Class Bignum
In: bignum.c
Parent: Integer

Bignum objects hold integers outside the range of Fixnum. Bignum objects are created automatically when integer calculations would otherwise overflow a Fixnum. When a calculation involving Bignum objects returns a result that will fit in a Fixnum, the result is automatically converted.

For the purposes of the bitwise operations and [], a Bignum is treated as if it were an infinite-length bitstring with 2‘s complement representation.

While Fixnum values are immediate, Bignum objects are not—assignment and parameter passing work with references to objects, not the objects themselves.

Methods

%   &   *   **   +   -   -@   /   <<   <=>   ==   >>   []   ^   abs   coerce   div   divmod   eql?   fdiv   hash   modulo   quo   remainder   size   to_f   to_s   |   ~  

Public Instance methods

Returns big modulo other. See Numeric.divmod for more information.

[Source]

/*
 *  call-seq:
 *     big % other         => Numeric
 *     big.modulo(other)   => Numeric
 *
 *  Returns big modulo other. See Numeric.divmod for more
 *  information.
 */

static VALUE
rb_big_modulo(x, y)
    VALUE x, y;
{
    VALUE z;

    switch (TYPE(y)) {
      case T_FIXNUM:
        y = rb_int2big(FIX2LONG(y));
        break;

      case T_BIGNUM:
        break;

      default:
        return rb_num_coerce_bin(x, y);
    }
    bigdivmod(x, y, 0, &z);

    return bignorm(z);
}

Performs bitwise and between big and numeric.

[Source]

/*
 * call-seq:
 *     big & numeric   =>  integer
 *
 * Performs bitwise +and+ between _big_ and _numeric_.
 */

VALUE
rb_big_and(xx, yy)
    VALUE xx, yy;
{
    volatile VALUE x, y, z;
    BDIGIT *ds1, *ds2, *zds;
    long i, l1, l2;
    char sign;

    x = xx;
    y = rb_to_int(yy);
    if (FIXNUM_P(y)) {
        y = rb_int2big(FIX2LONG(y));
    }
    if (!RBIGNUM(y)->sign) {
        y = rb_big_clone(y);
        get2comp(y);
    }
    if (!RBIGNUM(x)->sign) {
        x = rb_big_clone(x);
        get2comp(x);
    }
    if (RBIGNUM(x)->len > RBIGNUM(y)->len) {
        l1 = RBIGNUM(y)->len;
        l2 = RBIGNUM(x)->len;
        ds1 = BDIGITS(y);
        ds2 = BDIGITS(x);
        sign = RBIGNUM(y)->sign;
    }
    else {
        l1 = RBIGNUM(x)->len;
        l2 = RBIGNUM(y)->len;
        ds1 = BDIGITS(x);
        ds2 = BDIGITS(y);
        sign = RBIGNUM(x)->sign;
    }
    z = bignew(l2, RBIGNUM(x)->sign || RBIGNUM(y)->sign);
    zds = BDIGITS(z);

    for (i=0; i<l1; i++) {
        zds[i] = ds1[i] & ds2[i];
    }
    for (; i<l2; i++) {
        zds[i] = sign?0:ds2[i];
    }
    if (!RBIGNUM(z)->sign) get2comp(z);
    return bignorm(z);
}

Multiplies big and other, returning the result.

[Source]

/*
 *  call-seq:
 *     big * other  => Numeric
 *
 *  Multiplies big and other, returning the result.
 */

VALUE
rb_big_mul(x, y)
    VALUE x, y;
{
    return bignorm(rb_big_mul0(x, y));
}

Raises big to the exponent power (which may be an integer, float, or anything that will coerce to a number). The result may be a Fixnum, Bignum, or Float

  123456789 ** 2      #=> 15241578750190521
  123456789 ** 1.2    #=> 5126464716.09932
  123456789 ** -2     #=> 6.5610001194102e-17

[Source]

/*
 *  call-seq:
 *     big ** exponent   #=> numeric
 *
 *  Raises _big_ to the _exponent_ power (which may be an integer, float,
 *  or anything that will coerce to a number). The result may be
 *  a Fixnum, Bignum, or Float
 *
 *    123456789 ** 2      #=> 15241578750190521
 *    123456789 ** 1.2    #=> 5126464716.09932
 *    123456789 ** -2     #=> 6.5610001194102e-17
 */

