2. Profile: Defining the Geometry
With the help of the previously defined points, you can compute a part of the bottle’s profile geometry.
As shown in the figure below, it will consist of two segments and one arc.

To create such entities, you need a specific data structure, which implements 3D geometric objects.
This can be found in the Open CASCADE Geom package.

An Open CASCADE package is defined as a group of classes, which have the same behavior or
belong to the same structure. Open CASCADE classes have names that start with the name of the
package they belong to. For example, Geom_Line and Geom_Circle classes belong to the Geom
package. The Geom package implements 3D geometric objects: elementary curves and surfaces are
provided as well as more complex ones (such as Bezier and BSpline).

However, the Geom package provides only the data structure of geometric entities. You can directly
instantiate classes belonging to Geom, but it is easier to compute elementary curves and surfaces by
using the GC package.

This is because the GC provides two algorithm classes which are exactly what is required for our
profile:

• Class GC_MakeSegment to create a segment. One of its constructors allows you to define a
segment out of two points P1 and P2.

• Class GC_MakeArcOfCircle to create an arc of a circle. A very useful constructor specifies that
an arc can be built from two points P1 and P3 and going through P2.

Both of these classes return a Geom_TrimmedCurve manipulated by a handle. This entity represents a
base curve, which is limited between two of its parameter values. For example, circle C is
parameterized between 0 and 2PI. If you need to create a quarter of a circle, you create a
Geom_TrimmedCurve on C limited between 0 and PI/2.

8 Building the Profile

Handle(Geom_TrimmedCurve) aArcOfCircle =
GC_MakeArcOfCircle(aPnt2,aPnt3 ,aPnt4);
Handle(Geom_TrimmedCurve) aSegment1 = GC_MakeSegment(aPnt1 , aPnt2);
Handle(Geom_TrimmedCurve) aSegment2 = GC_MakeSegment(aPnt4 , aPnt5);

All GC classes provide a casting method to obtain a result automatically with a function-like call. You
may use these classes more safely by using the IsDone and Value methods. For example:

GC_MakeSegment mkSeg (aPnt1 , aPnt2);
Handle(Geom_TrimmedCurve) aSegment1;
if(mkSegment.IsDone()){
aSegment1 = mkSeg.Value();
...
}

2.3. Profile: Defining the Topology
You have created the support geometry of one part of the profile but these curves are independent with
no relations between each other.

To simplify the modeling, it would be right to manipulate these three curves as a single entity.

This can be done by using the Open CASCADE topological data structure described in the TopoDS
package: it defines relationships between geometric entities which can be linked together to represent
complex shapes.

Each object of the TopoDS package, inheriting from the TopoDS_Shape class, describes a topological
shape as described below:

Shape

Open CASCADE Class

Description

Vertex

TopoDS_Vertex

Zero dimensional shape corresponding to a
point in geometry.

Edge

TopoDS_Edge

Single dimensional shape corresponding to a
curve and bounded by a vertex at each
extremity.

Wire TopoDS_Wire

Sequence of edges connected by vertices.

Face TopoDS_Face

Part of a surface bounded by a closed wire.

Shell TopoDS_Shell

Set of faces connected by edges.

Solid TopoDS_Solid

Part of 3D space bounded by Shells.

 Building the Profile 9

CompSolid TopoDS_CompSolid

Set of solids connected by their faces.

Compound TopoDS_Compound

Set of any other shapes described above.

Referring to the previous table, you can see that, to build the profile, you will create:

• Three edges out of the previously computed curves.

• One wire with these edges.

However, the TopoDS package provides only the data structure of the topological entities. Algorithm
classes available to compute standard topological objects can be found in the BRepBuilderAPI
package.

To create an edge, you use the BRepBuilderAPI_MakeEdge class with the previously computed
curves:

TopoDS_Edge aEdge1 = BRepBuilderAPI_MakeEdge(aSegment1);
TopoDS_Edge aEdge2 = BRepBuilderAPI_MakeEdge(aArcOfCircle);
TopoDS_Edge aEdge3 = BRepBuilderAPI_MakeEdge(aSegment2);

In Open CASCADE, you can create edges in several ways. One possibility is to create an edge directly
from two points, in which case the underlying geometry of this edge is a line, bounded by two vertices
being automatically computed from the two input points. For example, aEdge1 and aEdge3 could have
been computed more simply:

TopoDS_Edge aEdge1 = BRepBuilderAPI_MakeEdge(aPnt1 , aPnt3);
TopoDS_Edge aEdge2 = BRepBuilderAPI_MakeEdge(aPnt4 , aPnt5);

To connect the edges, you need to create a wire with the BRepBuilderAPI_MakeWire class. There are
two ways of building a wire with this class:

• directly from one to four edges

• by adding other wire(s) or edge(s) to an existing wire (this is explained later in this tutorial)

When building a wire from less than four edges, as in the present case, you can use the constructor

10 Building the Profile

directly as follows:

TopoDS_Wire aWire = BRepBuilderAPI_MakeWire(aEdge1 , aEdge2 , aEdge3);

2.4. Profile: Completing the Profile
Once the first part of your wire is created you need to compute the complete profile. A simple way to do
this is to:

• compute a new wire by reflecting the existing one.