VALUE
rb_big_pow(x, y)
    VALUE x, y;
{
    double d;
    long yy;

    if (y == INT2FIX(0)) return INT2FIX(1);
    switch (TYPE(y)) {
      case T_FLOAT:
        d = RFLOAT(y)->value;
        break;

      case T_BIGNUM:
        rb_warn("in a**b, b may be too big");
        d = rb_big2dbl(y);
        break;

      case T_FIXNUM:
        yy = FIX2LONG(y);
        if (yy > 0) {
            VALUE z = 0;
            long mask;
            const long BIGLEN_LIMIT = 1024*1024 / SIZEOF_BDIGITS;

            if ((RBIGNUM(x)->len > BIGLEN_LIMIT) ||
                (RBIGNUM(x)->len > BIGLEN_LIMIT / yy)) {
                rb_warn("in a**b, b may be too big");
                d = (double)yy;
                break;
            }
            for (mask = FIXNUM_MAX + 1; mask; mask >>= 1) {
                if (z) z = bigtrunc(bigsqr(z));
                if (yy & mask) {
                    z = z ? bigtrunc(rb_big_mul0(z, x)) : x;
                }
            }
            return bignorm(z);
        }
        d = (double)yy;
        break;

      default:
        return rb_num_coerce_bin(x, y);
    }
    return rb_float_new(pow(rb_big2dbl(x), d));
}

Adds big and other, returning the result.

[Source]

/*
 *  call-seq:
 *     big + other  => Numeric
 *
 *  Adds big and other, returning the result.
 */

VALUE
rb_big_plus(x, y)
    VALUE x, y;
{
    switch (TYPE(y)) {
      case T_FIXNUM:
        y = rb_int2big(FIX2LONG(y));
        /* fall through */
      case T_BIGNUM:
        return bignorm(bigadd(x, y, 1));

      case T_FLOAT:
        return rb_float_new(rb_big2dbl(x) + RFLOAT(y)->value);

      default:
        return rb_num_coerce_bin(x, y);
    }
}

Subtracts other from big, returning the result.

[Source]

/*
 *  call-seq:
 *     big - other  => Numeric
 *
 *  Subtracts other from big, returning the result.
 */

VALUE
rb_big_minus(x, y)
    VALUE x, y;
{
    switch (TYPE(y)) {
      case T_FIXNUM:
        y = rb_int2big(FIX2LONG(y));
        /* fall through */
      case T_BIGNUM:
        return bignorm(bigadd(x, y, 0));

      case T_FLOAT:
        return rb_float_new(rb_big2dbl(x) - RFLOAT(y)->value);

      default:
        return rb_num_coerce_bin(x, y);
    }
}

Unary minus (returns a new Bignum whose value is 0-big)

[Source]

/*
 * call-seq:
 *    -big   =>  other_big
 *
 * Unary minus (returns a new Bignum whose value is 0-big)
 */

static VALUE
rb_big_uminus(x)
    VALUE x;
{
    VALUE z = rb_big_clone(x);

    RBIGNUM(z)->sign = !RBIGNUM(x)->sign;

    return bignorm(z);
}

Divides big by other, returning the result.

[Source]

/*
 *  call-seq:
 *     big / other     => Numeric
 *     big.div(other)  => Numeric
 *
 *  Divides big by other, returning the result.
 */

static VALUE
rb_big_div(x, y)
    VALUE x, y;
{
    VALUE z;

    switch (TYPE(y)) {
      case T_FIXNUM:
        y = rb_int2big(FIX2LONG(y));
        break;

      case T_BIGNUM:
        break;

      default:
        return rb_num_coerce_bin(x, y);
    }
    bigdivmod(x, y, &z, 0);

    return bignorm(z);
}

Shifts big left numeric positions (right if numeric is negative).