• add the reflected wire to the initial one.

To apply a transformation on shapes (including wires), you first need to define the properties of a 3D
geometric transformation by using the gp_Trsf class. This affinity transformation can be a translation, a
rotation, a scale, a reflection or a combination of these.

In our case, we need to define a reflection with respect to the X axis of the global coordinate system.
An axis, defined with the gp_Ax1 class, is built out of a point and has a direction (3D unitary vector).
There are two ways to define this axis.

The first way is to define it from scratch, using its geometric definition:

• X axis is located at (0 , 0 , 0) - use the gp_Pnt class.

• X axis direction is (1 , 0 , 0) - use the gp_Dir class. A gp_Dir instance is created out of its X, Y
and Z coordinates.

gp_Pnt aOrigin(0 , 0 , 0);
gp_Dir xDir(1 , 0 , 0);
gp_Ax1 xAxis(aOrigin , xDir);

The second and simplest way is to use the geometric constants defined in the gp package (origin, main
directions and axis of the global coordinate system). To get the X axis, just call the gp::OX method:

gp_Ax1 xAxis = gp::OX();

 Building the Profile 11

As previously explained, the property of a 3D geometric transformation is defined with the gp_Trsf
class. There are two different ways to use this class:

• by defining a transformation matrix from scratch

• by using the appropriate methods corresponding to the required transformation (SetTranslation
for a translation, SetMirror for a reflection, etc.): the matrix is automatically computed.

Since the simplest approach is always the best one, you should use the SetMirror method with the axis
as the center of symmetry.

gp_Trsf aTrsf;
aTrsf.SetMirror(xAxis);

You now have all necessary data to apply the transformation with the BRepBuilderAPI_Transform
class by specifying:

• the shape on which the transformation must be applied.

• the geometric transformation

BRepBuilderAPI_Transform aBRepTrsf(aWire , aTrsf);

BRepBuilderAPI_Transform does not modify the nature of the shape: the result of the reflected wire
remains a wire. But the function-like call or the BRepBuilderAPI_Transform::Shape method returns a
TopoDS_Shape object:

TopoDS_Shape aMirroredShape = aBRepTrsf.Shape();

What you need is a method to consider the resulting reflected shape as a wire. The TopoDS global
functions provide this kind of service by casting a shape into its real type. To cast the transformed wire,
use the TopoDS::Wire method.

TopoDS_Wire aMirroredWire = TopoDS::Wire(aMirroredShape);

The bottle’s profile is almost finished. You have created two wires: aWire and aMirroredWire. You need
to concatenate them to compute a single shape. To do this, you use the BRepBuilderAPI_MakeWire
class as follows:

• create an instance of BRepBuilderAPI_MakeWire.

• add all edges of the two wires by using the Add method on this object.

BRepBuilderAPI_MakeWire mkWire;
mkWire.Add(aWire);
mkWire.Add(aMirroredWire);
TopoDS_Wire myWireProfile = mkWire.Wire();

12 Building the Body

3. Building the Body

3.1. Prism the Profile
To compute the main body of the bottle, you need to create a solid shape. The simplest way is to use
the previously created profile and to sweep it along a direction: the Prism Open CASCADE functionality
is the most appropriate. It accepts a shape and a direction as input and generates a new shape
according to the following rules:

Shape Generates

Vertex Edge
Edge Face
Wire Shell
Face Solid
Shell Compound of Solids

Your current profile is a wire. Referring to the Shape/Generates table, you need to compute a face out
of its wire to generate a solid.

To create a face, use the BRepBuilderAPI_MakeFace class. As previously explained, a face is a part
of a surface bounded by a closed wire. Generally, BRepBuilderAPI_MakeFace computes a face out of
a surface and one or more wires.

When the wire lies on a plane, the surface is automatically computed.

TopoDS_Face myFaceProfile = BRepBuilderAPI_MakeFace(myWireProfile);

The BRepPrimAPI package provides all the classes to create topological primitive constructions:
boxes, cones, cylinders, spheres, etc. Among them is the BRepPrimAPI_MakePrism class. As

 Building the Body 13

specified above, this class is defined by:

• the basis shape to sweep

• a vector for a finite prism or a direction for finite and infinite prisms

You want the solid to be finite, swept along the Z axis and to be myHeight height. The vector, defined
with the gp_Vec class on its X, Y and Z coordinates, is:

gp_Vec aPrismVec(0 , 0 , myHeight);

All the necessary data to create the main body of your bottle is now available. Just apply the
BRepPrimAPI_MakePrism class to compute the solid:

TopoDS_Shape myBody = BRepPrimAPI_MakePrism(myFaceProfile , aPrismVec);

3.2. Applying Fillets
The edges of the bottle’s body are very sharp. To replace them by rounded faces, you use the Fillet
functionality of Open CASCADE.

Depending on their location, fillets can be very complex - for example, they can follow linear or specific
evolution laws between vertices of an edge - but for our purposes, you will simply specify that fillets
must be:

• applied on all edges of the shape

• have a radius of myThickness / 12

To apply fillets on the edges of a shape, you use the BRepFilletAPI_MakeFillet class. This class is
normally used as follows:

• Specify the shape to be filleted in the BRepFilletAPI_MakeFillet constructor.

14 Building the Body

• Add the fillet descriptions (an edge and a radius) using the Add method (you can add as many

edges as you need).

• Ask for the resulting filleted shape with the Shape method.

BRepFilletAPI_MakeFillet mkFillet(myBody);

To add the fillet description, you need to know the edges belonging to your shape. The best solution is
to explore your solid to retrieve its edges. This kind of functionality is provided with the
TopExp_Explorer class, which explores the data structure described in a TopoDS_Shape and extracts
the sub-shapes you specifically need.

Generally, this explorer is created by providing the following information:

• the shape to explore

• the type of sub-shapes to be found. This information is given with the TopAbs_ShapeEnum
enumeration.

TopExp_Explorer aEdgeExplorer(myBody , TopAbs_EDGE);

An explorer is usually applied in a loop by using its three main methods:

• More to know if there are more sub-shapes to explore.

• Current to know which is the currently explored sub-shape.

• Next to move onto the next sub-shape to explore (used only if the More method returns true).

while(aEdgeExplorer.More()){

TopoDS_Edge aEdge =
TopoDS::Edge(aEdgeExplorer.Current());
//Add edge to fillet algorithm
...
aEdgeExplorer.Next();
}

In the explorer loop, you have found all the edges of the bottle shape. Each one must then be added in
the BRepFilletAPI_MakeFillet instance with the Add method. Do not forget to specify the radius of the
fillet along with it.

mkFillet.Add(myThickness / 12. , aEdge);

Once this is done, you perform the last step of the procedure by asking for the filleted shape.

myBody = mkFillet.Shape();

 Building the Body 15

3.3. Adding the Neck
To add a neck to the bottle, you will create a cylinder and fuse it to the body. The cylinder is to be
positioned on the top face of the body with a radius of myThickness / 4. and a height of myHeight / 10.

To position the cylinder, you need to define a coordinate system with the gp_Ax2 class defining a right-
handed coordinate system from a point and two directions - the normal and the X direction (the Y
direction is computed from these two).

The center of the top face being, in the global coordinate system, (0 , 0 , myHeight) and its normal on
the Z axis, your local coordinate system can be defined as follows:

gp_Pnt neckLocation(0 , 0 , myHeight);
gp_Dir neckNormal = gp::DZ();
gp_Ax2 neckAx2(neckLocation , neckNormal);

To create a cylinder, use another class from the primitives construction package: the
BRepPrimAPI_MakeCylinder class. The information you must provide is:

• the coordinate system where the cylinder will be located

• the radius and height

Standard_Real myNeckRadius = myThickness / 4.;

Standard_Real myNeckHeight = myHeight / 10;

TopoDS_Shape myNeck = BRepPrimAPI_MakeCylinder(neckAx2 ,
myNeckRadius , myNeckHeight);

You now have two separate parts: a main body and a neck that you need to fuse together.

The BRepAlgoAPI package provides services to perform boolean operations between shapes, and
especially: common (boolean intersection), cut (boolean subtraction) and fuse (boolean union).

Use BRepAlgoAPI_Fuse to fuse the two shapes:

16 Building the Body

myBody = BRepAlgoAPI_Fuse(myBody , myNeck);

3.4. Creating a Hollowed Solid
Since a real bottle is used to contain liquid material, you should now create a hollowed solid from the
bottle’s top face.

In Open CASCADE, a hollowed solid is called a Thick Solid and is internally computed as follows:

• Remove one or more faces from an initial solid to obtain the first wall W1 of the hollowed solid.

• Create a parallel wall W2 from W1 at a distance D. If D is positive, W2 will be outside the initial
solid, otherwise it will be inside.

• Compute a solid from the two walls W1 and W2.

To compute a thick solid, you create an instance of the BRepOffsetAPI_MakeThickSolid class by
giving the following information:

• The shape, which must be hollowed.