[Source]

/*
 * call-seq:
 *     big << numeric   =>  integer
 *
 * Shifts big left _numeric_ positions (right if _numeric_ is negative).
 */

VALUE
rb_big_lshift(x, y)
    VALUE x, y;
{
    long shift;
    int neg = 0;

    for (;;) {
        if (FIXNUM_P(y)) {
            shift = FIX2LONG(y);
            if (shift < 0) {
                neg = 1;
                shift = -shift;
            }
            break;
        }
        else if (TYPE(y) == T_BIGNUM) {
            if (!RBIGNUM(y)->sign) {
                VALUE t = check_shiftdown(y, x);
                if (!NIL_P(t)) return t;
                neg = 1;
            }
            shift = big2ulong(y, "long");
            break;
        }
        y = rb_to_int(y);
    }

    if (neg) return big_rshift(x, shift);
    return big_lshift(x, shift);
}

Comparison—Returns -1, 0, or +1 depending on whether big is less than, equal to, or greater than numeric. This is the basis for the tests in Comparable.

[Source]

/*
 *  call-seq:
 *     big <=> numeric   => -1, 0, +1
 *
 *  Comparison---Returns -1, 0, or +1 depending on whether <i>big</i> is
 *  less than, equal to, or greater than <i>numeric</i>. This is the
 *  basis for the tests in <code>Comparable</code>.
 *
 */

static VALUE
rb_big_cmp(x, y)
    VALUE x, y;
{
    long xlen = RBIGNUM(x)->len;

    switch (TYPE(y)) {
      case T_FIXNUM:
        y = rb_int2big(FIX2LONG(y));
        break;

      case T_BIGNUM:
        break;

      case T_FLOAT:
        return rb_dbl_cmp(rb_big2dbl(x), RFLOAT(y)->value);

      default:
        return rb_num_coerce_cmp(x, y);
    }

    if (RBIGNUM(x)->sign > RBIGNUM(y)->sign) return INT2FIX(1);
    if (RBIGNUM(x)->sign < RBIGNUM(y)->sign) return INT2FIX(-1);
    if (xlen < RBIGNUM(y)->len)
        return (RBIGNUM(x)->sign) ? INT2FIX(-1) : INT2FIX(1);
    if (xlen > RBIGNUM(y)->len)
        return (RBIGNUM(x)->sign) ? INT2FIX(1) : INT2FIX(-1);

    while(xlen-- && (BDIGITS(x)[xlen]==BDIGITS(y)[xlen]));
    if (-1 == xlen) return INT2FIX(0);
    return (BDIGITS(x)[xlen] > BDIGITS(y)[xlen]) ?
        (RBIGNUM(x)->sign ? INT2FIX(1) : INT2FIX(-1)) :
            (RBIGNUM(x)->sign ? INT2FIX(-1) : INT2FIX(1));
}

Returns true only if obj has the same value as big. Contrast this with Bignum#eql?, which requires obj to be a Bignum.

   68719476736 == 68719476736.0   #=> true

[Source]

/*
 *  call-seq:
 *     big == obj  => true or false
 *
 *  Returns <code>true</code> only if <i>obj</i> has the same value
 *  as <i>big</i>. Contrast this with <code>Bignum#eql?</code>, which
 *  requires <i>obj</i> to be a <code>Bignum</code>.
 *
 *     68719476736 == 68719476736.0   #=> true
 */

static VALUE
rb_big_eq(x, y)
    VALUE x, y;
{
    switch (TYPE(y)) {
      case T_FIXNUM:
        y = rb_int2big(FIX2LONG(y));
        break;
      case T_BIGNUM:
        break;
      case T_FLOAT:
        {
            volatile double a, b;

            a = RFLOAT(y)->value;
            if (isnan(a)) return Qfalse;
            b = rb_big2dbl(x);
            return (a == b)?Qtrue:Qfalse;
        }
      default:
        return rb_equal(y, x);
    }
    if (RBIGNUM(x)->sign != RBIGNUM(y)->sign) return Qfalse;
    if (RBIGNUM(x)->len != RBIGNUM(y)->len) return Qfalse;
    if (MEMCMP(BDIGITS(x),BDIGITS(y),BDIGIT,RBIGNUM(y)->len) != 0) return Qfalse;
    return Qtrue;
}

Shifts big right numeric positions (left if numeric is negative).

[Source]

/*
 * call-seq:
 *     big >> numeric   =>  integer
 *
 * Shifts big right _numeric_ positions (left if _numeric_ is negative).
 */

VALUE
rb_big_rshift(x, y)
    VALUE x, y;
{
    long shift;
    int neg = 0;

    for (;;) {
        if (FIXNUM_P(y)) {
            shift = FIX2LONG(y);
            if (shift < 0) {
                neg = 1;
                shift = -shift;
            }
            break;
        }
        else if (TYPE(y) == T_BIGNUM) {
            if (RBIGNUM(y)->sign) {
                VALUE t = check_shiftdown(y, x);
                if (!NIL_P(t)) return t;
            }
            else {
                neg = 1;
            }
            shift = big2ulong(y, "long");
            break;
        }
        y = rb_to_int(y);
    }

    if (neg) return big_lshift(x, shift);
    return big_rshift(x, shift);
}

Bit Reference—Returns the nth bit in the (assumed) binary representation of big, where big[0] is the least significant bit.

   a = 9**15
   50.downto(0) do |n|
     print a[n]
   end

produces:

   000101110110100000111000011110010100111100010111001

[Source]

/*
 *  call-seq:
 *     big[n] -> 0, 1
 *
 *  Bit Reference---Returns the <em>n</em>th bit in the (assumed) binary
 *  representation of <i>big</i>, where <i>big</i>[0] is the least
 *  significant bit.
 *
 *     a = 9**15
 *     50.downto(0) do |n|
 *       print a[n]
 *     end
 *
 *  <em>produces:</em>
 *
 *     000101110110100000111000011110010100111100010111001
 *
 */

static VALUE
rb_big_aref(x, y)
    VALUE x, y;
{
    BDIGIT *xds;
    BDIGIT_DBL num;
    unsigned long shift;
    long i, s1, s2;

    if (TYPE(y) == T_BIGNUM) {
        if (!RBIGNUM(y)->sign)
            return INT2FIX(0);
        if (RBIGNUM(bigtrunc(y))->len > SIZEOF_LONG/SIZEOF_BDIGITS) {
          out_of_range:
            return RBIGNUM(x)->sign ? INT2FIX(0) : INT2FIX(1);
        }
        shift = big2ulong(y, "long");
    }
    else {
        i = NUM2LONG(y);
        if (i < 0) return INT2FIX(0);
        shift = (VALUE)i;
    }
    s1 = shift/BITSPERDIG;
    s2 = shift%BITSPERDIG;

    if (s1 >= RBIGNUM(x)->len) goto out_of_range;
    if (!RBIGNUM(x)->sign) {
        xds = BDIGITS(x);
        i = 0; num = 1;
        while (num += ~xds[i], ++i <= s1) {
            num = BIGDN(num);
        }
    }
    else {
        num = BDIGITS(x)[s1];
    }
    if (num & ((BDIGIT_DBL)1<<s2))
        return INT2FIX(1);
    return INT2FIX(0);
}

Performs bitwise +exclusive or+ between big and numeric.

[Source]

/*
 * call-seq:
 *     big ^ numeric   =>  integer
 *
 * Performs bitwise +exclusive or+ between _big_ and _numeric_.
 */

VALUE
rb_big_xor(xx, yy)
    VALUE xx, yy;
{
    volatile VALUE x, y;
    VALUE z;
    BDIGIT *ds1, *ds2, *zds;
    long i, l1, l2;
    char sign;

    x = xx;
    y = rb_to_int(yy);
    if (FIXNUM_P(y)) {
        y = rb_int2big(FIX2LONG(y));
    }
    if (!RBIGNUM(y)->sign) {
        y = rb_big_clone(y);
        get2comp(y);
    }
    if (!RBIGNUM(x)->sign) {
        x = rb_big_clone(x);
        get2comp(x);
    }
    if (RBIGNUM(x)->len > RBIGNUM(y)->len) {
        l1 = RBIGNUM(y)->len;
        l2 = RBIGNUM(x)->len;
        ds1 = BDIGITS(y);
        ds2 = BDIGITS(x);
        sign = RBIGNUM(y)->sign;
    }
    else {
        l1 = RBIGNUM(x)->len;
        l2 = RBIGNUM(y)->len;
        ds1 = BDIGITS(x);
        ds2 = BDIGITS(y);
        sign = RBIGNUM(x)->sign;
    }
    RBIGNUM(x)->sign = RBIGNUM(x)->sign?1:0;
    RBIGNUM(y)->sign = RBIGNUM(y)->sign?1:0;
    z = bignew(l2, !(RBIGNUM(x)->sign ^ RBIGNUM(y)->sign));
    zds = BDIGITS(z);