• The tolerance used for the computation (tolerance criterion for coincidence in generated
shapes).

• The thickness between the two walls W1 and W2 (distance D).

• The face(s) to be removed from the original solid to compute the first wall W1.

The challenging part in this procedure is to find the face to remove from your shape - the top face of
the neck, which:

• has a plane surface as underlying geometry

• is the highest face (in Z coordinates) of the bottle

To find the face with such characteristics, you will once again use an explorer to iterate on all the
bottle’s faces to find the appropriate one.

 Building the Body 17

for(TopExp_Explorer aFaceExplorer(myBody , TopAbs_FACE) ;
aFaceExplorer.More() ; aFaceExplorer.Next()){

 TopoDS_Face aFace = TopoDS::Face(aFaceExplorer.Current());
 TopoDS_Face aFace = TopoDS::Face(aFaceExplorer.Current());

}

For each detected face, you retrieve its surface. You then need a tool to access the geometric
properties of the shape: use the BRep_Tool class. The most commonly used methods of this class are:

• Surface to access the surface of a face

• Curve to access the 3D curve of an edge

• Point to access the 3D point of a vertex

Handle(Geom_Surface) aSurface = BRep_Tool::Surface(aFace);

As you can see, the BRep_Tool::Surface method returns an instance of the Geom_Surface class
manipulated by a handle. However, the Geom_Surface class does not provide information about the
real type of the object aSurface, which could be an instance of Geom_Plane,
Geom_CylindricalSurface, etc.

All objects manipulated by handle, like Geom_Surface, inherit from the Standard_Transient class
which contains two very useful methods concerning types:

• DynamicType to know the real type of the object

• IsKind to know if the object inherits from one particular type

DynamicType returns the real type of the object, but you need to compare it with the existing known
types to determine whether aSurface is a plane, a cylindrical surface or some other type.

To compare a given type with the type you seek, use the STANDARD_TYPE macro, which returns the
type of a class:

if(aSurface->DynamicType() == STANDARD_TYPE(Geom_Plane)){
...
}

If this comparison is true, you know that the aSurface real type is Geom_Plane. You can then convert it
from Geom_Surface to Geom_Plane by using another useful function from Standard_Transient: the
DownCast method. As its name implies, this static method is used to downcast objects to a given type
with the following syntax:

Handle(Geom_Plane) aPlane = Handle(Geom_Plane)::DownCast(aSurface);

Remember that the goal of all these conversions is to find the highest face of the bottle lying on a
plane. Suppose that you have these two global variables:

18 Building the Body

TopoDS_Face faceToRemove;
Standard_Real zMax = -1;

You can easily find the plane whose origin is the biggest in Z knowing that the location of the plane is
given with the Geom_Plane::Location method. For example:

gp_Pnt aPnt = aPlane->Location();
Standard_Real aZ = aPnt.Z();
if(aZ > zMax){
zMax = aZ;
faceToRemove = aFace;
}

You have now found the top face of the neck. Your final step before creating the hollowed solid is to
put this face in a list. Since more than one face can be removed from the initial solid, the
BRepOffsetAPI_MakeThickSolid constructor takes a list of faces as arguments.

Open CASCADE provides many collections for different kind of objects: TColGeom package for
collections of objects from Geom package, TColgp package for collections of objects from gp
packages, etc.

The collection for shapes can be found in the TopTools package. As BRepOffsetAPI_MakeThickSolid
requires a list, use the TopTools_ListOfShape class.

TopTools_ListOfShape facesToRemove;
facesToRemove.Append(faceToRemove);

All the necessary data is now available so you can create your hollowed solid by calling the
BRepOffsetAPI_MakeThickSolid constructor:

MyBody = BRepOffsetAPI_MakeThickSolid(myBody , facesToRemove ,
-myThickness / 50 , 1.e-3);

 Building the Threading 19

4. Building the Threading

4.1. Creating Surfaces
Up to now, you have learned how to create edges out of 3D curves.

You will now learn how to create an edge out of a 2D curve and a surface.

To learn this aspect of Open CASCADE, you will build helicoidal profiles out of 2D curves on cylindrical
surfaces. The theory is more complex than in previous steps, but applying it is very simple.

As a first step, you compute these cylindrical surfaces. You are already familiar with curves of the
Geom package. Now you can create a Geom_CylindricalSurface cylindrical surface using:

• a coordinate system

• a radius

Using the same coordinate system neckAx2 used to position the neck, you create two cylindrical
surfaces Geom_CylindricalSurface with the following radius:

Notice that one of the cylindrical surfaces is smaller than the neck. There is a good reason for this:
after the thread creation, you will fuse it with the neck. So, we must make sure that the two shapes
remain in contact.