    for (i=0; i<l1; i++) {
        zds[i] = ds1[i] ^ ds2[i];
    }
    for (; i<l2; i++) {
        zds[i] = sign?ds2[i]:~ds2[i];
    }
    if (!RBIGNUM(z)->sign) get2comp(z);

    return bignorm(z);
}

Returns the absolute value of big.

   -1234567890987654321.abs   #=> 1234567890987654321

[Source]

/*
 *  call-seq:
 *     big.abs -> aBignum
 *
 *  Returns the absolute value of <i>big</i>.
 *
 *     -1234567890987654321.abs   #=> 1234567890987654321
 */

static VALUE
rb_big_abs(x)
    VALUE x;
{
    if (!RBIGNUM(x)->sign) {
        x = rb_big_clone(x);
        RBIGNUM(x)->sign = 1;
    }
    return x;
}

MISSING: documentation

[Source]

/*
 * MISSING: documentation
 */

static VALUE
rb_big_coerce(x, y)
    VALUE x, y;
{
    if (FIXNUM_P(y)) {
        return rb_assoc_new(rb_int2big(FIX2LONG(y)), x);
    }
    else if (TYPE(y) == T_BIGNUM) {
       return rb_assoc_new(y, x);
    }
    else {
        rb_raise(rb_eTypeError, "can't coerce %s to Bignum",
                 rb_obj_classname(y));
    }
    /* not reached */
    return Qnil;
}

Divides big by other, returning the result.

[Source]

/*
 *  call-seq:
 *     big / other     => Numeric
 *     big.div(other)  => Numeric
 *
 *  Divides big by other, returning the result.
 */

static VALUE
rb_big_div(x, y)
    VALUE x, y;
{
    VALUE z;

    switch (TYPE(y)) {
      case T_FIXNUM:
        y = rb_int2big(FIX2LONG(y));
        break;

      case T_BIGNUM:
        break;

      default:
        return rb_num_coerce_bin(x, y);
    }
    bigdivmod(x, y, &z, 0);

    return bignorm(z);
}

See Numeric#divmod.

[Source]

/*
 *  call-seq:
 *     big.divmod(numeric)   => array
 *
 *  See <code>Numeric#divmod</code>.
 *
 */
VALUE
rb_big_divmod(x, y)
    VALUE x, y;
{
    VALUE div, mod;

    switch (TYPE(y)) {
      case T_FIXNUM:
        y = rb_int2big(FIX2LONG(y));
        break;

      case T_BIGNUM:
        break;

      default:
        return rb_num_coerce_bin(x, y);
    }
    bigdivmod(x, y, &div, &mod);

    return rb_assoc_new(bignorm(div), bignorm(mod));
}

Returns true only if obj is a Bignum with the same value as big. Contrast this with Bignum#==, which performs type conversions.

   68719476736.eql?(68719476736.0)   #=> false

[Source]

/*
 *  call-seq:
 *     big.eql?(obj)   => true or false
 *
 *  Returns <code>true</code> only if <i>obj</i> is a
 *  <code>Bignum</code> with the same value as <i>big</i>. Contrast this
 *  with <code>Bignum#==</code>, which performs type conversions.
 *
 *     68719476736.eql?(68719476736.0)   #=> false
 */

static VALUE
rb_big_eql(x, y)
    VALUE x, y;
{
    if (TYPE(y) != T_BIGNUM) return Qfalse;
    if (RBIGNUM(x)->sign != RBIGNUM(y)->sign) return Qfalse;
    if (RBIGNUM(x)->len != RBIGNUM(y)->len) return Qfalse;
    if (MEMCMP(BDIGITS(x),BDIGITS(y),BDIGIT,RBIGNUM(y)->len) != 0) return Qfalse;
    return Qtrue;
}

Returns the floating point result of dividing big by numeric.

   -1234567890987654321.quo(13731)      #=> -89910996357705.5
   -1234567890987654321.quo(13731.24)   #=> -89909424858035.7

[Source]

/*
 *  call-seq:
 *     big.quo(numeric) -> float
 *     big.fdiv(numeric) -> float
 *
 *  Returns the floating point result of dividing <i>big</i> by
 *  <i>numeric</i>.
 *
 *     -1234567890987654321.quo(13731)      #=> -89910996357705.5
 *     -1234567890987654321.quo(13731.24)   #=> -89909424858035.7
 *
 */

static VALUE
rb_big_quo(x, y)
    VALUE x, y;
{
    double dx = big2dbl(x);
    double dy;

    if (isinf(dx)) {
#define DBL_BIGDIG ((DBL_MANT_DIG + BITSPERDIG) / BITSPERDIG)
        VALUE z;
        int ex, ey;

        ex = (RBIGNUM(bigtrunc(x))->len - 1) * BITSPERDIG;
        ex += bdigbitsize(BDIGITS(x)[RBIGNUM(x)->len - 1]);
        ex -= 2 * DBL_BIGDIG * BITSPERDIG;
        if (ex) x = big_shift(x, ex);

        switch (TYPE(y)) {
          case T_FIXNUM:
            y = rb_int2big(FIX2LONG(y));
          case T_BIGNUM: {
            ey = (RBIGNUM(bigtrunc(y))->len - 1) * BITSPERDIG;
            ey += bdigbitsize(BDIGITS(y)[RBIGNUM(y)->len - 1]);
            ey -= DBL_BIGDIG * BITSPERDIG;
            if (ey) y = big_shift(y, ey);
          bignum:
            bigdivrem(x, y, &z, 0);
            return rb_float_new(ldexp(big2dbl(z), ex - ey));
          }
          case T_FLOAT:
            y = dbl2big(ldexp(frexp(RFLOAT(y)->value, &ey), DBL_MANT_DIG));
            ey -= DBL_MANT_DIG;
            goto bignum;
        }
    }
    switch (TYPE(y)) {
      case T_FIXNUM:
        dy = (double)FIX2LONG(y);
        break;

      case T_BIGNUM:
        dy = rb_big2dbl(y);
        break;

      case T_FLOAT:
        dy = RFLOAT(y)->value;
        break;

      default:
        return rb_num_coerce_bin(x, y);
    }
    return rb_float_new(dx / dy);
}

Compute a hash based on the value of big.

[Source]

/*
 * call-seq:
 *   big.hash   => fixnum
 *
 * Compute a hash based on the value of _big_.
 */

static VALUE
rb_big_hash(x)
    VALUE x;
{
    long i, len, key;
    BDIGIT *digits;

    key = 0; digits = BDIGITS(x); len = RBIGNUM(x)->len;
    for (i=0; i<len; i++) {
        key ^= *digits++;
    }
    return LONG2FIX(key);
}

Returns big modulo other. See Numeric.divmod for more information.

[Source]

/*
 *  call-seq:
 *     big % other         => Numeric
 *     big.modulo(other)   => Numeric
 *
 *  Returns big modulo other. See Numeric.divmod for more
 *  information.
 */

static VALUE
rb_big_modulo(x, y)
    VALUE x, y;
{
    VALUE z;

    switch (TYPE(y)) {
      case T_FIXNUM:
        y = rb_int2big(FIX2LONG(y));
        break;

      case T_BIGNUM:
        break;

      default:
        return rb_num_coerce_bin(x, y);
    }
    bigdivmod(x, y, 0, &z);

    return bignorm(z);
}

Returns the floating point result of dividing big by numeric.