Handle(Geom_CylindricalSurface) aCyl1 = new
Geom_CylindricalSurface(neckAx2 , myNeckRadius * 0.99);

Handle(Geom_CylindricalSurface) aCyl2 = new
Geom_CylindricalSurface(neckAx2 , myNeckRadius * 1.05);

4.2. Defining 2D Curves
To create the neck of the bottle, you made a solid cylinder based on a cylindrical surface. You will
create the profile of threading by creating 2D curves on such a surface.

All geometries defined in the Geom package are parameterized. This means that each curve or
surface from Geom is computed with a parametric equation.

A Geom_CylindricalSurface surface is defined with the following parametric equation:

20 Building the Threading

P(U , V) = O + R * (cos(U) * xDir + sin(U) * yDir) + V * zDir , where :

• P is the point of parameter (U, V).

• O , xDir, yDir and zDir are respectively the origin, the X direction, Y direction and Z direction of
the cylindrical surface local coordinate system.

• R is the radius of the cylindrical surface.

• U range is [0 , 2PI] and V is infinite.

The advantage of having such parameterized geometries is that you can compute, on any (U, V)
parameter of the surface:

• the related point

• the derivative vectors of order 1, 2 to N at this point

• more pertinent data

There is another advantage of these parametric equations: you can consider a surface as a 2D
parametric space defined with a (U, V) coordinate system. For example, consider the parametric
ranges of the neck’s surface:

Suppose that you create a 2D line on this parametric (U, V) space and compute its 3D parametric
curve. Depending on the line definition, results are as follows:

Case Parametric Equation Parametric Curve

U = 0 P(V) = O + V * zDir Line parallel to the Z direction

V = 0 P(U) = O + R * (cos(U) * xDir + sin(U) * yDir) Circle parallel to the (O, X, Y) plane

U != 0
V != 0

P(U , V) = O + R * (cos(U) * xDir + sin(U) *
yDir) + V * zDir

Helicoidal curve describing the evolution of height and angle
on the cylinder

 Building the Threading 21

The helicoidal curve type is exactly what you need. On the neck’s surface, the evolution laws of this
curve will be:

• In V parameter: between 0 and myHeighNeck for the height description

• In U parameter: between 0 and 2PI for the angle description. But, since a cylindrical surface is
U periodic, you can decide to extend this angle evolution to 4PI as shown in the following
drawing:

In this (U , V) parametric space, you will create a local (X , Y) coordinate system to position the curves
to be created. This coordinate system will be defined with:

• A center located in the middle of the neck’s cylinder parametric space at (2*PI,

• myNeckHeight / 2) in U, V coordinates.

• A X direction defined with the (2*PI, myNeckHeight/4) vector in U, V coordinates, so that the
curves occupy half of the neck’s surfaces.

To use Open CASCADE 2D primitive geometry types for defining a point and a coordinate system, you
will once again instantiate classes from gp:

• To define a 2D point from its X and Y coordinates, use the gp_Pnt2d class.

• To define a 2D direction (unit vector) from its X and Y coordinates, use the gp_Dir2d class.
The coordinates will automatically be normalized.

22 Building the Threading

• To define a 2D right handed coordinate system, use the gp_Ax2d class, which is computed

from a point (origin of the coordinate system) and a direction - X direction of the coordinate
system. The Y direction will be automatically computed.

gp_Pnt2d aPnt(2. * PI , myNeckHeight / 2.);
gp_Dir2d aDir(2. * PI , myNeckHeight / 4.);
gp_Ax2d aAx2d(aPnt , aDir);

You will now define the curves. As previously mentioned, these thread profiles are computed on two
cylindrical surfaces. In the following figure, curves on the left define the base (on aCyl1 surface) and
the curves on the right define the top of the thread’s shape (on aCyl2 surface).

You have already used the Geom package to define 3D geometric entities. For 2D, you will use the
Geom2d package. As for Geom, all geometries are parameterized. For example, a Geom2d_Ellipse
ellipse is defined from:

• a coordinate system whose origin is the ellipse center

• a major radius on the major axis defined by the X direction of the coordinate system

• a minor radius on the minor axis defined by the Y direction of the coordinate system

Supposing that:

• Both ellipses have the same major radius of 2*PI.

• Minor radius of the first ellipse is myNeckHeight / 10

• And minor radius value of the second ellipse is a fourth of the first one Your ellipses are
defined as follows:

Standard_Real aMajor = 2. * PI;

Standard_Real aMinor = myNeckHeight / 10;

Handle(Geom2d_Ellipse) anEllipse1 =
new Geom2d_Ellipse(aAx2d , aMajor , aMinor);

Handle(Geom2d_Ellipse) anEllipse2 =
new Geom2d_Ellipse(aAx2d , aMajor , aMinor / 4);

To describe portions of curves for the arcs drawn above, you define Geom2d_TrimmedCurve trimmed
curves out of the created ellipses and two parameters to limit them.