   -1234567890987654321.quo(13731)      #=> -89910996357705.5
   -1234567890987654321.quo(13731.24)   #=> -89909424858035.7

[Source]

/*
 *  call-seq:
 *     big.quo(numeric) -> float
 *     big.fdiv(numeric) -> float
 *
 *  Returns the floating point result of dividing <i>big</i> by
 *  <i>numeric</i>.
 *
 *     -1234567890987654321.quo(13731)      #=> -89910996357705.5
 *     -1234567890987654321.quo(13731.24)   #=> -89909424858035.7
 *
 */

static VALUE
rb_big_quo(x, y)
    VALUE x, y;
{
    double dx = big2dbl(x);
    double dy;

    if (isinf(dx)) {
#define DBL_BIGDIG ((DBL_MANT_DIG + BITSPERDIG) / BITSPERDIG)
        VALUE z;
        int ex, ey;

        ex = (RBIGNUM(bigtrunc(x))->len - 1) * BITSPERDIG;
        ex += bdigbitsize(BDIGITS(x)[RBIGNUM(x)->len - 1]);
        ex -= 2 * DBL_BIGDIG * BITSPERDIG;
        if (ex) x = big_shift(x, ex);

        switch (TYPE(y)) {
          case T_FIXNUM:
            y = rb_int2big(FIX2LONG(y));
          case T_BIGNUM: {
            ey = (RBIGNUM(bigtrunc(y))->len - 1) * BITSPERDIG;
            ey += bdigbitsize(BDIGITS(y)[RBIGNUM(y)->len - 1]);
            ey -= DBL_BIGDIG * BITSPERDIG;
            if (ey) y = big_shift(y, ey);
          bignum:
            bigdivrem(x, y, &z, 0);
            return rb_float_new(ldexp(big2dbl(z), ex - ey));
          }
          case T_FLOAT:
            y = dbl2big(ldexp(frexp(RFLOAT(y)->value, &ey), DBL_MANT_DIG));
            ey -= DBL_MANT_DIG;
            goto bignum;
        }
    }
    switch (TYPE(y)) {
      case T_FIXNUM:
        dy = (double)FIX2LONG(y);
        break;

      case T_BIGNUM:
        dy = rb_big2dbl(y);
        break;

      case T_FLOAT:
        dy = RFLOAT(y)->value;
        break;

      default:
        return rb_num_coerce_bin(x, y);
    }
    return rb_float_new(dx / dy);
}

Returns the remainder after dividing big by numeric.

   -1234567890987654321.remainder(13731)      #=> -6966
   -1234567890987654321.remainder(13731.24)   #=> -9906.22531493148

[Source]

/*
 *  call-seq:
 *     big.remainder(numeric)    => number
 *
 *  Returns the remainder after dividing <i>big</i> by <i>numeric</i>.
 *
 *     -1234567890987654321.remainder(13731)      #=> -6966
 *     -1234567890987654321.remainder(13731.24)   #=> -9906.22531493148
 */
static VALUE
rb_big_remainder(x, y)
    VALUE x, y;
{
    VALUE z;

    switch (TYPE(y)) {
      case T_FIXNUM:
        y = rb_int2big(FIX2LONG(y));
        break;

      case T_BIGNUM:
        break;

      default:
        return rb_num_coerce_bin(x, y);
    }
    bigdivrem(x, y, 0, &z);

    return bignorm(z);
}

Returns the number of bytes in the machine representation of big.

   (256**10 - 1).size   #=> 12
   (256**20 - 1).size   #=> 20
   (256**40 - 1).size   #=> 40

[Source]

/*
 *  call-seq:
 *     big.size -> integer
 *
 *  Returns the number of bytes in the machine representation of
 *  <i>big</i>.
 *
 *     (256**10 - 1).size   #=> 12
 *     (256**20 - 1).size   #=> 20
 *     (256**40 - 1).size   #=> 40
 */

static VALUE
rb_big_size(big)
    VALUE big;
{
    return LONG2FIX(RBIGNUM(big)->len*SIZEOF_BDIGITS);
}

Converts big to a Float. If big doesn‘t fit in a Float, the result is infinity.

[Source]

/*
 *  call-seq:
 *     big.to_f -> float
 *
 *  Converts <i>big</i> to a <code>Float</code>. If <i>big</i> doesn't
 *  fit in a <code>Float</code>, the result is infinity.
 *
 */

static VALUE
rb_big_to_f(x)
    VALUE x;
{
    return rb_float_new(rb_big2dbl(x));
}

Returns a string containing the representation of big radix base (2 through 36).

   12345654321.to_s         #=> "12345654321"
   12345654321.to_s(2)      #=> "1011011111110110111011110000110001"
   12345654321.to_s(8)      #=> "133766736061"
   12345654321.to_s(16)     #=> "2dfdbbc31"
   78546939656932.to_s(36)  #=> "rubyrules"

[Source]

/*
 *  call-seq:
 *     big.to_s(base=10)   =>  string
 *
 *  Returns a string containing the representation of <i>big</i> radix
 *  <i>base</i> (2 through 36).
 *
 *     12345654321.to_s         #=> "12345654321"
 *     12345654321.to_s(2)      #=> "1011011111110110111011110000110001"
 *     12345654321.to_s(8)      #=> "133766736061"
 *     12345654321.to_s(16)     #=> "2dfdbbc31"
 *     78546939656932.to_s(36)  #=> "rubyrules"
 */

static VALUE
rb_big_to_s(argc, argv, x)
    int argc;
    VALUE *argv;
    VALUE x;
{
    VALUE b;
    int base;

    rb_scan_args(argc, argv, "01", &b);
    if (argc == 0) base = 10;
    else base = NUM2INT(b);
    return rb_big2str(x, base);
}

Performs bitwise or between big and numeric.

[Source]

/*
 * call-seq:
 *     big | numeric   =>  integer
 *
 * Performs bitwise +or+ between _big_ and _numeric_.
 */

VALUE
rb_big_or(xx, yy)
    VALUE xx, yy;
{
    volatile VALUE x, y, z;
    BDIGIT *ds1, *ds2, *zds;
    long i, l1, l2;
    char sign;

    x = xx;
    y = rb_to_int(yy);
    if (FIXNUM_P(y)) {
        y = rb_int2big(FIX2LONG(y));
    }
    if (!RBIGNUM(y)->sign) {
        y = rb_big_clone(y);
        get2comp(y);
    }
    if (!RBIGNUM(x)->sign) {
        x = rb_big_clone(x);
        get2comp(x);
    }
    if (RBIGNUM(x)->len > RBIGNUM(y)->len) {
        l1 = RBIGNUM(y)->len;
        l2 = RBIGNUM(x)->len;
        ds1 = BDIGITS(y);
        ds2 = BDIGITS(x);
        sign = RBIGNUM(y)->sign;
    }
    else {
        l1 = RBIGNUM(x)->len;
        l2 = RBIGNUM(y)->len;
        ds1 = BDIGITS(x);
        ds2 = BDIGITS(y);
        sign = RBIGNUM(x)->sign;
    }
    z = bignew(l2, RBIGNUM(x)->sign && RBIGNUM(y)->sign);
    zds = BDIGITS(z);

    for (i=0; i<l1; i++) {
        zds[i] = ds1[i] | ds2[i];
    }
    for (; i<l2; i++) {
        zds[i] = sign?ds2[i]:(BIGRAD-1);
    }
    if (!RBIGNUM(z)->sign) get2comp(z);

    return bignorm(z);
}

Inverts the bits in big. As Bignums are conceptually infinite length, the result acts as if it had an infinite number of one bits to the left. In hex representations, this is displayed as two periods to the left of the digits.

  sprintf("%X", ~0x1122334455)    #=> "..FEEDDCCBBAA"

[Source]

/*
 * call-seq:
 *     ~big  =>  integer
 *
 * Inverts the bits in big. As Bignums are conceptually infinite
 * length, the result acts as if it had an infinite number of one
 * bits to the left. In hex representations, this is displayed
 * as two periods to the left of the digits.
 *
 *   sprintf("%X", ~0x1122334455)    #=> "..FEEDDCCBBAA"
 */

static VALUE
rb_big_neg(x)
    VALUE x;
{
    VALUE z = rb_big_clone(x);
    long i;
    BDIGIT *ds;

    if (!RBIGNUM(x)->sign) get2comp(z);
    ds = BDIGITS(z);
    i = RBIGNUM(x)->len;
    if (!i) return INT2FIX(~0);
    while (i--) ds[i] = ~ds[i];
    RBIGNUM(z)->sign = !RBIGNUM(z)->sign;
    if (RBIGNUM(x)->sign) get2comp(z);

    return bignorm(z);
}

[Validate]