As the parametric equation of an ellipse is P(U) = O + (MajorRadius * cos(U) * XDirection) +
(MinorRadius * sin(U) * YDirection), the ellipses are limited between 0 and PI.

 Building the Threading 23

Handle(Geom2d_TrimmedCurve) aArc1 = new Geom2d_TrimmedCurve(anEllipse1 , 0 , PI);
Handle(Geom2d_TrimmedCurve) aArc2 = new Geom2d_TrimmedCurve(anEllipse2 , 0 , PI);

The last step consists in defining the segment, which is the same for the two profiles: a line limited by
the first and the last point of one of the arcs.

To access the point corresponding to the parameter of a curve or a surface, you use the Value or D0
method (meaning 0th derivative), D1 method is for first derivative, D2 for the second.

gp_Pnt2d anEllipsePnt1 = anEllipse1->Value(0);
gp_Pnt2d anEllipsePnt2;
anEllipse1->D0(PI , anEllipsePnt2);

When creating the bottle’s profile, you used classes from the GC package, providing algorithms to
create elementary geometries.

In 2D geometry, this kind of algorithms is found in the GCE2d package. Class names and behaviors
are almost the same as in GC. For example, to create a 2D segment out of two points:

Handle(Geom2d_TrimmedCurve) aSegment = GCE2d_MakeSegment(anEllipsePnt1 ,
anEllipsePnt2);

4.3. Building Edges and Wires
As you did when creating the base profile of the bottle, you can now:

• compute the edges of the neck’s threading.

• compute two wires out of these edges.

Previously, you have built:

• two cylindrical surfaces of the threading

• three curves defining the base geometry of the threading

To compute the edges out of these curves, once again use the BRepBuilderAPI_MakeEdge class. One
of its constructors allows you to build an edge out of a curve described in the 2D parametric space of a
surface.

24 Building the Threading

TopoDS_Edge aEdge1OnSurf1 = BRepBuilderAPI_MakeEdge(aArc1 , aCyl1);
TopoDS_Edge aEdge2OnSurf1 = BRepBuilderAPI_MakeEdge(aSegment , aCyl1);
TopoDS_Edge aEdge1OnSurf2 = BRepBuilderAPI_MakeEdge(aArc2 , aCyl2);
TopoDS_Edge aEdge2OnSurf2 = BRepBuilderAPI_MakeEdge(aSegment , aCyl2);

Now, you can create the two profiles of the threading, lying on each surface.

TopoDS_Wire threadingWire1 = BRepBuilderAPI_MakeWire(aEdge1OnSurf1 ,
aEdge2OnSurf1);
TopoDS_Wire threadingWire2 = BRepBuilderAPI_MakeWire(aEdge1OnSurf2 ,
aEdge2OnSurf2);

Remember that these wires were built out of a surface and 2D curves.

One important data item is missing as far as these wires are concerned: there is no information on the
3D curves. Fortunately, you do not need to compute this yourself, which can be a difficult task since
the mathematics can be quite complex.

When a shape contains all the necessary information except 3D curves, Open CASCADE provides a
tool to build them automatically. In the BRepLib tool package, you can use the BuildCurves3d method
to compute 3D curves for all the edges of a shape.

BRepLib::BuildCurves3d(threadingWire1);
BRepLib::BuildCurves3d(threadingWire2);

4.4. Creating Threading
You have computed the wires of the threading. The threading will be a solid shape, so you must now
compute the faces of the wires, the faces allowing you to join the wires, the shell out of these faces and
then the solid itself. This can be a lengthy operation.

There are always faster ways to build a solid when the base topology is defined. You would like to
create a solid out of two wires. Open CASCADE provides a quick way to do this by building a loft: a
shell or a solid passing through a set of wires in a given sequence.

The loft function is implemented in the BRepOffsetAPI_ThruSections class, which you use as follows:

• Initialize the algorithm by creating an instance of the class. The first parameter of this
constructor must be specified if you want to create a solid. By default,
BRepOffsetAPI_ThruSections builds a shell.

• Add the successive wires using the AddWire method.

 Building the Threading 25

• Use the CheckCompatibility method to activate (or deactivate) the option that checks whether

the wires have the same number of edges. In this case, wires have two edges each, so you
can deactivate this option.

• Ask for the resulting loft shape with the Shape method.

BRepOffsetAPI_ThruSections aTool(Standard_True);
aTool.AddWire(threadingWire1);
aTool.AddWire(threadingWire2);
aTool.CheckCompatibility(Standard_False);
TopoDS_Shape myThreading = aTool.Shape();

26 Building the Resulting Compound

5. Building the Resulting Compound

You are almost done building the bottle. Use the TopoDS_Compound and BRep_Builder classes to
build single shape from myBody and myThreading:

TopoDS_Compound aRes;
BRep_Builder aBuilder;
aBuilder.MakeCompound (aRes);
aBuilder.Add (aRes, myBody);
aBuilder.Add (aRes, myThreading);

Congratulations! Your bottle is complete. Here is the resulting snapshot of the Tutorial application:

We hope that this tutorial has provided you with a feel for the industrial strength power of Open
CASCADE.

If you want to know more and develop major projects using Open CASCADE, we invite you to study
our training, support, and consulting services on our site at http://www.opencascade.com/support. Our
professional services can maximize the power of your Open CASCADE applications.

http://www.opencascade.com/support

 Appendix 27

6. Appendix

Complete definition of MakeBottle function (defined in the file src/MakeBottle.cxx of the Tutorial):

TopoDS_Shape

MakeBottle(const Standard_Real myWidth , const Standard_Real myHeight ,

const Standard_Real myThickness)

{

//Profile : Define Support Points

gp_Pnt aPnt1(-myWidth / 2. , 0 , 0);

gp_Pnt aPnt2(-myWidth / 2. , -myThickness / 4. , 0);

gp_Pnt aPnt3(0 , -myThickness / 2. , 0);

gp_Pnt aPnt4(myWidth / 2. , -myThickness / 4. , 0);

gp_Pnt aPnt5(myWidth / 2. , 0 , 0);

//Profile : Define the Geometry

Handle(Geom_TrimmedCurve) aArcOfCircle =
GC_MakeArcOfCircle(aPnt2,aPnt3,aPnt4);

Handle(Geom_TrimmedCurve) aSegment1 = GC_MakeSegment(aPnt1 , aPnt2);

Handle(Geom_TrimmedCurve) aSegment2 = GC_MakeSegment(aPnt4 , aPnt5);

//Profile : Define the Topology

TopoDS_Edge aEdge1 = BRepBuilderAPI_MakeEdge(aSegment1);

TopoDS_Edge aEdge2 = BRepBuilderAPI_MakeEdge(aArcOfCircle);

TopoDS_Edge aEdge3 = BRepBuilderAPI_MakeEdge(aSegment2);

TopoDS_Wire aWire = BRepBuilderAPI_MakeWire(aEdge1 , aEdge2 , aEdge3);

//Complete Profile

gp_Ax1 xAxis = gp::OX();

gp_Trsf aTrsf;

aTrsf.SetMirror(xAxis);

BRepBuilderAPI_Transform aBRepTrsf(aWire , aTrsf);

TopoDS_Shape aMirroredShape = aBRepTrsf.Shape();

TopoDS_Wire aMirroredWire = TopoDS::Wire(aMirroredShape);

BRepBuilderAPI_MakeWire mkWire;

28 Appendix

mkWire.Add(aWire);

mkWire.Add(aMirroredWire);

TopoDS_Wire myWireProfile = mkWire.Wire();

//Body : Prism the Profile

TopoDS_Face myFaceProfile = BRepBuilderAPI_MakeFace(myWireProfile);

gp_Vec aPrismVec(0 , 0 , myHeight);

TopoDS_Shape myBody = BRepPrimAPI_MakePrism(myFaceProfile ,
aPrismVec);

//Body : Apply Fillets

BRepFilletAPI_MakeFillet mkFillet(myBody);

TopExp_Explorer aEdgeExplorer(myBody , TopAbs_EDGE);

while(aEdgeExplorer.More()){

TopoDS_Edge aEdge = TopoDS::Edge(aEdgeExplorer.Current());

//Add edge to fillet algorithm

mkFillet.Add(myThickness / 12. , aEdge);

aEdgeExplorer.Next();

 }

myBody = mkFillet.Shape();

//Body : Add the Neck

gp_Pnt neckLocation(0 , 0 , myHeight);

gp_Dir neckNormal = gp::DZ();

gp_Ax2 neckAx2(neckLocation , neckNormal);

Standard_Real myNeckRadius = myThickness / 4.;

Standard_Real myNeckHeight = myHeight / 10;

TopoDS_Shape myNeck = BRepPrimAPI_MakeCylinder(neckAx2 , myNeckRadius
, myNeckHeight);

myBody = BRepAlgoAPI_Fuse(myBody , myNeck);

//Body : Create a Hollowed Solid

TopoDS_Face faceToRemove;

Standard_Real zMax = -1;

for(TopExp_Explorer aFaceExplorer(myBody , TopAbs_FACE) ;
aFaceExplorer.More() ; aFaceExplorer.Next()){

 Appendix 29

TopoDS_Face aFace = TopoDS::Face(aFaceExplorer.Current());

//Check if <aFace> is the top face of the bottle’s neck
Handle(Geom_Surface) aSurface = BRep_Tool::Surface(aFace);

if(aSurface->DynamicType() == STANDARD_TYPE(Geom_Plane)){

Handle(Geom_Plane) aPlane =
Handle(Geom_Plane)::DownCast(aSurface);

gp_Pnt aPnt = aPlane->Location();

 Standard_Real aZ = aPnt.Z();

 if(aZ > zMax){

 zMax = aZ;

faceToRemove = aFace;

 }

 }

}

TopTools_ListOfShape facesToRemove;

facesToRemove.Append(faceToRemove);

myBody = BRepOffsetAPI_MakeThickSolid(myBody , facesToRemove , -
myThickness / 50 , 1.e-3);

//Threading : Create Surfaces

Handle(Geom_CylindricalSurface) aCyl1 = new
Geom_CylindricalSurface(neckAx2 , myNeckRadius * 0.99);

Handle(Geom_CylindricalSurface) aCyl2 = new
Geom_CylindricalSurface(neckAx2 , myNeckRadius * 1.05);

//Threading : Define 2D Curves

gp_Pnt2d aPnt(2. * PI , myNeckHeight / 2.);

gp_Dir2d aDir(2. * PI , myNeckHeight / 4.);

gp_Ax2d aAx2d(aPnt , aDir);

Standard_Real aMajor = 2. * PI;

Standard_Real aMinor = myNeckHeight / 10;

Handle(Geom2d_Ellipse) anEllipse1 = new Geom2d_Ellipse(aAx2d , aMajor ,
aMinor);

Handle(Geom2d_Ellipse) anEllipse2 = new Geom2d_Ellipse(aAx2d , aMajor ,
aMinor / 4);

Handle(Geom2d_TrimmedCurve) aArc1 = new Geom2d_TrimmedCurve(anEllipse1 ,
0 , PI);

Handle(Geom2d_TrimmedCurve) aArc2 = new Geom2d_TrimmedCurve(anEllipse2 ,
0 , PI);

30 Appendix

gp_Pnt2d anEllipsePnt1 = anEllipse1->Value(0);

gp_Pnt2d anEllipsePnt2 = anEllipse1->Value(PI);

Handle(Geom2d_TrimmedCurve) aSegment =
GCE2d_MakeSegment(anEllipsePnt1 , anEllipsePnt2);

//Threading : Build Edges and Wires

TopoDS_Edge aEdge1OnSurf1 = BRepBuilderAPI_MakeEdge(aArc1 , aCyl1);

TopoDS_Edge aEdge2OnSurf1 = BRepBuilderAPI_MakeEdge(aSegment ,
aCyl1);

TopoDS_Edge aEdge1OnSurf2 = BRepBuilderAPI_MakeEdge(aArc2 , aCyl2);

TopoDS_Edge aEdge2OnSurf2 = BRepBuilderAPI_MakeEdge(aSegment ,
aCyl2);

TopoDS_Wire threadingWire1 = BRepBuilderAPI_MakeWire(aEdge1OnSurf1 ,
aEdge2OnSurf1);

TopoDS_Wire threadingWire2 = BRepBuilderAPI_MakeWire(aEdge1OnSurf2 ,
aEdge2OnSurf2);

BRepLib::BuildCurves3d(threadingWire1);

BRepLib::BuildCurves3d(threadingWire2);

//Create Threading

BRepOffsetAPI_ThruSections aTool(Standard_True);

 aTool.AddWire(threadingWire1);

aTool.AddWire(threadingWire2);

aTool.CheckCompatibility(Standard_False);

TopoDS_Shape myThreading = aTool.Shape();

//Building the Resulting Compound

TopoDS_Compound aRes;

BRep_Builder aBuilder;

aBuilder.MakeCompound (aRes);

aBuilder.Add (aRes, myBody);

aBuilder.Add (aRes, myThreading);

return aRes;

}

	Tutorial
	My First Application
	Version 6.3 / September 2008
	
	Table of Contents
	1. Project Overview
	1.1. Prerequisites
	1.2. The project
	1.3. Project Specifications

	2. Building the Profile
	2.1. Defining Support Points
	2.2. Profile: Defining the Geometry
	2.3. Profile: Defining the Topology
	2.4. Profile: Completing the Profile

	3. Building the Body
	3.1. Prism the Profile
	3.2. Applying Fillets
	3.3. Adding the Neck
	3.4. Creating a Hollowed Solid

	4. Building the Threading
	4.1. Creating Surfaces
	4.2. Defining 2D Curves
	4.3. Building Edges and Wires
	4.4. Creating Threading

	5. Building the Resulting Compound
	6. Appendix

